1
|
Marturano G, Carli D, Cucini C, Carapelli A, Plazzi F, Frati F, Passamonti M, Nardi F. SmithHunter: a workflow for the identification of candidate smithRNAs and their targets. BMC Bioinformatics 2024; 25:286. [PMID: 39223476 PMCID: PMC11370224 DOI: 10.1186/s12859-024-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.
Collapse
Affiliation(s)
| | - Diego Carli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
2
|
Li X, Cao T, Liu H, Fu L, Wang Q. Identification and expression analysis of Sox family genes in echinoderms. BMC Genomics 2024; 25:655. [PMID: 38956468 PMCID: PMC11218330 DOI: 10.1186/s12864-024-10547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.
Collapse
Affiliation(s)
- Xiaojing Li
- Yantai Vocational College, Yantai, 264003, China
| | - Tiangui Cao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Hui Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longhai Fu
- Yantai Vocational College, Yantai, 264003, China
| | - Quanchao Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
3
|
Zhang Q, Huang J, Fu Y, Chen J, Wang W. Genome-wide identification and expression profiles of sex-related gene families in the Pacific abalone Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101205. [PMID: 38364653 DOI: 10.1016/j.cbd.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited. In this study, a total of 5, 10, and 7 members of the Dmrt family, the TGF-β superfamily and the Sox family, respectively, were identified in the Pacific abalone Haliotis discus hannai. Sequence characteristics, phylogenetic relationships and spatiotemporal expression profiles of these genes were investigated. Notably, HdDmrt-04 (Dmrt1/1L-like) emerged as a potential mollusc-specific gene with a preponderance for expression in the testis. Interestingly, none of the TGF-β superfamily members exhibited specific or elevated expression in the gonads, highlighting the need for further investigation into their role in abalone sex differentiation. The Sox proteins in H. discus hannai were categorized into 7 subfamilies: B1, B2, C, D, E, F, and H. Among them, HdSox-07 (SoxH-like) was observed to play a crucial role in testis development, while HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) probably cooperate in abalone ovary development. Taken together, the results of the present study suggested that HdDmrt-04 and HdSox-07 can be used as male-specific markers for gonad differentiation in H. discus hannai and imply conservation of their functions across invertebrates and vertebrates. Our findings provide new insights into the evolution and genetic structure of the Dmrt family, the TGF-β superfamily and the Sox family in abalone and pave the way for a deeper understanding of sex differentiation in gastropods.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Jianfang Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Yangtao Fu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Li F, Chen S, Zhang T, Pan L, Liu C, Bian L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes (Basel) 2024; 15:682. [PMID: 38927618 PMCID: PMC11202624 DOI: 10.3390/genes15060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-β signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, β-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.
Collapse
Affiliation(s)
- Fenghui Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Luying Pan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Changlin Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Wang L, Miao J, Ding M, Zhang W, Pan L. Exploring the mechanism of nonylphenol-induced ovarian developmental delay of manila clams, Ruditapes philippinarum: Applying RNAi to toxicological analysis. CHEMOSPHERE 2024; 356:141905. [PMID: 38579946 DOI: 10.1016/j.chemosphere.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 μg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.
Collapse
Affiliation(s)
- Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China; Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, PR China
| | - Wei Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
6
|
Smith CH, Mejia-Trujillo R, Breton S, Pinto BJ, Kirkpatrick M, Havird JC. Mitonuclear Sex Determination? Empirical Evidence from Bivalves. Mol Biol Evol 2023; 40:msad240. [PMID: 37935058 PMCID: PMC10653589 DOI: 10.1093/molbev/msad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.
Collapse
Affiliation(s)
- Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Smith CH, Mejia-Trujillo R, Breton S, Pinto BJ, Kirkpatrick M, Havird JC. Mitonuclear sex determination? Empirical evidence from bivalves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547839. [PMID: 37461691 PMCID: PMC10349986 DOI: 10.1101/2023.07.05.547839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In bivalves, however, mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination in lineages that possess doubly uniparental inheritance (DUI). In these cases, females transmit a female mtDNA (F mtDNA) to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short non-coding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA shed a sncRNA partially within a male-specific mitochondrial gene that targeted pathways hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, non-respiratory functions and provide a first glimpse into an unorthodox sex determining system.
Collapse
Affiliation(s)
- Chase H. Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Brendan J. Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Justin C. Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Reis AC, Amaral D, Americo JA, Rebelo MF, Sousa SM. Cytogenetic characterization of the golden mussel (Limnoperna fortunei) reveals the absence of sex heteromorphic chromosomes. AN ACAD BRAS CIENC 2023; 95:e20201622. [PMID: 37341265 DOI: 10.1590/0001-3765202320201622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 06/22/2023] Open
Abstract
The golden mussel (Limnoperna fortunei) is an aggressive invasive species in South America, where it endangers native species and freshwater ecosystems, in addition to causing extensive economic losses, mainly to the hydroelectric sector. Currently, there's no efficient control method available and the invasion has progressed across the continent. Its high reproduction rate is one of the key factors of the golden mussel's high invasive potential and, recently, efforts have been done in order to understand the reproduction and the sexual features of this species. However, its cytogenetics characterization is incipient and the possible occurrence of sex-specific cytogenetic features was never investigated. In this study, we aimed to characterize the chromosomal morphometry, the distribution profile of heterochromatin, and to detect possible sex-related epigenetic marks in the golden mussel. Results revealed that the karyotypic structure is similar in both sexes and no chromosome heteromorphism was observed between males and females specimens. The data increment the cytogenetic characterization of Limnoperna fortunei and contribute for future studies that aim to further investigate its reproduction and underlying sex determination processes.
