1
|
Tan I, Chothani S, Lim HH, Lam KP. Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates. Sci Rep 2025; 15:3360. [PMID: 39870744 PMCID: PMC11772596 DOI: 10.1038/s41598-025-86789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution. Analyses of putative exon 1b genomic sequences within the primate superfamily indicated that the exonization of LKB1/STK11 exon 1b was mediated by the conserved retrotransposable element Alu-Sc. While putative exon 1b sequences are recognizable in most members of the primate family from New World Monkeys onwards, characteristically functional LKB1/STK11 exon 1b, with translation start and 5' and 3' splice sites, could only be found in greater apes and human, and interestingly, correlates with their increased body mass and longevity development.
Collapse
Affiliation(s)
- Ivan Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore
| | | | - Hong-Hwa Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
2
|
Ambar N, Thurber MI, Montiani-Ferreira F, Cray C. ASSESSMENT OF ACUTE PHASE PROTEINS AND PROTEIN ELECTROPHORESIS IN HEALTHY GIBBONS (HYLOBATIDAE) IN MANAGED SETTINGS. J Zoo Wildl Med 2024; 55:565-572. [PMID: 39255197 DOI: 10.1638/2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 09/12/2024] Open
Abstract
Acute phase proteins (APP) and protein electrophoresis (EPH) offer crucial insights into inflammation and overall health in various species. In this study, we validated serum amyloid A (SAA) and C-reactive protein (CRP) reagents for use with serum samples from gibbons (Hylobatidae, n = 50), spanning five species across four gibbon genera: eastern hoolock (Hoolock leuconedys), Javan (Hylobates moloch), pileated (Hylobates pileatus), siamang (Symphalangus syndactylus), and white-cheeked (Nomascus leucogenys). Preliminary reference intervals (n = 50) were calculated for SAA (1.8-48.1 mg/L), CRP (0.1-11.1 mg/L), and EPH via capillary zone electrophoresis, in healthy gibbons. Comparing clinically normal (n = 38) and abnormal (n = 12) individuals, significant differences were observed in the albumin/globulin ratio (P = 0.0003), prealbumin (P = 0.0345), and albumin (P = 0.0094), with abnormal individuals exhibiting statistically significantly higher γ-globulins (P = 0.0224), SAA (P = 0.0001), and CRP (P = 0.0003). Despite significant chromosomal rearrangements among different gibbon species, we found no statistically significant differences of SAA and CRP levels across species. However, some differences between species were observed in EPH fractions. This study presents the first report of the evaluation of APP and EPH in gibbons, underscoring the potential use of these biomarkers in gibbon health monitoring. Further research with larger sample sizes of both normal and abnormal gibbons is recommended to solidify the clinical utility of these biomarkers in these species.
Collapse
Affiliation(s)
- Neta Ambar
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA,
| | - Mary I Thurber
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA
| | - Fabiano Montiani-Ferreira
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Veterinary Medicine, Universidade Federal do Paraná, 1299, Downtown, Curitiba, Brazil
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
4
|
Escalona M, VanCampen J, Maurer NW, Haukness M, Okhovat M, Harris RS, Watwood A, Hartley GA, O’Neill RJ, Medvedev P, Makova KD, Vollmers C, Carbone L, Green RE. Whole-genome sequence and assembly of the Javan gibbon (Hylobates moloch). J Hered 2023; 114:35-43. [PMID: 36146896 PMCID: PMC10019027 DOI: 10.1093/jhered/esac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023] Open
Abstract
The Javan gibbon, Hylobates moloch, is an endangered gibbon species restricted to the forest remnants of western and central Java, Indonesia, and one of the rarest of the Hylobatidae family. Hylobatids consist of 4 genera (Holoock, Hylobates, Symphalangus, and Nomascus) that are characterized by different numbers of chromosomes, ranging from 38 to 52. The underlying cause of this karyotype plasticity is not entirely understood, at least in part, due to the limited availability of genomic data. Here we present the first scaffold-level assembly for H. moloch using a combination of whole-genome Illumina short reads, 10X Chromium linked reads, PacBio, and Oxford Nanopore long reads and proximity-ligation data. This Hylobates genome represents a valuable new resource for comparative genomics studies in primates.
Collapse
Affiliation(s)
- Merly Escalona
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas W Maurer
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marina Haukness
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Allison Watwood
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06296, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA
| | - Rachel J O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06296, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA
| | - Paul Medvedev
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Divergence and introgression in small apes, the genus Hylobates, revealed by reduced representation sequencing. Heredity (Edinb) 2021; 127:312-322. [PMID: 34188193 PMCID: PMC8405704 DOI: 10.1038/s41437-021-00452-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Gibbons of the genus Hylobates, which inhabit Southeast Asia, show great diversity and comprise seven to nine species. Natural hybridisation has been observed in several species contact zones, but the history and extent of hybridisation and introgression in possibly historical and the current contact zones remain unclear. To uncover Hylobates species phylogeny and the extent of introgression in their evolution, genotyping by random amplicon sequencing-direct (GRAS-Di) was applied to 47 gibbons, representing seven Hylobates species/subspecies and two outgroup gibbon species. Over 200,000 autosomal single-nucleotide variant sites were identified. The autosomal phylogeny supported that divergence from the mainland species began ~3.5 million years ago, and subsequently occurred among the Sundaic island species. Significant introgression signals were detected between H. lar and H. pileatus, H. lar and H. agilis and H. albibarbis and H. muelleri, which all are parapatric and form ongoing hybrid zones. Furthermore, the introgression signals were detected in every analysed individual of these species, indicating a relatively long history of hybridisation, which might have affected the entire gene pool. By contrast, signals of introgression were either not detected or doubtful in other species pairs living on different islands, indicating the rarity of hybridisation and introgression, even though the Sundaic islands were connected during the Pliocene and Pleistocene glacial events.
