1
|
Herbert A. Neurodegenerative diseases reflect the reciprocal roles played by retroelements in regulating memory and immunity. Front Neurosci 2024; 18:1445540. [PMID: 39371608 PMCID: PMC11451048 DOI: 10.3389/fnins.2024.1445540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Tetrapod endogenous retroelements (ERE) encode proteins that have been exapted to perform many roles in development and also in innate immunity, including GAG (group specific antigen) proteins from the ERE long terminal repeat (LTR) family, some of which can assemble into viral-like capsids (VLCs) and transmit mRNA across synapses. The best characterized member of this family is ARC (activity-regulated cytoskeletal gene), that is involved in memory formation. Other types of EREs, such as LINES and SINES (long and short interspersed elements), have instead been exapted for immune defenses against infectious agents. These immune EREs identify host transcripts by forming the unusual left-handed Z-DNA and Z-RNA conformations to enable self/nonself discrimination. Elevated levels of immune EREs in the brain are associated with neurodegenerative disease. Here I address the question of how pathways based on immune EREs are relate to the memory EREs that mediate neural plasticity. I propose that during infection and in other inflammatory states, ERE encoded GAG capsids deliver interferon-induced immune EREs that rapidly inhibit translation of viral RNAs in the dendritic splines by activation of protein kinase R (PKR). The response limits transmission of viruses and autonomously replicating elements, while protecting bystander cells from stress-induced cell death. Further, the PKR-dependent phosphorylation of proteins, like tau, disrupts the endocytic pathways exploited by viruses to spread to other cells. The responses come at a cost. They impair memory formation and can contribute to pathology by increasing the deposition of amyloid beta.
Collapse
|
2
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Tussia-Cohen D, Arrigoni F, Pozzoli U, De Gioia L, Hagai T, Sironi M. Evolution of Virus-like Features and Intrinsically Disordered Regions in Retrotransposon-derived Mammalian Genes. Mol Biol Evol 2024; 41:msae154. [PMID: 39101471 PMCID: PMC11299033 DOI: 10.1093/molbev/msae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
4
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
5
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
6
|
Henriques WS, Young JM, Nemudryi A, Nemudraia A, Wiedenheft B, Malik HS. The Diverse Evolutionary Histories of Domesticated Metaviral Capsid Genes in Mammals. Mol Biol Evol 2024; 41:msae061. [PMID: 38507667 PMCID: PMC11011659 DOI: 10.1093/molbev/msae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.
Collapse
Affiliation(s)
- William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Janet M Young
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Xu J, Erlendsson S, Singh M, Holling GA, Regier M, Ibiricu I, Einstein J, Hantak MP, Day GS, Piquet AL, Smith TL, Clardy SL, Whiteley AM, Feschotte C, Briggs JAG, Shepherd JD. PNMA2 forms immunogenic non-enveloped virus-like capsids associated with paraneoplastic neurological syndrome. Cell 2024; 187:831-845.e19. [PMID: 38301645 PMCID: PMC10922747 DOI: 10.1016/j.cell.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Simon Erlendsson
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - G Aaron Holling
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew Regier
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Iosune Ibiricu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jenifer Einstein
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael P Hantak
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Amanda L Piquet
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Tammy L Smith
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Stacey L Clardy
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | | | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John A G Briggs
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jason D Shepherd
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|
9
|
Henriques WS, Young JM, Nemudryi A, Nemudraia A, Wiedenheft B, Malik HS. The diverse evolutionary histories of domesticated metaviral capsid genes in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558119. [PMID: 37745568 PMCID: PMC10516033 DOI: 10.1101/2023.09.17.558119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selfish genetic elements and their remnants comprise at least half of the human genome. Active transposons duplicate by inserting copies at new sites in a host genome. Following insertion, transposons can acquire mutations that render them inactive; the accrual of additional mutations can render them unrecognizable over time. However, in rare instances, segments of transposons become useful for the host, in a process called gene domestication. Using the first complete human genome assembly and 25 additional vertebrate genomes, we analyzed the evolutionary trajectories and functional potential of genes domesticated from the capsid genes of Metaviridae, a retroviral-like retrotransposon family. Our analysis reveals four families of domesticated capsid genes in placental mammals with varied evolutionary outcomes, ranging from universal retention to lineage-specific duplications or losses and from purifying selection to lineage-specific rapid evolution. The four families of domesticated capsid genes have divergent amino-terminal domains, inherited from four distinct ancestral metaviruses. Structural predictions reveal that many domesticated genes encode a previously unrecognized RNA-binding domain retained in multiple paralogs in mammalian genomes both adjacent to and independent from the capsid domain. Collectively, our study reveals diverse outcomes of domestication of diverse metaviruses, which led to structurally and evolutionarily diverse genes that encode important, but still largely-unknown functions in placental mammals. (207).