Collapse
Affiliation(s)
- Aryane C Reis
- Universidade Federal de Juiz de Fora, Departamento de Biologia, Laboratório de Genética e Biotecnologia, Rua José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, MG, Brazil
| | - Danielle Amaral
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Avenida Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Juliana A Americo
- Bio Bureau Biotecnologia, Rua Aloísio Teixeira, 278, Prédio 3, sala 310, 21941-850 Rio de Janeiro, RJ, Brazil
| | - Mauro F Rebelo
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Avenida Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Saulo M Sousa
- Universidade Federal de Juiz de Fora, Departamento de Biologia, Laboratório de Genética e Biotecnologia, Rua José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, MG, Brazil
| |
Collapse
|
9
|
Xu R, Martelossi J, Smits M, Iannello M, Peruzza L, Babbucci M, Milan M, Dunham JP, Breton S, Milani L, Nuzhdin SV, Bargelloni L, Passamonti M, Ghiselli F. Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. Genome Biol Evol 2022; 14:6889380. [PMID: 36508337 PMCID: PMC9803972 DOI: 10.1093/gbe/evac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
Collapse
Affiliation(s)
- Ran Xu
- Corresponding authors: E-mail: (R.X.); E-mail: (F.G.)
| | | | | | | | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Joseph P Dunham
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA,SeqOnce Biosciences Inc., Pasadena, CA, USA
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
10
|
Full Mitochondrial Genomes Reveal Species Differences between the Venerid Clams Ruditapes philippinarum and R. variegatus. Genes (Basel) 2022; 13:genes13112157. [DOI: 10.3390/genes13112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
In natural sea areas along the coast of China, venerid clams Ruditapes philippinarum and R. variegatus exhibit similar adult shell forms and are especially difficult to distinguish as spat and juveniles. This study used comparative mitochondrial genome analysis to reveal differences between these species. The results showed that: (1) the mitochondrial genomes of R. philippinarum and R. variegatus share a large number of similar gene clusters arranged in consistent order, yet they also display noncommon genes, with both gene rearrangements and random losses found; (2) the 13 protein-coding genes in R. philippinarum as well as two-fold and four-fold degenerate sites in R. variegatus have an evident AT bias; (3) the Ka/Ks ratio of the mitochondrial ATP8 gene was significantly higher in R. philippinarum than in R. variegatus, and an analysis of selection pressure revealed that the mitochondrial NADH dehydrogenase subunit 2 gene and NADH dehydrogenase subunit 6 gene of R. variegatus were under great selective pressure during its evolution; and finally, (4) the two species clustered into one branch on a phylogenetic tree, further affirming their phylogenetic closeness. Based on these results, we speculate that the species differences between R. variegatus and R. philippinarum are largely attributable to adaptive evolution to the environment. The present findings provide a reference for the development of germplasm identification.
Collapse
|
11
|
Hosseini S, Trakooljul N, Hirschfeld M, Wimmers K, Simianer H, Tetens J, Sharifi AR, Brenig B. Epigenetic Regulation of Phenotypic Sexual Plasticity Inducing Skewed Sex Ratio in Zebrafish. Front Cell Dev Biol 2022; 10:880779. [PMID: 35912111 PMCID: PMC9334531 DOI: 10.3389/fcell.2022.880779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The plasticity of sexual phenotype in response to environmental conditions results in biased sex ratios, and their variation has an effect on population dynamics. Epigenetic modifications can modulate sex ratio variation in species, where sex is determined by genetic and environmental factors. However, the role of epigenetic mechanisms underlying skewed sex ratios is far from being clear and is still an object of debate in evolutionary developmental biology. In this study, we used zebrafish as a model animal to investigate the effect of DNA methylation on sex ratio variation in sex-biased families in response to environmental temperature. Two sex-biased families with a significant difference in sex ratio were selected for genome-wide DNA methylation analysis using reduced representation bisulfite sequencing (RRBS). The results showed significant genome-wide methylation differences between male-biased and female-biased families, with a greater number of methylated CpG sites in testes than ovaries. Likewise, pronounced differences between testes and ovaries were identified within both families, where the male-biased family exhibited a higher number of methylated sites than the female-biased family. The effect of temperature showed more methylated positions in the high incubation temperature than the control temperature. We found differential methylation of many reproduction-related genes (e.g., sox9a, nr5a2, lhx8a, gata4) and genes involved in epigenetic mechanisms (e.g., dnmt3bb.1, dimt1l, hdac11, h1m) in both families. We conclude that epigenetic modifications can influence the sex ratio variation in zebrafish families and may generate skewed sex ratios, which could have a negative consequence for population fitness in species with genotype-environment interaction sex-determining system under rapid environmental changes.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Marc Hirschfeld
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
12
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
Evensen KG, Robinson WE, Krick K, Murray HM, Poynton HC. Comparative phylotranscriptomics reveals putative sex differentiating genes across eight diverse bivalve species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100952. [PMID: 34952324 DOI: 10.1016/j.cbd.2021.100952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Mollusks, especially bivalves, exhibit a great diversity of sex determining mechanisms, including both genetic and environmental sex determination. Some bivalve species can be gonochoristic (separate sexes), while others are hermaphroditic (sequential or simultaneous). Several models have been proposed for specific bivalve species, utilizing information gained from gene expression data, as well as limited RAD-seq data (e.g., from Crassostrea gigas). However, these mechanisms are not as well studied as those in model organisms (e.g., Mus musculus, Drosophila melanogaster, Caenorhabditis elegans) and many genes involved in sex differentiation are not well characterized. We used phylotranscriptomics to better understand which possible sex differentiating genes are in bivalves and how these genes relate to similar genes in diverse phyla. We collected RNAseq data from eight phylogenetically diverse bivalve species: Argopecten irradians, Ensis directus, Geukensia demissa, Macoma tenta, Mercenaria mercenaria, Mya arenaria, Mytilus edulis, and Solemya velum. Using these data, we assembled representative transcriptomes for each species. We then searched for candidate sex differentiating genes using BLAST and confirmed the identity of nine genes using phylogenetics analyses from nine phyla. To increase the confidence of identification, we included ten bivalve genomes in our analyses. From the analysis of doublesex and mab-3 related transcription factor (DMRT) genes, we confirmed the identify of a Mollusk-specific sex determining DMRT gene: DMRT1L. Based on gene expression data from M. edulis and previous research, DMRT1L and FoxL2 are key genes for male and female development, respectively.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - Keegan Krick
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - Harry M Murray
- Department of Fisheries and Oceans Canada, 80 East White Hills Road, St John's, NL A1C 5X1, Canada
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America.
| |
Collapse
|
14
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
15
|
Maeda GP, Iannello M, McConie HJ, Ghiselli F, Havird JC. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution. J Evol Biol 2021; 34:1722-1736. [PMID: 34533872 DOI: 10.1111/jeb.13931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022]
Abstract
Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI. No nuclear-encoded, sex-specific OXPHOS paralogs were found in the DUI clam Ruditapes philippinarum, refuting OXPHOS paralogy as a solution in this species. It is also unlikely that mt changes causing disruption of nuclear interactions are strongly selected against because sex-specific mt-residues or those under positive selection in M mt genes were not depleted for contacting nuclear-encoded residues. However, M genomes showed consistently higher dN /dS ratios compared to putatively ancestral F genomes in all mt OXPHOS genes and across all DUI species. Further analyses indicated that this was consistently due to relaxed, not positive selection on M vs. F mt OXPHOS genes. Similarly, selection was relaxed on the F genome of DUI species compared to species with strict maternal inheritance. Coupled with recent physiological and molecular evolution studies, we suggest that relaxed selection on M mt function limits the need to maintain mitonuclear interactions in M genomes compared to F genomes. We discuss our findings with regard to OXPHOS function and the origin of DUI.