Collapse
|
6
|
Understanding the Phylogenetics of Indian Hoolock Gibbons: Hoolock hoolock and H. leuconedys. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Yalcindag E, Stuart P, Hasegawa H, Streit A, Doležalová J, Morrogh-Bernard H, Cheyne SM, Nurcahyo W, Foitová I. Genetic characterization of nodular worm infections in Asian Apes. Sci Rep 2021; 11:7226. [PMID: 33790353 PMCID: PMC8012698 DOI: 10.1038/s41598-021-86518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Parasitic nematodes of Oesophagostomum spp., commonly known, as 'nodular worms' are emerging as the most widely distributed and prevalent zoonotic nematodes. Oesophagostomum infections are well documented in African non-human primates; however, the taxonomy, distribution and transmission of Oesophagostomum in Asian non-human primates are not adequately studied. To better understand which Oesophagostomum species infect Asian non-human primates and determine their phylogeny we analysed 55 faecal samples from 50 orangutan and 5 gibbon individuals from Borneo and Sumatra. Both microscopy and molecular results revealed that semi-wild animals had higher Oesophagostomum infection prevalence than free ranging animals. Based on sequence genotyping analysis targeting the Internal transcribed spacer 2 of rDNA, we report for the first time the presence of O. aculeatum in Sumatran apes. Population genetic analysis shows that there is significant genetic differentiation between Bornean and Sumatran O. aculeatum populations. Our results clearly reveal that O. aculeatum in free-ranging animals have a higher genetic variation than those in semi-wild animals, demonstrating that O. aculeatum is circulating naturally in wildlife and zoonotic transmission is possible. Further studies should be conducted to better understand the epidemiology and dynamics of Oesophagostomum transmission between humans, non-human primates and other wild species and livestock in Southeast Asia.
Collapse
Affiliation(s)
- Erhan Yalcindag
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Peter Stuart
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee, Co. Kerry, Ireland
| | - Hideo Hasegawa
- Department of Biomedicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Adrian Streit
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Jana Doležalová
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackého tř. 1, Brno, Czech Republic
| | - Helen Morrogh-Bernard
- Borneo Nature Foundation, Palangkaraya, Central Kalimantan, Indonesia
- Department of Humanities and Social Sciences, Oxford Brookes University, Oxford, UK
| | - Susan M Cheyne
- Department of Humanities and Social Sciences, Oxford Brookes University, Oxford, UK
| | - Wisnu Nurcahyo
- Department of Parasitology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ivona Foitová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
8
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
9
|
Abstract
In humans, patterns of cranial variation mirror genetic diversity globally, implicating population history as a key driver of cranial disparity. Here, we demonstrate that the magnitude of genetic diversity within 12 extant ape taxa explains a large proportion of cranial shape variation. Taxa that are more genetically diverse tend to be more cranially diverse also. Our results suggest that neutral evolutionary processes such as mutation, genetic drift, and gene flow are reflected in both genetic and cranial diversity in apes. This work provides a perspective on intraspecific cranial variation in apes which has important implications for interpreting selective and developmental pressures on the cranium and for understanding shape variation in fossil hominin crania. Natural selection, developmental constraint, and plasticity have all been invoked as explanations for intraspecific cranial variation in humans and apes. However, global patterns of human cranial variation are congruent with patterns of genetic variation, demonstrating that population history has influenced cranial variation in humans. Here we show that this finding is not unique to Homo sapiens but is also broadly evident across extant ape species. Specifically, taxa that exhibit greater intraspecific cranial shape variation also exhibit greater genetic diversity at neutral autosomal loci. Thus, cranial shape variation within hominoid taxa reflects the population history of each species. Our results suggest that neutral evolutionary processes such as mutation, gene flow, and genetic drift have played an important role in generating cranial variation within species. These findings are consistent with previous work on human cranial morphology and improve our understanding of the evolutionary processes that generate intraspecific cranial shape diversity within hominoids. This work has implications for the analysis of selective and developmental pressures on the cranium and for interpreting shape variation in fossil hominin crania.
Collapse
|
10
|
Zichello JM. Look in the trees: Hylobatids as evolutionary models for extinct hominins. Evol Anthropol 2018; 27:142-146. [PMID: 30133077 DOI: 10.1002/evan.21715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 11/11/2022]
Abstract
Studying extant apes is of central importance to paleoanthropology. This approach is informative in inferring how hominin skeletal morphology reflects phylogeny, behavior, development, and ecological context. Traditionally, great apes have dominated the paleoanthropological literature as extant analogs for extinct hominins, to the exclusion of their phylogenetic sister group, the hylobatids. Phylogenetic proximity, large body size, and high encephalization quotients may have contributed to decisions to use great apes as models for hominins. However, if we reexamine hylobatids as extant models for extinct hominins-using modern phylogenetic, behavioral, and ecological data-this clade is uniquely poised to inform future frameworks in paleoanthropology. The following features make hylobatids strong analogs for extinct hominins: taxonomic diversity, the timing of diversification, hybridization between species, small body size, and reduced sexual dimorphism. Based on these shared features, hylobatids offer future opportunities to paleoanthropology, and provide a much richer extant analog than is currently recognized.