Collapse
Affiliation(s)
- William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Janet M. Young
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| |
Collapse
|
10
|
Femenias MM, Santos JC, Sites JW, Avila LJ, Morando M. ExplorATE: A new pipeline to explore active transposable elements from RNA-seq data. Bioinformatics 2022; 38:3361-3366. [PMID: 35608310 DOI: 10.1093/bioinformatics/btac354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Transposable elements (TEs) are ubiquitous in genomes and many remain active. TEs comprise an important fraction of the transcriptomes with potential effects on the host genome, either by generating deleterious mutations or promoting evolutionary novelties. However, their functional study is limited by the difficulty in their identification and quantification, particularly in non-model organisms. RESULTS We developed a new pipeline (ExplorATE or Explore Active Transposable Elements) implemented in R and bash that allows the quantification of active TEs in both model and non-model organisms. ExplorATE creates TE-specific indexes and uses the Selective Alignment (SA) to filter out co-transcribed transposons within genes based on alignment scores. Moreover, our software incorporates a Wicker-like criteria to refine a set of target TEs and avoid spurious mapping. Based on simulated and real data, we show that the SA strategy adopted by ExplorATE achieved better estimates of non-co-transcribed elements than other available alignment-based or mapping-based software. ExplorATE results showed high congruence with alignment-based tools with and without a reference genome, yet ExplorATE required less execution time. Likewise, ExplorATE expands and complements most previous TE analyses by incorporating the co-transcription and multi-mapping effects during quantification, and provides a seamless integration with other downstream tools within the R environment. AVAILABILITY Source code is available at https://github.com/FemeniasM/ExplorATEproject and https://github.com/FemeniasM/ExplorATE_shell_script. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin M Femenias
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University (BYU), Provo, UT, 84602, USA
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina
| |
Collapse
|
11
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Abstract
LTR retrotransposons comprise a major component of the genomes of eukaryotes. On occasion, retrotransposon genes can be recruited by their hosts for diverse functions, a process formally referred to as co-option. However, a comprehensive picture of LTR retrotransposon gag gene co-option in eukaryotes is still lacking, with several documented cases exclusively involving Ty3/Gypsy retrotransposons in animals. Here, we use a phylogenomic approach to systemically unearth co-option of retrotransposon gag genes above the family level of taxonomy in 2,011 eukaryotes, namely co-option occurring during the deep evolution of eukaryotes. We identify a total of 14 independent gag gene co-option events across more than 740 eukaryote families, eight of which have not been reported previously. Among these retrotransposon gag gene co-option events, nine, four, and one involve gag genes of Ty3/Gypsy, Ty1/Copia, and Bel-Pao retrotransposons, respectively. Seven, four, and three co-option events occurred in animals, plants, and fungi, respectively. Interestingly, two co-option events took place in the early evolution of angiosperms. Both selective pressure and gene expression analyses further support that these co-opted gag genes might perform diverse cellular functions in their hosts, and several co-opted gag genes might be subject to positive selection. Taken together, our results provide a comprehensive picture of LTR retrotransposon gag gene co-option events that occurred during the deep evolution of eukaryotes and suggest paucity of LTR retrotransposon gag gene co-option during the deep evolution of eukaryotes.