Collapse
Affiliation(s)
- Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Hunter J McConie
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
16
|
Ding M, Jiang S, Miao J, Pan L. Possible roles of gonadotropin-releasing hormone (GnRH) and melatonin in the control of gonadal development of clam Ruditapes philippinarum. Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111059. [PMID: 34455085 DOI: 10.1016/j.cbpa.2021.111059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing Hormone (GnRH) is a key reproductive endocrine regulator, and melatonin is considered as a potent candidate in the regulation of photoperiod-related reproductive endocrinology. Nevertheless, their function during gonadal development of molluscs has not been uncovered yet. In the present study, RNAi of GnRH and melatonin injection were conducted on marine bivalve manila clam Ruditapes philippinarum. Tissue section showed that gonadal development was significantly inhibited in male clams injected with GnRH dsRNA for 21 days. For GnRH RNAi treatment group, the expression levels of steroid synthetic enzyme genes 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), cytochrome P450 (CYP3A) and melatonin receptor homolog (MTNR) gene were significantly down-regulated in female clams while significantly up-regulated in male clams. In melatonin injection group, the expression of GnRH was significantly inhibited and the expression of 3β-HSD, 17β-HSD, CYP3A and MTNR genes also increased which was in line with the GnRH dsRNA injection group in male clams. These results suggest that melatonin may affect GnRH expression and both have effects on gonadal development of bivalves. This study provides evidence for understanding the effects of melatonin and GnRH on reproductive endocrinology and gonadal development in bivalve molluscs.
Collapse
Affiliation(s)
- Min Ding
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Shanshan Jiang
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China.
| | - Luqing Pan
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
17
|
Broquard C, Saowaros SA, Lepoittevin M, Degremont L, Lamy JB, Morga B, Elizur A, Martinez AS. Gonadal transcriptomes associated with sex phenotypes provide potential male and female candidate genes of sex determination or early differentiation in Crassostrea gigas, a sequential hermaphrodite mollusc. BMC Genomics 2021; 22:609. [PMID: 34372770 PMCID: PMC8353863 DOI: 10.1186/s12864-021-07838-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background In the animal kingdom, mollusca is an important phylum of the Lophotrochozoa. However, few studies have investigated the molecular cascade of sex determination/early gonadal differentiation within this phylum. The oyster Crassostrea gigas is a sequential irregular hermaphrodite mollusc of economic, physiological and phylogenetic importance. Although some studies identified genes of its sex-determining/−differentiating pathway, this particular topic remains to be further deepened, in particular with regard to the expression patterns. Indeed, these patterns need to cover the entire period of sex lability and have to be associated to future sex phenotypes, usually impossible to establish in this sequential hermaphrodite. This is why we performed a gonadal RNA-Seq analysis of diploid male and female oysters that have not changed sex for 4 years, sampled during the entire time-window of sex determination/early sex differentiation (stages 0 and 3 of the gametogenetic cycle). This individual long-term monitoring gave us the opportunity to explain the molecular expression patterns in the light of the most statistically likely future sex of each oyster. Results The differential gene expression analysis of gonadal transcriptomes revealed that 9723 genes were differentially expressed between gametogenetic stages, and 141 between sexes (98 and 43 genes highly expressed in females and males, respectively). Eighty-four genes were both stage- and sex-specific, 57 of them being highly expressed at the time of sex determination/early sex differentiation. These 4 novel genes including Trophoblast glycoprotein-like, Protein PML-like, Protein singed-like and PREDICTED: paramyosin, while being supported by RT-qPCR, displayed sexually dimorphic gene expression patterns. Conclusions This gonadal transcriptome analysis, the first one associated with sex phenotypes in C. gigas, revealed 57 genes highly expressed in stage 0 or 3 of gametogenesis and which could be linked to the future sex of the individuals. While further study will be needed to suggest a role for these factors, some could certainly be original potential actors involved in sex determination/early sex differentiation, like paramyosin and could be used to predict the future sex of oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07838-1.
Collapse
Affiliation(s)
- Coralie Broquard
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.,Ifremer, RBE-SG2M-LGPMM, La Tremblade, France
| | - Suwansa-Ard Saowaros
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mélanie Lepoittevin
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France
| | | | | | | | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anne-Sophie Martinez
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France. .,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.
| |
Collapse
|
18
|
Pimsler ML, Hjelmen CE, Jonika MM, Sharma A, Fu S, Bala M, Sze SH, Tomberlin JK, Tarone AM. Sexual Dimorphism in Growth Rate and Gene Expression Throughout Immature Development in Wild Type Chrysomya rufifacies (Diptera: Calliphoridae) Macquart. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.696638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reliability of forensic entomology analyses to produce relevant information to a given case requires an understanding of the underlying arthropod population(s) of interest and the factors contributing to variability. Common traits for analyses are affected by a variety of genetic and environmental factors. One trait of interest in forensic investigations has been species-specific temperature-dependent growth rates. Recent work indicates sexual dimorphism may be important in the analysis of such traits and related genetic markers of age. However, studying sexual dimorphic patterns of gene expression throughout immature development in wild-type insects can be difficult due to a lack of genetic tools, and the limits of most sex-determination mechanisms. Chrysomya rufifacies, however, is a particularly tractable system to address these issues as it has a monogenic sex determination system, meaning females have only a single-sex of offspring throughout their life. Using modified breeding procedures (to ensure single-female egg clutches) and transcriptomics, we investigated sexual dimorphism in development rate and gene expression. Females develop slower than males (9 h difference from egg to eclosion respectively) even at 30°C, with an average egg-to-eclosion time of 225 h for males and 234 h for females. Given that many key genes rely on sex-specific splicing for the development and maintenance of sexually dimorphic traits, we used a transcriptomic approach to identify different expression of gene splice variants. We find that 98.4% of assembled nodes exhibited sex-specific, stage-specific, to sex-by-stage specific patterns of expression. However, the greatest signal in the expression data is differentiation by developmental stage, indicating that sexual dimorphism in gene expression during development may not be investigatively important and that markers of age may be relatively independent of sex. Subtle differences in these gene expression patterns can be detected as early as 4 h post-oviposition, and 12 of these nodes demonstrate homology with key Drosophila sex determination genes, providing clues regarding the distinct sex determination mechanism of C. rufifacies. Finally, we validated the transcriptome analyses through qPCR and have identified five genes that are developmentally informative within and between sexes.