Collapse
Affiliation(s)
- Julia M Zichello
- Sackler Educational Laboratory for Comparative Genomics and Human Origins, American Museum of Natural History, New York, New York
| |
Collapse
|
11
|
|
12
|
de Groot N, Stanbury K, de Vos-Rouweler AJM, de Groot NG, Poirier N, Blancho G, de Luna C, Doxiadis GGM, Bontrop RE. A quick and robust MHC typing method for free-ranging and captive primate species. Immunogenetics 2017; 69:231-240. [PMID: 28084496 PMCID: PMC5350218 DOI: 10.1007/s00251-016-0968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022]
Abstract
Gene products of the major histocompatibility complex (MHC) of human and non-human primates play a crucial role in adaptive immunity, and most of the relevant genes not only show a high degree of variability (polymorphism) but also copy number variation (CNV) is observed. Due to this diversity, MHC proteins influence the capability of individuals to cope with various pathogens. MHC and/or MHC-linked gene products such as odorant receptor genes are thought to influence mate choice and reproductive success. Therefore, MHC typing of wild and captive primate populations is considered to be useful in conservation biology, which is, however, often hampered by the need of invasive and time-consuming methods. All intact Mhc-DRB genes in primates appear to possess a complex and highly divergent microsatellite, DRB-STR. A panel of 154 pedigreed olive baboons (Papio anubis) was examined for their DRB content by DRB-STR analysis of genomic DNA. Using the same methodology on DNA of feces samples, DRB variability of a silvery gibbon population (Hylobates moloch) (N = 24), an endangered species, could successfully be studied. In both species, length determination of the DRB-STR resulted in the definition of unique genotyping patterns that appeared to be specific for a certain chromosome. Moreover, the different STR lengths were shown to segregate with the allelic variation of the respective gene. The results obtained expand data gained previously on DRB-STR typing in macaques, great apes, and humans and strengthen the conclusion that this protocol is applicable in molecular ecology, conservation biology, and colony management, especially of endangered primate species.
Collapse
Affiliation(s)
- N de Groot
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - K Stanbury
- Writtle College, Essex University, Lordship Road, Writtle, Chelmsford, Essex, CM1 3RR, UK
| | - A J M de Vos-Rouweler
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - N G de Groot
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - N Poirier
- Institut National de la Sante et de la Recherche Medicale (INSERM) UMR1064, Institut de Transplantation-Urologie-Nephrologie (ITUN), 30 Bd Jean Monnet, 44093, Nantes, France
| | - G Blancho
- Institut National de la Sante et de la Recherche Medicale (INSERM) UMR1064, Institut de Transplantation-Urologie-Nephrologie (ITUN), 30 Bd Jean Monnet, 44093, Nantes, France
| | - C de Luna
- Writtle College, Essex University, Lordship Road, Writtle, Chelmsford, Essex, CM1 3RR, UK
| | - G G M Doxiadis
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - R E Bontrop
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
13
|
Fan PF, He K, Chen X, Ortiz A, Zhang B, Zhao C, Li YQ, Zhang HB, Kimock C, Wang WZ, Groves C, Turvey ST, Roos C, Helgen KM, Jiang XL. Description of a new species of Hoolock
gibbon (Primates: Hylobatidae) based on integrative taxonomy. Am J Primatol 2017; 79. [DOI: 10.1002/ajp.22631] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/27/2016] [Accepted: 11/18/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Peng-Fei Fan
- School of Life Sciences; Sun Yat-sen University; Guangzhou China
- Institute of Eastern-Himalaya Biodiversity Research; Dali University; Dali China
| | - Kai He
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
- Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, D.C
- The Kyoto University Museum; Kyoto University; Kyoto Japan
| | - Xing Chen
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Alejandra Ortiz
- Department of Anthropology; Center for the Study of Human Origins; New York University; New York
- New York Consortium in Evolutionary Primatology (NYCEP); New York
- Institute of Human Origins; School of Human Evolution and Social Change; Arizona State University; Tempe Arizona
| | - Bin Zhang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Chao Zhao
- Cloud Mountain Conservation; Dali China
| | | | | | - Clare Kimock
- Department of Anthropology; Center for the Study of Human Origins; New York University; New York
- New York Consortium in Evolutionary Primatology (NYCEP); New York
| | - Wen-Zhi Wang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| | - Colin Groves
- School of Archaeology and Anthropology; Australian National University; Acton Australian Capital Territory Australia
| | | | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Kristofer M. Helgen
- Department of Vertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, D.C
| | - Xue-Long Jiang
- Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming China
| |
Collapse
|
14
|
|
15
|
Osada N. Genetic diversity in humans and non-human primates and its evolutionary consequences. Genes Genet Syst 2016; 90:133-45. [PMID: 26510568 DOI: 10.1266/ggs.90.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic diversity is a key parameter in population genetics and is important for understanding the process of evolution and for the development of appropriate conservation strategies. Recent advances in sequencing technology have enabled the measurement of genetic diversity of various organisms at the nucleotide level and on a genome-wide scale, yielding more precise estimates than were previously achievable. In this review, I have compiled and summarized the estimates of genetic diversity in humans and non-human primates based on recent genome-wide studies. Although studies on population genetics demonstrated fluctuations in population sizes over time, general patterns have emerged. As shown previously, genetic diversity in humans is one of the lowest among primates; however, certain other primate species exhibit genetic diversity that is comparable to or even lower than that in humans. There exists greater than 10-fold variation in genetic diversity among primate species, and I found weak correlation with species fecundity but not with body or propagule size. I further discuss the potential evolutionary consequences of population size decline on the evolution of primate species. The level of genetic diversity negatively correlates with the ratio of non-synonymous to synonymous polymorphisms in a population, suggesting that proportionally greater numbers of slightly deleterious mutations segregate in small rather than large populations. Although population size decline is likely to promote the fixation of slightly deleterious mutations, there are molecular mechanisms, such as compensatory mutations at various molecular levels, which may prevent fitness decline at the population level. The effects of slightly deleterious mutations from theoretical and empirical studies and their relevance to conservation biology are also discussed in this review.