Collapse
|
19
|
Gallardi D, Xue X, Mercier E, Mills T, Lefebvre F, Rise ML, Murray HM. RNA-seq analysis of the mantle transcriptome from Mytilus edulis during a seasonal spawning event in deep and shallow water culture sites on the northeast coast of Newfoundland, Canada. Mar Genomics 2021; 60:100865. [PMID: 33933383 DOI: 10.1016/j.margen.2021.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.
Collapse
Affiliation(s)
- Daria Gallardi
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Terry Mills
- Norlantic Processors Limited, P.O. Box 381, Botwood, NL A0H 1E0, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Harry M Murray
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada
| |
Collapse
|
20
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
21
|
Wang Y, Yang Y, Liu H, Kong L, Yu H, Liu S, Li Q. Phylogeny of Veneridae (Bivalvia) based on mitochondrial genomes. ZOOL SCR 2020. [DOI: 10.1111/zsc.12454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Wang
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Yi Yang
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Hongyue Liu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
22
|
Xu R, Pan L, Yang Y, Zhou Y. Characterizing transcriptome in female scallop Chlamys farreri provides new insights into the molecular mechanisms of reproductive regulation during ovarian development and spawn. Gene 2020; 758:144967. [PMID: 32707299 DOI: 10.1016/j.gene.2020.144967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Bivalve mollusks are descendants of an early-Cambrian lineage and have successfully evolved unique strategies for reproduction. Nonetheless, the molecular mechanisms underlying reproductive regulation in mollusks remain to be elucidated. In this study, transcriptomes of ovary at four reproductive stages in female Chlamys farreri were characterized by RNA-Seq. Regarding signaling pathways, ECM-receptor interaction pathway, mTOR signaling pathway, Fanconi anemia pathway, FoxO signaling pathway, Wnt signaling pathway and Hedgehog signaling pathway were enriched during ovarian development processes. In addition, pathways related to energy metabolism such as Nitrogen metabolism and Arachidonic acid metabolism were enriched at spawn stage. Interestingly, Neuroactive ligand-receptor interaction was significantly enriched involved in ovarian development and spawn, and indicated the potential functions of nervous system on reproductive regulation in C. farreri. What's more, this study identified and characterized fourteen genes involved in "sex hormones synthesis and regulation", "ovarian development and spawn" and "maternal immunity" during the four reproductive stages in C. farreri. We determined that CYP17 uniquely affected gamete release by influencing the physiological balance among the steroid hormones and showed that receptors of the 5-HT and GABA neurotransmitters were tightly associated with ovarian maturation. Furthermore, to the best of our knowledge, this is the first study to report the maternal effect gene Zar1 in bivalve mollusks, likewise the maternal immunity genes displayed coordinated and cooperative expression during reproductive periods, which strengthened the environmental adaptation mechanisms of bivalves. Taken together, this study provides the first dynamic transcriptomic analysis of C. farreri at four key reproductive stages, which will assist in revealing the molecular mechanisms underlying bivalves on reproductive regulation in ovarian development and spawn.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
23
|
Yan S, Wang Q, Yang L, Zha J. Comparison of the Toxicity Effects of Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) with Tributyl Phosphate (TNBP) Reveals the Mechanism of the Apoptosis Pathway in Asian Freshwater Clams ( Corbicula fluminea). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6850-6858. [PMID: 32379427 DOI: 10.1021/acs.est.0c00640] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To compare the toxicities of a chlorinated and a nonchlorinated organophosphorus flame retardant (OPFR) in this study, adult calms (Corbicula fluminea) were exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tributyl phosphate (TNBP) at 20, 200, and 2000 μg/L for 30 days. Toxicity screening using transcriptomics indicated that the apoptosis pathway was significantly affected in the groups exposed to 2000 μg/L TDCIPP and TNBP (p ≤ 0.05), and this finding was further confirmed by the protein interaction network. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay suggested that TDCIPP and TNBP can cause apoptosis. The significant (p ≤ 0.05) increases in the activities of caspases 3 and 8 obtained with all treatments and in that of caspase 9 obtained with 2000 μg/L exposure treatments indicated the presence of mitochondria-dependent and mitochondria-independent apoptosis. Interestingly, a noticeable dose-dependent increase in DNA damage was observed in all treatments, resulting in apoptosis. Therefore, our results demonstrate that TDCIPP and TNBP induce DNA damage and apoptosis in C. fluminea, which indicates that these chemicals pose an ecological risk to benthic organisms. Moreover, through a similar mechanism of action in apoptosis, TDCIPP induced more serious toxicity than TNBP, which indicated that chlorination or differences in structure-specific metabolism could be key factors influencing toxicity.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Soroka M. Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kenchington EL, MacDonald BW, Cogswell A, Hamilton LC, Diz AP. Sex‐specific effects of hybridization on reproductive fitness in Mytilus. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ellen L. Kenchington
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Barry W. MacDonald
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Andrew Cogswell
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Lorraine C. Hamilton
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Angel P. Diz
- Department of Biochemistry, Genetics and Immunology University of Vigo Vigo Spain
| |
Collapse
|
26
|
Ghiselli F, Maurizii MG, Reunov A, Ariño-Bassols H, Cifaldi C, Pecci A, Alexandrova Y, Bettini S, Passamonti M, Franceschini V, Milani L. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr Comp Biol 2020; 59:1016-1032. [PMID: 31120503 DOI: 10.1093/icb/icz061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heteroplasmy is the presence of more than one type of mitochondrial genome within an individual, a condition commonly reported as unfavorable and affecting mitonuclear interactions. So far, no study has investigated heteroplasmy at protein level, and whether it occurs within tissues, cells, or even organelles. The only known evolutionarily stable and natural heteroplasmic system in Metazoa is the Doubly Uniparental Inheritance (DUI)-reported so far in ∼100 bivalve species-in which two mitochondrial lineages are present: one transmitted through eggs (F-type) and the other through sperm (M-type). Because of such segregation, mitochondrial oxidative phosphorylation proteins reach a high amino acid sequence divergence (up to 52%) between the two lineages in the same species. Natural heteroplasmy coupled with high sequence divergence between F- and M-type proteins provides a unique opportunity to study their expression and assess the level and extent of heteroplasmy. Here, for the first time, we immunolocalized F- and M-type variants of three mitochondrially-encoded proteins in the DUI species Ruditapes philippinarum, in germline and somatic tissues at different developmental stages. We found heteroplasmy at organelle level in undifferentiated germ cells of both sexes, and in male soma, whereas gametes were homoplasmic: eggs for the F-type and sperm for the M-type. Thus, during gametogenesis, only the sex-specific mitochondrial variant is maintained, likely due to a process of meiotic drive. We examine the implications of our results for DUI proposing a revised model, and we discuss interactions of mitochondria with germ plasm and their role in germline development. Molecular and phylogenetic evidence suggests that DUI evolved from the common Strictly Maternal Inheritance, so the two systems likely share the same underlying molecular mechanism, making DUI a useful system for studying mitochondrial biology.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Arkadiy Reunov
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia.,Department of Biology, St. Francis Xavier University, Antigonish N.S. B2G 2W5, Canada
| | - Helena Ariño-Bassols
- Departamento de Fisiología e Inmunología, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carmine Cifaldi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Yana Alexandrova
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
27
|
Milani L, Ghiselli F. Faraway, so close. The comparative method and the potential of non-model animals in mitochondrial research. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190186. [PMID: 31787048 DOI: 10.1098/rstb.2019.0186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inference from model organisms has been the engine for many discoveries in life science, but indiscriminate generalization leads to oversimplifications and misconceptions. Model organisms and inductive reasoning are irreplaceable: there is no other way to tackle the complexity of living systems. At the same time, it is not advisable to infer general patterns from a restricted number of species, which are very far from being representative of the diversity of life. Not all models are equal. Some organisms are suitable to find similarities across species, other highly specialized organisms can be used to focus on differences. In this opinion piece, we discuss the dominance of the mechanistic/reductionist approach in life sciences and make a case for an enhanced application of the comparative approach to study processes in all their various forms across different organisms. We also enlist some rising animal models in mitochondrial research, to exemplify how non-model organisms can be chosen in a comparative framework. These taxa often do not possess implemented tools and dedicated methods/resources. However, because of specific features, they have the potential to address still unanswered biological questions. Finally, we discuss future perspectives and caveats of the comparative method in the age of 'big data'. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
López-Landavery EA, Amador-Cano G, Alejandri N, Ramirez-Álvarez N, Montelongo I, Díaz F, Galindo-Sánchez CE. Transcriptomic response and hydrocarbon accumulation in the eastern oyster (Crassostrea virginica) exposed to crude oil. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108571. [PMID: 31306803 DOI: 10.1016/j.cbpc.2019.108571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
The adverse effect of crude oil on marine invertebrates is well known. To have a better understanding of its effects on marine invertebrates, Crassostrea virginica was exposed to different concentrations (50, 100 and 200 μg/L) of a mixture of super-light and light crude oil for two weeks, evaluating the transcriptomic response of the digestive gland using RNA-Seq and their accumulation in soft tissues. A total of 33,469,374 reads were assembled, which resulted in 61,356 genome assemblies ('Genes'). Trinotate was used for transcript annotation. At the end of this process, 86,409 transcripts were maintained, comprising a broad set of enzymes from xenobiotics metabolism, oxidative stress, stress and immune responses, and energetic metabolism. The enrichment analysis revealed a change in biological processes and molecular functions, finding from 100 to 200 μg/L. Moreover, the differential gene expression analysis showed a dose-dependent transcriptional response, generally up to 100 μg/L and in some cases up to 200 μg/L, which suggested that oysters' response decreased after 100 μg/L; the analysis of crude oil presence in soft tissues indicated that C. virginica is a suitable candidate for ecotoxicology. Finally, these results should contribute to expanding current genomic resources for C. virginica. Furthermore, they will help to develop new studies in aquatic toxicology focused on knowledge in depth of metabolic pathways, jointly with other approaches (such as proteomics) to allow obtaining a complete idea about the eastern oyster response to crude oil.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Gerardo Amador-Cano
- Universidad Tecnológica del Mar de Tamaulipas (UTMART), La Pesca, Soto La Marina, Tamaulipas, Mexico
| | - Naholi Alejandri
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Nancy Ramirez-Álvarez
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Ensenada, BC, Mexico
| | - Isidro Montelongo
- Universidad Tecnológica del Mar de Tamaulipas (UTMART), La Pesca, Soto La Marina, Tamaulipas, Mexico
| | - Fernando Díaz
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Clara E Galindo-Sánchez
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico.
| |
Collapse
|
29
|
Yang Z, Xu F, Zhang Z, Li J, Jia Y, Li H, Liu X. Genetic determination of sex and shell color in the Pacific abalone Haliotis discus hannai revealed by an integrated linkage map. Anim Genet 2019; 50:733-739. [PMID: 31571283 DOI: 10.1111/age.12860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
Integrated linkage maps for each sex have been constructed for the Pacific abalone Haliotis discus hannai using three F1 mapping families based on co-dominant markers. A total of 273 markers were placed on the female map, spanning 927.3 cM with an average interval of 3.64 cM, whereas 277 markers were mapped on the male map, covering 727.0 cM with an average spacing of 2.80 cM. Both female and male maps consisted of 18 linkage groups, corresponding well with the number of chromosomes. Furthermore, the sex-determining locus and the green/orange shell color controlling locus were mapped to the linkage group 3 (LG3) and LG9 respectively. A marker completely linked to phenotypic sex was identified, and the sex determination system was further concluded as paternal heterogametic (males XY and females XX). Based on the segregation ratio of the shell color in the progeny, a simple recessive model of epistasis was proposed to explain the distribution of different color morphs (green, orange and blue): the recessive allele determining orange type masks the effect of the locus controlling green and blue types, whereas the dominant allele at the green/orange locus permits the expression of green and blue types controlled by another locus. The current consensus map provides a useful framework for genetic studies in the Pacific abalone. Mapping of the sex-determining locus and the shell color-controlling locus leads to further understanding of the mechanisms underlying these important traits.