Collapse
Affiliation(s)
- Naoki Osada
- Department of Population Genetics, National Institute of Genetics
| |
Collapse
|
16
|
Roos C. Phylogeny and Classification of Gibbons (Hylobatidae). DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-5614-2_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Nikkhah M, Rezazadeh M, Khorram Khorshid HR, Biglarian A, Ohadi M. An exceptionally long CA-repeat in the core promoter of SCGB2B2 links with the evolution of apes and Old World monkeys. Gene 2015; 576:109-14. [PMID: 26437309 DOI: 10.1016/j.gene.2015.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
We have recently reported a genome-scale catalog of human protein-coding genes that contain "exceptionally long" STRs (≥6-repeats) in their core promoter, which may be of selective advantage in this species. At the top of that list, SCGB2B2 (also known as SCGBL), contains one of the longest CA-repeat STRs identified in a human gene core promoter, at 25-repeats. In the study reported here, we analyzed the conservation status of this CA-STR across evolution. The functional implication of this STR to alter gene expression activity was also analyzed in the HEK-293 cell line. We report that the SCGB2B2 core promoter CA-repeat reaches exceptional lengths, ranging from 9- to 25-repeats, across Apes (Hominoids) and the Old World monkeys (CA>2-repeats were not detected in any other species). The longest CA-repeats and highest identity in the SCGB2B2 protein sequence were observed between human and bonobo. A trend for increased gene expression activity was observed from the shorter to the longer CA-repeats (p<0.009), and the CA-repeat increased gene expression activity, per se (p<0.02). We propose that the SCGB2B2 gene core promoter CA-repeat functions as an expression code for the evolution of Apes and the Old World monkeys.
Collapse
Affiliation(s)
- M Nikkhah
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Rezazadeh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Biglarian
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Choi Y, Jung YD, Ayarpadikannan S, Koga A, Imai H, Hirai H, Roos C, Kim HS. Novel variable number of tandem repeats of gibbon MAOA gene and its evolutionary significance. Genome 2015; 57:427-32. [PMID: 25360715 DOI: 10.1139/gen-2014-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Variable number of tandem repeats (VNTRs) are scattered throughout the primate genome, and genetic variation of these VNTRs have been accumulated during primate radiation. Here, we analyzed VNTRs upstream of the monoamine oxidase A (MAOA) gene in 11 different gibbon species. An abundance of truncated VNTR sequences and copy number differences were observed compared to those of human VNTR sequences. To better understand the biological role of these VNTRs, a luciferase activity assay was conducted and results indicated that selected VNTR sequences of the MAOA gene from human and three different gibbon species (Hylobates klossii, Hylobates lar, and Nomascus concolor) showed silencing ability. Together, these data could be useful for understanding the evolutionary history and functional significance of MAOA VNTR sequences in gibbon species.
Collapse
Affiliation(s)
- Yuri Choi
- a Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Examining phylogenetic relationships among gibbon genera using whole genome sequence data using an approximate bayesian computation approach. Genetics 2015; 200:295-308. [PMID: 25769979 DOI: 10.1534/genetics.115.174425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/04/2015] [Indexed: 12/30/2022] Open
Abstract
Gibbons are believed to have diverged from the larger great apes ∼16.8 MYA and today reside in the rainforests of Southeast Asia. Based on their diploid chromosome number, the family Hylobatidae is divided into four genera, Nomascus, Symphalangus, Hoolock, and Hylobates. Genetic studies attempting to elucidate the phylogenetic relationships among gibbons using karyotypes, mitochondrial DNA (mtDNA), the Y chromosome, and short autosomal sequences have been inconclusive . To examine the relationships among gibbon genera in more depth, we performed second-generation whole genome sequencing (WGS) to a mean of ∼15× coverage in two individuals from each genus. We developed a coalescent-based approximate Bayesian computation (ABC) method incorporating a model of sequencing error generated by high coverage exome validation to infer the branching order, divergence times, and effective population sizes of gibbon taxa. Although Hoolock and Symphalangus are likely sister taxa, we could not confidently resolve a single bifurcating tree despite the large amount of data analyzed. Instead, our results support the hypothesis that all four gibbon genera diverged at approximately the same time. Assuming an autosomal mutation rate of 1 × 10(-9)/site/year this speciation process occurred ∼5 MYA during a period in the Early Pliocene characterized by climatic shifts and fragmentation of the Sunda shelf forests. Whole genome sequencing of additional individuals will be vital for inferring the extent of gene flow among species after the separation of the gibbon genera.