Collapse
Affiliation(s)
- Z Yang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - F Xu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Z Zhang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - J Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Y Jia
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - H Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - X Liu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
30
|
Capt C, Renaut S, Stewart DT, Johnson NA, Breton S. Putative Mitochondrial Sex Determination in the Bivalvia: Insights From a Hybrid Transcriptome Assembly in Freshwater Mussels. Front Genet 2019; 10:840. [PMID: 31572447 PMCID: PMC6754070 DOI: 10.3389/fgene.2019.00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Bivalves exhibit an astonishing diversity of sexual systems, with genetic and environmental determinants of sex, and possibly the only example of mitochondrial genes influencing sex determination pathways in animals. In contrast to all other animal species in which strict maternal inheritance (SMI) of mitochondria is the rule, bivalves possess a system known as doubly uniparental inheritance (DUI) of mitochondria in which maternal and paternal mitochondria (and their corresponding female-transmitted or F mtDNA and male-transmitted or M mtDNA genomes) are transmitted within a species. Species with DUI also possess sex-associated mtDNA-encoded proteins (in addition to the typical set of 13), which have been hypothesized to play a role in sex determination. In this study, we analyzed the sex-biased transcriptome in gonads of two closely-related freshwater mussel species with different reproductive and mitochondrial transmission modes: the gonochoric, DUI species, Utterbackia peninsularis, and the hermaphroditic, SMI species, Utterbackia imbecillis. Through comparative analysis with other DUI and non-DUI bivalve transcriptomes already available, we identify common male and female-specific genes, as well as SMI and DUI-related genes, that are probably involved in sex determination and mitochondrial inheritance in this animal group. Our results contribute to the understanding of what could be the first animal sex determination system involving the mitochondrial genome.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Renaut
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.,Centre de la Science de la Biodiversité du Québec, Université de Montréal, Montréal, QC, Canada
| | | | - Nathan A Johnson
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, United States
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Zhou L, Liu Z, Dong Y, Sun X, Wu B, Yu T, Zheng Y, Yang A, Zhao Q, Zhao D. Transcriptomics analysis revealing candidate genes and networks for sex differentiation of yesso scallop (Patinopecten yessoensis). BMC Genomics 2019; 20:671. [PMID: 31443640 PMCID: PMC6708199 DOI: 10.1186/s12864-019-6021-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background The Yesso scallop, Patinopecten (Mizuhopecten) yessoensis, is a commercially important bivalve in the coastal countries of Northeast Asia. It has complex modes of sex differentiation, but knowledge of the mechanisms underlying this sex determination and differentiation is limited. Results In this study, the gonad tissues from females and males at three developmental stages were used to investigate candidate genes and networks for sex differentiation via RNA-Req. A total of 901,980,606 high quality clean reads were obtained from 18 libraries, of which 417 expressed male-specific genes and 754 expressed female-specific genes. Totally, 10,074 genes differentially expressed in females and males were identified. Weighted gene co-expression network analysis (WGCNA) revealed that turquoise and green gene modules were significantly positively correlated with male gonads, while coral1 and black modules were significantly associated with female gonads. The most important gene for sex determination and differentiation was Pydmrt 1, which was the only gene discovered that determined the male sex phenotype during early gonadal differentiation. Enrichment analyses of GO terms and KEGG pathways revealed that genes involved in metabolism, genetic and environmental information processes or pathways are sex-biased. Forty-nine genes in the five modules involved in sex differentiation or determination were identified and selected to construct a gene co-expression network and a hypothesized sex differentiation pathway. Conclusions The current study focused on screening genes of sex differentiation in Yesso scallop, highlighting the potential regulatory mechanisms of gonadal development in P. yessoensis. Our data suggested that WCGNA can facilitate identification of key genes for sex differentiation and determination. Using this method, a hypothesized P. yessoensis sex determination and differentiation pathway was constructed. In this pathway, Pydmrt 1 may have a leading function. Electronic supplementary material The online version of this article (10.1186/s12864-019-6021-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liqing Zhou
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihong Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiujun Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Biao Wu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Science, Changdao, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Science, Changdao, China
| | - Aiguo Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China. .,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qing Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dan Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
32
|
Patnaik BB, Chung JM, Hwang HJ, Sang MK, Park JE, Min HR, Cho HC, Dewangan N, Baliarsingh S, Kang SW, Park SY, Jo YH, Park HS, Kim WJ, Han YS, Lee JS, Lee YS. Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction. BMC Genomics 2019; 20:154. [PMID: 30808280 PMCID: PMC6390351 DOI: 10.1186/s12864-019-5526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hee Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hang Chul Cho
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Neha Dewangan
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Snigdha Baliarsingh
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Se Won Kang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Change Research Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Yong Hun Jo
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Republic of Korea
| | - Wan Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Basic Science, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea.
| |
Collapse
|
33
|
Iannello M, Puccio G, Piccinini G, Passamonti M, Ghiselli F. The dynamics of mito-nuclear coevolution: A perspective from bivalve species with two different mechanisms of mitochondrial inheritance. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
34
|
Doubly Uniparental Inheritance of mtDNA: An Unappreciated Defiance of a General Rule. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2019; 231:25-49. [DOI: 10.1007/102_2018_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
35
|
Milani L, Maurizii MG. Insights into Germline Development and Differentiation in Molluscs and Reptiles: The Use of Molecular Markers in the Study of Non-model Animals. Results Probl Cell Differ 2019; 68:321-353. [PMID: 31598863 DOI: 10.1007/978-3-030-23459-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When shifting research focus from model to non-model species, many differences in the working approach should be taken into account and usually methodological modifications are required because of the lack of genetics/genomics and developmental information for the vast majority of organisms. This lack of data accounts for the largely incomplete understanding of how the two components-genes and developmental programs-are intermingled in the process of evolution. A deeper level of knowledge was reached for a few model animals, making it possible to understand some of the processes that guide developmental changes during evolutionary time. However, it is often difficult to transfer the obtained information to other, even closely related, animals. In this chapter, we present and discuss some examples, such as the choice of molecular markers to be used to characterize differentiation and developmental processes. The chosen examples pertain to the study of germline in molluscs, reptiles, and other non-model animals.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Wang C, Bourland WA, Mu W, Pan X. Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33402-33414. [PMID: 30264342 DOI: 10.1007/s11356-018-3195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
37
|
Ghiselli F, Iannello M, Puccio G, Chang PL, Plazzi F, Nuzhdin SV, Passamonti M. Comparative Transcriptomics in Two Bivalve Species Offers Different Perspectives on the Evolution of Sex-Biased Genes. Genome Biol Evol 2018; 10:1389-1402. [PMID: 29897459 PMCID: PMC6007409 DOI: 10.1093/gbe/evy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has become a central tool for evolutionary biology, and a better knowledge of understudied taxa represents the foundation for future work. In this study, we characterized the transcriptome of male and female mature gonads in the European clam Ruditapes decussatus, compared with that in the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, information about transcription dynamics and sequence evolution of sex-biased genes. In both the species, we found a relatively low number of sex-biased genes (1,284, corresponding to 41.3% of the orthologous genes between the two species), probably due to the absence of sexual dimorphism, and the transcriptional bias is maintained in only 33% of the orthologs. The dN/dS is generally low, indicating purifying selection, with genes where the female-biased transcription is maintained between the two species showing a significantly higher dN/dS. Genes involved in embryo development, cell proliferation, and maintenance of genome stability show a faster sequence evolution. Finally, we report a lack of clear correlation between transcription level and evolutionary rate in these species, in contrast with studies that reported a negative correlation. We discuss such discrepancy and call into question some methodological approaches and rationales generally used in this type of comparative studies.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
38
|
Skibinski DOF, Ghiselli F, Diz AP, Milani L, Mullins JGL. Structure-Related Differences between Cytochrome Oxidase I Proteins in a Stable Heteroplasmic Mitochondrial System. Genome Biol Evol 2018; 9:3265-3281. [PMID: 29149282 PMCID: PMC5726481 DOI: 10.1093/gbe/evx235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity. The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.
Collapse
Affiliation(s)
- David O F Skibinski
- Institute of Life Science, Swansea University Medical School, United Kingdom
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | | |
Collapse
|
39
|
Punzi E, Milani L, Ghiselli F, Passamonti M. Lose it or keep it: (how bivalves can provide) insights into mitochondrial inheritance mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:41-51. [PMID: 29393570 DOI: 10.1002/jez.b.22788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/02/2017] [Accepted: 01/09/2018] [Indexed: 01/22/2023]
Abstract
The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level.
Collapse
Affiliation(s)
- Elisabetta Punzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Capt C, Renaut S, Ghiselli F, Milani L, Johnson NA, Sietman BE, Stewart DT, Breton S. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics. Genome Biol Evol 2018; 10:577-590. [PMID: 29360964 PMCID: PMC5800059 DOI: 10.1093/gbe/evy019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| | - Sébastien Renaut
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
- Centre de la Science de la Biodiversité du Québec, Université de Montréal, Quebec, Canada
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Nathan A Johnson
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, Florida, USA
| | - Bernard E Sietman
- Minnesota Department of Natural Resources, Center for Aquatic Mollusk Programs, Lake City, Minnesota, USA
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| |
Collapse
|
41
|
Chen H, Xiao G, Chai X, Lin X, Fang J, Teng S. Transcriptome analysis of sex-related genes in the blood clam Tegillarca granosa. PLoS One 2017; 12:e0184584. [PMID: 28934256 PMCID: PMC5608214 DOI: 10.1371/journal.pone.0184584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/26/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Blood clams (Tegillarca granosa) are one of the most commercial shellfish in China and South Asia with wide distribution in Indo-Pacific tropical to temperate estuaries. However, recent data indicate a decline in the germplasm of this species. Furthermore, the molecular mechanisms underpinning reproductive regulation remain unclear and information regarding genetic diversity is limited. Understanding the reproductive biology of shellfish is important in interpreting their embryology development, reproduction and population structure. Transcriptome sequencing (RNA-seq) rapidly obtains genetic sequence information from almost all transcripts of a particular tissue and currently represents the most prevalent and effective method for constructing genetic expression profiles. RESULTS Non-reference RNA-seq, an Illumina HiSeq2500 Solexa system, and de novo assembly were used to construct a gonadal expression profile of the blood clam. A total of 63.75 Gb of clean data, with at least 89.46% of Quality30 (Q30), were generated which was then combined into 214,440 transcripts and 125,673 unigenes with a mean length of 1,122.63 and 781.30 base pairs (bp). In total, 27,325 genes were annotated by comparison with public databases. Of these, 2,140 and 2,070 differentially expressed genes (DEGs) were obtained (T05 T08 vs T01 T02 T04, T06 T07 vs T01 T02 T04; in which T01-T04 and T05-T08 represent biological replicates of individual female and male clams, respectively) and classified into two groups according to the evaluation of biological replicates. Then 35 DEGs and 5 sex-related unigenes, in other similar species, were investigated using qRT-PCR, the results of which were confirmed to data arising from RNA-seq. Among the DEGs, sex-related genes were identified, including forkhead box L2 (Foxl2), sex determining region Y-box (Sox), beta-catenin (β-catenin), chromobox homolog (CBX) and Sex-lethal (Sxl). In addition, 6,283 simple sequence repeats (SSRs) and 614,710 single nucleotide polymorphisms (SNPs) were identified from the RNA-seq results. CONCLUSIONS This study provided the first complete gonadal transcriptome data for the blood clam and allowed us to search many aspects of gene sequence information, not limited to gender. This data will improve our understanding of the transcriptomics and reproductive biology of the blood clam. Furthermore, molecular markers such as SSRs and SNPs will be useful in the analysis of genetic evolution, bulked segregant analysis (BSA) and genome-wide association studies (GWAS). Our transcriptome data will therefore provide important genetic information for the breeding and conservation of germplasm.