Collapse
|
20
|
Reynolds RG, Puente-Rolón AR, Platenberg R, Tyler RK, Tolson PJ, Revell LJ. Large divergence and low diversity suggest genetically informed conservation strategies for the endangered Virgin Islands Boa (Chilabothrus monensis). Glob Ecol Conserv 2015. [DOI: 10.1016/j.gecco.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Beal K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante G, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LW, Hubley R, Ianc B, Izsvák Z, Jablonski NG, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O'Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, ten Hallers B, Terhune E, Thomas GWC, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA. Gibbon genome and the fast karyotype evolution of small apes. Nature 2014; 513:195-201. [PMID: 25209798 PMCID: PMC4249732 DOI: 10.1038/nature13679] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat. The genome of the gibbon, a tree-dwelling ape from Asia positioned between Old World monkeys and the great apes, is presented, providing insights into the evolutionary history of gibbon species and their accelerated karyotypes, as well as evidence for selection of genes such as those for forelimb development and connective tissue that may be important for locomotion through trees. The many species of gibbons are small, tree-living apes from Southeast Asia, most of them listed as 'endangered' or 'critically endangered' on the IUCN list. In their presentation of the genome of the northern white-cheeked gibbon (Nomascus leucogenys) , Lucia Carbone and colleagues provide intriguing insights into the biology and evolutionary history of a group that straddles the divide between Old World monkeys and the great apes. The authors investigate how a novel gibbon-specific retrotransposon might be the source of gibbons' genome plasticity. Rapid karyotype evolution combined with multiple episodes of climate and environmental change might explain the almost instantaneous divergence of the four gibbon genera. Positive selection on genes involved in forelimb development and connective tissue might have been related to gibbons' unique mode of locomotion in the tropical canopy.
Collapse
Affiliation(s)
- Lucia Carbone
- 1] Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. [2] Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. [3] Oregon Health &Science University, Department of Molecular &Medical Genetics, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [4] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - R Alan Harris
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, Texas 77030, USA
| | - Sante Gnerre
- Nabsys, 60 Clifford Street, Providence, Rhode Island 02903, USA
| | - Krishna R Veeramah
- 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Stony Brook University, Department of Ecology and Evolution, Stony Brook, New York 11790, USA
| | - Belen Lorente-Galdos
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - John Huddleston
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | - Thomas J Meyer
- Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA
| | - Javier Herrero
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK. [3] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Christian Roos
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | - Bronwen Aken
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fabio Anaclerio
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | | | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Daniel Barrell
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark A Batzer
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Craig L Bohrson
- The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA
| | - Markus Brameier
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | | | - Oronzo Capozzi
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Claudio Casola
- Texas A&M University, Department of Ecosystem Science and Management, College Station, Texas 77843, USA
| | - Giorgia Chiatante
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Annette Damert
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA
| | - Laura Dumas
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Marcos Fernandez-Callejo
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nina V Fuchs
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Matthew W Hahn
- Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA
| | - Jessica Hernandez-Rodriguez
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - LaDeana W Hillier
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Robert Hubley
- Institute for Systems Biology, Seattle, Washington 98109-5234, USA
| | - Bianca Ianc
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Nina G Jablonski
- The Pennsylvania State University, Department of Anthropology, University Park, Pennsylvania 16802, USA
| | - Laurel M Johnstone
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Anis Karimpour-Fard
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Miriam K Konkel
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Dennis Kostka
- University of Pittsburgh School of Medicine, Department of Developmental Biology, Department of Computational and Systems Biology, Pittsburg, Pennsylvania 15261, USA
| | - Nathan H Lazar
- Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Devin P Locke
- 1] The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Swapan Mallick
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | - Fernando L Mendez
- 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Kimberly A Nevonen
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Majesta O'Bleness
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Cornelia Ochis
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Duncan T Odom
- 1] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK
| | - Katherine S Pollard
- 1] University of California, Gladstone Institutes, San Francisco, California 94158-226, USA. [2] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [3] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA
| | - Javier Quilez
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - David Reich
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | - Mariano Rocchi
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Gerald G Schumann
- Paul Ehrlich Institute, Division of Medical Biotechnology, 63225 Langen, Germany
| | - Stephen Searle
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James M Sikela
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Gabriella Skollar
- Gibbon Conservation Center, 19100 Esguerra Rd, Santa Clarita, California 91350, USA
| | - Arian Smit
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Kemal Sonmez
- 1] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [2] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA
| | - Boudewijn ten Hallers
- 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Elizabeth Terhune
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Gregg W C Thomas
- Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA
| | - Brygg Ullmer
- Louisiana State University, School of Electrical Engineering and Computer Science, Baton Rouge, Louisiana 70803, USA
| | - Mario Ventura
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Jerilyn A Walker
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Jeffrey D Wall
- 1] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [2] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA
| | - Lutz Walter
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | - Michelle C Ward
- 1] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Sarah J Wheelan
- The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA
| | - Christopher W Whelan
- 1] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Simon White
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Larry J Wilhelm
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - August E Woerner
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Mark Yandell
- University of Utah, Salt Lake City, Utah 84112, USA
| | - Baoli Zhu
- 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Michael F Hammer
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Tomas Marques-Bonet
- 1] IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. [2] Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | - Lucinda Fulton
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Catrina Fronick
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Wesley C Warren
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Richard K Wilson
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Lee A, atuszy ski K. Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation. Biometrika 2014. [DOI: 10.1093/biomet/asu027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Stindl R. The telomeric sync model of speciation: species-wide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the saltatory appearance of nonadaptive characters. Naturwissenschaften 2014; 101:163-86. [PMID: 24493020 PMCID: PMC3935097 DOI: 10.1007/s00114-014-1152-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
Charles Darwin knew that the fossil record is not overwhelmingly supportive of genetic and phenotypic gradualism; therefore, he developed the core of his theory on the basis of breeding experiments. Here, I present evidence for the existence of a cell biological mechanism that strongly points to the almost forgotten European concept of saltatory evolution of nonadaptive characters, which is in perfect agreement with the gaps in the fossil record. The standard model of chromosomal evolution has always been handicapped by a paradox, namely, how speciation can occur by spontaneous chromosomal rearrangements that are known to decrease the fertility of heterozygotes in a population. However, the hallmark of almost all closely related species is a differing chromosome complement and therefore chromosomal rearrangements seem to be crucial for speciation. Telomeres, the caps of eukaryotic chromosomes, erode in somatic tissues during life, but have been thought to remain stable in the germline of a species. Recently, a large human study spanning three healthy generations clearly found a cumulative telomere effect, which is indicative of transgenerational telomere erosion in the human species. The telomeric sync model of speciation presented here is based on telomere erosion between generations, which leads to identical fusions of chromosomes and triggers a transposon-mediated genomic repatterning in the germline of many individuals of a species. The phenotypic outcome of the telomere-triggered transposon activity is the saltatory appearance of nonadaptive characters simultaneously in many individuals. Transgenerational telomere erosion is therefore the material basis of aging at the species level.
Collapse
Affiliation(s)
- Reinhard Stindl
- apo-med-center, Alpharm GesmbH, Plättenstrasse 7-9, 2380, Perchtoldsdorf, Austria,
| |
Collapse
|
24
|
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJC, Vigilant L. Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data. BMC Evol Biol 2013; 13:82. [PMID: 23586586 PMCID: PMC3637282 DOI: 10.1186/1471-2148-13-82] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/08/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Gibbons (Hylobatidae) are the most diverse group of living apes. They exist as geographically-contiguous species which diverged more rapidly than did their close relatives, the great apes (Hominidae). Of the four extant gibbon genera, the evolutionary histories of two polyspecific genera, Hylobates and Nomascus, have been the particular focus of research but the DNA sequence data used was largely derived from the maternally inherited mitochondrial DNA (mtDNA) locus. RESULTS To investigate the evolutionary relationships and divergence processes of gibbon species, particularly those of the Hylobates genus, we produced and analyzed a total of 11.5 kb DNA of sequence at 14 biparentally inherited autosomal loci. We find that on average gibbon genera have a high average sequence diversity but a lower degree of genetic differentiation as compared to great ape genera. Our multilocus species tree features H. pileatus in a basal position and a grouping of the four Sundaic island species (H. agilis, H. klossii, H. moloch and H. muelleri). We conducted pairwise comparisons based on an isolation-with-migration (IM) model and detect signals of asymmetric gene flow between H. lar and H. moloch, between H. agilis and H. muelleri, and between N. leucogenys and N. siki. CONCLUSIONS Our multilocus analyses provide inferences of gibbon evolutionary histories complementary to those based on single gene data. The results of IM analyses suggest that the divergence processes of gibbons may be accompanied by gene flow. Future studies using analyses of multi-population model with samples of known provenance for Hylobates and Nomascus species would expand the understanding of histories of gene flow during divergences for these two gibbon genera.
Collapse
Affiliation(s)
- Yi-Chiao Chan
- Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ting N, Sterner KN. Primate molecular phylogenetics in a genomic era. Mol Phylogenet Evol 2013; 66:565-8. [DOI: 10.1016/j.ympev.2012.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/12/2012] [Accepted: 08/22/2012] [Indexed: 11/27/2022]
|
26
|
Wall JD, Kim SK, Luca F, Carbone L, Mootnick AR, de Jong PJ, Di Rienzo A. Incomplete lineage sorting is common in extant gibbon genera. PLoS One 2013; 8:e53682. [PMID: 23341974 PMCID: PMC3544895 DOI: 10.1371/journal.pone.0053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022] Open
Abstract
We sequenced reduced representation libraries by means of Illumina technology to generate over 1.5 Mb of orthologous sequence from a representative of each of the four extant gibbon genera (Nomascus, Hylobates, Symphalangus, and Hoolock). We used these data to assess the evolutionary relationships between the genera by evaluating the likelihoods of all possible bifurcating trees involving the four taxa. Our analyses provide weak support for a tree with Nomascus and Hylobates as sister taxa and with Hoolock and Symphalangus as sister taxa, though bootstrap resampling suggests that other phylogenetic scenarios are also possible. This uncertainty is due to short internal branch lengths and extensive incomplete lineage sorting across taxa. The true phylogenetic relationships among gibbon genera will likely require a more extensive whole-genome sequence analysis.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Vigilant L. A comparative analysis of Y chromosome and mtDNA phylogenies of the Hylobates gibbons. BMC Evol Biol 2012; 12:150. [PMID: 22909292 PMCID: PMC3444420 DOI: 10.1186/1471-2148-12-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs). Results To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are monophyletic in the mtgenome phylogeny, respectively, but a H. pileatus individual falls into the H. lar Y chromosome clade. Conclusions Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.