Collapse
Affiliation(s)
- Heng Chen
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
| | - Xueliang Chai
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
| | - Xingguan Lin
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
| | - Jun Fang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
| | - Shuangshuang Teng
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Wenzhou, Zhejiang, China
- Engineering Research Center for Marine Bivalves, Chinese Academy of Fishery Sciences, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
42
|
Der Sarkissian C, Pichereau V, Dupont C, Ilsøe PC, Perrigault M, Butler P, Chauvaud L, Eiríksson J, Scourse J, Paillard C, Orlando L. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 2017; 17:835-853. [PMID: 28394451 DOI: 10.1111/1755-0998.12679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Vianney Pichereau
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | | | - Peter C Ilsøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Mickael Perrigault
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Paul Butler
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Laurent Chauvaud
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Jón Eiríksson
- Institute of Earth Sciences, University of Iceland, Askja, Reykjavík, Iceland
| | - James Scourse
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Christine Paillard
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| |
Collapse
|
43
|
Ghiselli F, Milani L, Iannello M, Procopio E, Chang PL, Nuzhdin SV, Passamonti M. The complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus (Bivalvia, Veneridae). PeerJ 2017; 5:e3692. [PMID: 28848689 PMCID: PMC5571815 DOI: 10.7717/peerj.3692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022] Open
Abstract
Despite the large number of animal complete mitochondrial genomes currently available in public databases, knowledge about mitochondrial genomics in invertebrates is uneven. This paper reports, for the first time, the complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus, also known as the European clam. Ruditapes decussatus is morphologically and ecologically similar to the Manila clam Ruditapes philippinarum, which has been recently introduced for aquaculture in the very same habitats of Ruditapes decussatus, and that is replacing the native species. Currently the production of the European clam is almost insignificant, nonetheless it is considered a high value product, and therefore it is an economically important species, especially in Portugal, Spain and Italy. In this work we: (i) assembled Ruditapes decussatus mitochondrial genome from RNA-Seq data, and validated it by Sanger sequencing; (ii) analyzed and characterized the Ruditapes decussatus mitochondrial genome, comparing its features with those of other venerid bivalves; (iii) assessed mitochondrial sequence polymorphism (SP) and copy number variation (CNV) of tandem repeats across 26 samples. Despite using high-throughput approaches we did not find evidence for the presence of two sex-linked mitochondrial genomes, typical of the doubly uniparental inheritance of mitochondria, a phenomenon known in ∼100 bivalve species. According to our analyses, Ruditapes decussatus is more genetically similar to species of the Genus Paphia than to the congeneric Ruditapes philippinarum, a finding that bolsters the already-proposed need of a taxonomic revision. We also found a quite low genetic variability across the examined samples, with few SPs and little variability of the sequences flanking the control region (Largest Unassigned Regions (LURs). Strikingly, although we found low nucleotide variability along the entire mitochondrial genome, we observed high levels of length polymorphism in the LUR due to CNV of tandem repeats, and even a LUR length heteroplasmy in two samples. It is not clear if the lack of genetic variability in the mitochondrial genome of Ruditapes decussatus is a cause or an effect of the ongoing replacement of Ruditapes decussatus with the invasive Ruditapes philippinarum, and more analyses, especially on nuclear sequences, are required to assess this point.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Emanuele Procopio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| | - Peter L Chang
- Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sergey V Nuzhdin
- Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy, Bologna, Italy
| |
Collapse
|
44
|
Pozzi A, Plazzi F, Milani L, Ghiselli F, Passamonti M. SmithRNAs: Could Mitochondria "Bend" Nuclear Regulation? Mol Biol Evol 2017; 34:1960-1973. [PMID: 28444389 PMCID: PMC5850712 DOI: 10.1093/molbev/msx140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.
Collapse
Affiliation(s)
- Andrea Pozzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Manila clam Ruditapes philippinarum. Sci Rep 2017; 7:229. [PMID: 28331182 PMCID: PMC5427961 DOI: 10.1038/s41598-017-00246-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic linkage maps are indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as mollusks. In this study, high-density linkage map was constructed for an ecologically and commercially important clam species, Ruditapes philippinarum. For the consensus linkage map, a total of 9658 markers spanning 1926.98 cM were mapped to 18 sex-averaged linkage groups, with an average marker distance of 0.42 cM. Based on the high-density linkage map, ten QTLs for growth-related traits and shell color were detected. The coverage and density of the current map are sufficient for us to effectively detect QTL for segregating traits, and two QTL positions were all coincident with the closest markers. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of R. philippinarum and other bivalve molluscan species.
Collapse
|
46
|
Jiang Y, Fan W, Xu J. De novo transcriptome analysis and antimicrobial peptides screening in skin of Paa boulengeri. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0532-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Jiang X, Qiu L, Zhao H, Song Q, Zhou H, Han Q, Diao X. Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing. CHEMOSPHERE 2016; 163:125-132. [PMID: 27522184 DOI: 10.1016/j.chemosphere.2016.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Liguo Qiu
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China.
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
48
|
Bettinazzi S, Plazzi F, Passamonti M. The Complete Female- and Male-Transmitted Mitochondrial Genome of Meretrix lamarckii. PLoS One 2016; 11:e0153631. [PMID: 27083010 PMCID: PMC4833323 DOI: 10.1371/journal.pone.0153631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/02/2016] [Indexed: 11/17/2022] Open
Abstract
Bivalve mitochondrial genomes show many uncommon features, like additional genes, high rates of gene rearrangement, high A-T content. Moreover, Doubly Uniparental Inheritance (DUI) is a distinctive inheritance mechanism allowing some bivalves to maintain and transmit two separate sex-linked mitochondrial genomes. Many bivalve mitochondrial features, such as gene extensions or additional ORFs, have been proposed to be related to DUI but, up to now, this topic is far from being understood. Several species are known to show this unusual organelle inheritance but, being widespread only among Unionidae and Mytilidae, DUI distribution is unclear. We sequenced and characterized the complete female- (F) and male-transmitted (M) mitochondrial genomes of Meretrix lamarckii, which, in fact, is the second species of the family Veneridae where DUI has been demonstrated so far. The two mitochondrial genomes are comparable in length and show roughly the same gene content and order, except for three additional tRNAs found in the M one. The two sex-linked genomes show an average nucleotide divergence of 16%. A 100-aminoacid insertion in M. lamarckii M-cox2 gene was found; moreover, additional ORFs have been found in both F and M Long Unassigned Regions of M. lamarckii. Even if no direct involvement in DUI process has been demonstrated so far, the finding of cox2 insertions and supernumerary ORFs in M. lamarckii both strengthens this hypothesis and widens the taxonomical distribution of such unusual features. Finally, the analysis of inter-sex genetic variability shows that DUI species form two separate clusters, namely Unionidae and Mytilidae+Veneridae; this dichotomy is probably due to different DUI regimes acting on separate taxa.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, BO, Italy
| |
Collapse
|
49
|
Milani L, Ghiselli F, Passamonti M. Mitochondrial selfish elements and the evolution of biological novelties. Curr Zool 2016; 62:687-697. [PMID: 29491956 PMCID: PMC5804245 DOI: 10.1093/cz/zow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nuclei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sexual differentiation. We propose a testable model that describes how the acquisition of selfish features by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bivalves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transition state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
50
|
Gerdol M, De Moro G, Venier P, Pallavicini A. Analysis of synonymous codon usage patterns in sixty-four different bivalve species. PeerJ 2015; 3:e1520. [PMID: 26713259 PMCID: PMC4690358 DOI: 10.7717/peerj.1520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022] Open
Abstract
Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste , Trieste , Italy
| | - Gianluca De Moro
- Department of Life Sciences, University of Trieste , Trieste , Italy
| | - Paola Venier
- Department of Biology, University of Padova , Padova , Italy
| | | |
Collapse
|