Collapse
Affiliation(s)
- Yi-Chiao Chan
- Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Matsudaira K, Reichard UH, Malaivijitnond S, Ishida T. Molecular evidence for the introgression between Hylobates lar and H. pileatus in the wild. Primates 2012; 54:33-7. [PMID: 22892937 DOI: 10.1007/s10329-012-0323-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Inter-specific hybrid zones for Hylobates gibbons are known in Southeast Asia. Among these, one hybrid zone between Hylobates lar and H. pileatus is located in Khao Yai National Park, Thailand. To find molecular evidence for the natural hybridization of the gibbons in this region, we studied mitochondrial DNA (mtDNA) of 68 gibbons of the H. lar phenotype living adjacent to the hybrid zone. Nucleotide sequencing of a fragment of mtDNA spanning hyper variable segment I showed that nine gibbons had an mtDNA haplotype of H. pileatus, and that seven of these nine gibbons belonged to a single maternal lineage over three generations. It is thus confirmed that introgression between H. lar and H. pileatus exists and the initial hybridization took place ages ago.
Collapse
Affiliation(s)
- Kazunari Matsudaira
- Unit of Human Biology and Genetics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
29
|
Capozzi O, Carbone L, Stanyon RR, Marra A, Yang F, Whelan CW, de Jong PJ, Rocchi M, Archidiacono N. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons. Genome Res 2012; 22:2520-8. [PMID: 22892276 PMCID: PMC3514681 DOI: 10.1101/gr.138651.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans.
Collapse
Affiliation(s)
- Oronzo Capozzi
- Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA. An Alu-based phylogeny of gibbons (hylobatidae). Mol Biol Evol 2012; 29:3441-50. [PMID: 22683814 DOI: 10.1093/molbev/mss149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gibbons (Hylobatidae) are small, arboreal apes indigenous to Southeast Asia that diverged from other apes ∼15-18 Ma. Extant lineages radiated rapidly 6-10 Ma and are organized into four genera (Hylobates, Hoolock, Symphalangus, and Nomascus) consisting of 12-19 species. The use of short interspersed elements (SINEs) as phylogenetic markers has seen recent popularity due to several desirable characteristics: the ancestral state of a locus is known to be the absence of an element, rare potentially homoplasious events are relatively easy to resolve, and samples can be quickly and inexpensively genotyped. During radiation of primates, one particular family of SINEs, the Alu family, has proliferated in primate genomes. Nomascus leucogenys (northern white-cheeked gibbon) sequences were analyzed for repetitive content with RepeatMasker using a custom library. The sequences containing Alu elements identified as members of a gibbon-specific subfamily were then compared with orthologous positions in other primate genomes. A primate phylogenetic panel consisting of 18 primate species, including 13 gibbon species representing all four extant genera, was assayed for all loci, and a total of 125 gibbon-specific Alu insertions were identified. The resulting amplification patterns were used to generate a phylogenetic tree. We demonstrate significant support for Symphalangus as the most basal lineage within the family. Our findings also place Nomascus as a derived lineage, sister to Hoolock, with the Nomascus-Hoolock clade sister to Hylobates. Further, our analysis groups N. leucogenys and Nomascus siki as sister taxa to the exclusion of the other Nomascus species assayed. This study represents the first use of SINEs to determine the genus level phylogenetic relationships within the family Hylobatidae. These relationships have been resolved with robust support at most internal nodes, demonstrating the utility of SINE-based phylogenetic analysis. We postulate that hybridization and rapid radiation may have contributed to the complex and contradictory findings of the previous studies. Our findings will aid in the conservation of these threatened primates and inform future studies of the biogeographical history and distribution of modern gibbon species.
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Biological Sciences, Louisiana State University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape. Heredity (Edinb) 2012; 109:180-7. [PMID: 22669075 DOI: 10.1038/hdy.2012.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosomes of the siamang Symphalangus syndactylus (a small ape) carry large-scale heterochromatic structures at their ends. These structures look similar, by chromosome C-banding, to chromosome-end heterochromatin found in chimpanzee, bonobo and gorilla (African great apes), of which a major component is tandem repeats of 32-bp-long, AT-rich units. In the present study, we identified repetitive sequences that are a major component of the siamang heterochromatin. Their repeat units are 171 bp in length, and exhibit sequence similarity to alpha satellite DNA, a major component of the centromeres in primates. Thus, the large-scale heterochromatic structures have different origins between the great apes and the small ape. The presence of alpha satellite DNA in the telomere region has previously been reported in the white-cheeked gibbon Nomascus leucogenys, another small ape species. There is, however, a difference in the size of the telomere-region alpha satellite DNA, which is far larger in the siamang. It is not known whether the sequences of these two species (of different genera) have a common origin because the phylogenetic relationship of genera within the small ape family is still not clear. Possible evolutionary scenarios are discussed.
Collapse
|
32
|
Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DIK, Rocchi M, Capozzi O, Archidiacono N, Konkel MK, Walker JA, Batzer MA, de Jong PJ. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 2012; 4:648-58. [PMID: 22593550 PMCID: PMC3606032 DOI: 10.1093/gbe/evs048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gibbons (Hylobatidae) shared a common ancestor with the other hominoids only 15–18 million years ago. Nevertheless, gibbons show very distinctive features that include heavily rearranged chromosomes. Previous observations indicate that this phenomenon may be linked to the attenuated epigenetic repression of transposable elements (TEs) in gibbon species. Here we describe the massive expansion of a repeat in almost all the centromeres of the eastern hoolock gibbon (Hoolock leuconedys). We discovered that this repeat is a new composite TE originating from the combination of portions of three other elements (L1ME5, AluSz6, and SVA_A) and thus named it LAVA. We determined that this repeat is found in all the gibbons but does not occur in other hominoids. Detailed investigation of 46 different LAVA elements revealed that the majority of them have target site duplications (TSDs) and a poly-A tail, suggesting that they have been retrotransposing in the gibbon genome. Although we did not find a direct correlation between the emergence of LAVA elements and human–gibbon synteny breakpoints, this new composite transposable element is another mark of the great plasticity of the gibbon genome. Moreover, the centromeric expansion of LAVA insertions in the hoolock closely resembles the massive centromeric expansion of the KERV-1 retroelement reported for wallaby (marsupial) interspecific hybrids. The similarity between the two phenomena is consistent with the hypothesis that evolution of the gibbons is characterized by defects in epigenetic repression of TEs, perhaps triggered by interspecific hybridization.
Collapse
Affiliation(s)
- Lucia Carbone
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hiwatashi T, Mikami A, Katsumura T, Suryobroto B, Perwitasari-Farajallah D, Malaivijitnond S, Siriaroonrat B, Oota H, Goto S, Kawamura S. Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol 2011; 11:312. [PMID: 22017819 PMCID: PMC3213168 DOI: 10.1186/1471-2148-11-312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/22/2011] [Indexed: 11/20/2022] Open
Abstract
Background Routine trichromatic color vision is a characteristic feature of catarrhines (humans, apes and Old World monkeys). This is enabled by L and M opsin genes arrayed on the X chromosome and an autosomal S opsin gene. In non-human catarrhines, genetic variation affecting the color vision phenotype is reported to be absent or rare in both L and M opsin genes, despite the suggestion that gene conversion has homogenized the two genes. However, nucleotide variation of both introns and exons among catarrhines has only been examined in detail for the L opsin gene of humans and chimpanzees. In the present study, we examined the nucleotide variation of gibbon (Catarrhini, Hylobatidae) L and M opsin genes. Specifically, we focused on the 3.6~3.9-kb region that encompasses the centrally located exon 3 through exon 5, which encode the amino acid sites functional for the spectral tuning of the genes. Results Among 152 individuals representing three genera (Hylobates, Nomascus and Symphalangus), all had both L and M opsin genes and no L/M hybrid genes. Among 94 individuals subjected to the detailed DNA sequencing, the nucleotide divergence between L and M opsin genes in the exons was significantly higher than the divergence in introns in each species. The ratio of the inter-LM divergence to the intra-L/M polymorphism was significantly lower in the introns than that in synonymous sites. When we reconstructed the phylogenetic tree using the exon sequences, the L/M gene duplication was placed in the common ancestor of catarrhines, whereas when intron sequences were used, the gene duplications appeared multiple times in different species. Using the GENECONV program, we also detected that tracts of gene conversions between L and M opsin genes occurred mostly within the intron regions. Conclusions These results indicate the historical accumulation of gene conversions between L and M opsin genes in the introns in gibbons. Our study provides further support for the homogenizing role of gene conversion between the L and M opsin genes and for the purifying selection against such homogenization in the central exons to maintain the spectral difference between L and M opsins in non-human catarrhines.
Collapse
Affiliation(s)
- Tomohide Hiwatashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Charpentier MJE, Fontaine MC, Cherel E, Renoult JP, Jenkins T, Benoit L, Barthès N, Alberts SC, Tung J. Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population. Mol Ecol 2011; 21:715-31. [PMID: 21988698 DOI: 10.1111/j.1365-294x.2011.05302.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Behaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact the incidence and outcome of hybridization events. Hybridization between yellow baboons and anubis baboons has been well documented in the Amboseli basin of Kenya, where more anubis-like individuals tend to experience maturational and reproductive advantages. However, it is unknown whether these advantages are reflected in the genetic structure of populations surrounding this area. Here, we used microsatellite genotype data to evaluate the structure and composition of baboon populations in southern Kenya. Our results indicate that, unlike for mitochondrial DNA, microsatellite-based measures of genetic structure concord with phenotypically based taxonomic distinctions and that the currently active hybrid zone is relatively narrow. Isolation with migration analysis revealed asymmetric gene flow in this region from anubis populations into yellow populations, in support of the anubis-biased phenotypic advantages observed in Amboseli. Populations that are primarily yellow but that receive anubis gene flow exhibit higher levels of genetic diversity than yellow populations far from the introgression front. Our results support previous work that indicates a long history of hybridization and introgression among East African baboons. Specifically, it suggests that anubis baboons are in the process of gradual range expansion into the range of yellow baboons, a pattern potentially explained by behavioural and life history advantages that correlate with anubis ancestry.
Collapse
|