Collapse
Affiliation(s)
- Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Laureau R, Dyatel A, Dursuk G, Brown S, Adeoye H, Yue JX, De Chiara M, Harris A, Ünal E, Liti G, Adams IR, Berchowitz LE. Meiotic Cells Counteract Programmed Retrotransposon Activation via RNA-Binding Translational Repressor Assemblies. Dev Cell 2020; 56:22-35.e7. [PMID: 33278343 DOI: 10.1016/j.devcel.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.
Collapse
Affiliation(s)
- Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samantha Brown
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hannah Adeoye
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | | | - Anthony Harris
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Navas-Pérez E, Vicente-García C, Mirra S, Burguera D, Fernàndez-Castillo N, Ferrán JL, López-Mayorga M, Alaiz-Noya M, Suárez-Pereira I, Antón-Galindo E, Ulloa F, Herrera-Úbeda C, Cuscó P, Falcón-Moya R, Rodríguez-Moreno A, D'Aniello S, Cormand B, Marfany G, Soriano E, Carrión ÁM, Carvajal JJ, Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol 2020; 21:267. [PMID: 33100228 PMCID: PMC7586669 DOI: 10.1186/s13059-020-02172-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.
Collapse
Affiliation(s)
- Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Demian Burguera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Noèlia Fernàndez-Castillo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, 30120, Murcia, Spain
| | - Macarena López-Mayorga
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Marta Alaiz-Noya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Irene Suárez-Pereira
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Neuropsychopharmacology and psychobiology research group, UCA, INiBICA, Cádiz, Spain
| | - Ester Antón-Galindo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Pol Cuscó
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Rafael Falcón-Moya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Ángel M Carrión
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Domesticated gag Gene of Drosophila LTR Retrotransposons Is Involved in Response to Oxidative Stress. Genes (Basel) 2020; 11:genes11040396. [PMID: 32268600 PMCID: PMC7231272 DOI: 10.3390/genes11040396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Drosophila melanogaster is one of the most extensively used genetic model organisms for studying LTR retrotransposons that are represented by various groups in its genome. However, the phenomenon of molecular domestication of LTR retrotransposons has been insufficiently studied in Drosophila, as well as in other invertebrates. The present work is devoted to studying the role of the domesticated gag gene, Gagr, in the Drosophila genome. The Gagr gene has been shown to be involved in the response to stress caused by exposure to ammonium persulfate, but not in the stress response to oligomycin A, zeomycin, and cadmium chloride. Ammonium persulfate tissue specifically activates the expression of Gagr in the tissues of the carcass, but not in the gut. We found that the Gagr gene promoter contains one binding motif for the transcription factor kayak, a component of the JNK signaling pathway, and two binding motifs for the transcription factor Stat92E, a component of the Jak-STAT signaling pathway. Remarkably, Gagr orthologs contain the second binding motif for Stat92E only in D. melanogaster, D. simulans and D. sechellia, whereas in D. yakuba and D. erecta, Gagr orthologs contain a single motif, and there are no binding sites for Stat92E in the promoters of Gagr orthologs in D. ananassae and in species outside the melanogaster group. The data obtained indicate the formation of the protective function of the Gagr gene during evolution.
Collapse
|
16
|
Lu H, Cui X, Liu Z, Liu Y, Wang X, Zhou Z, Cai X, Zhang Z, Guo X, Hua J, Ma Z, Wang X, Zhang J, Zhang H, Liu F, Wang K. Discovery and annotation of a novel transposable element family in Gossypium. BMC PLANT BIOLOGY 2018; 18:307. [PMID: 30486783 PMCID: PMC6264596 DOI: 10.1186/s12870-018-1519-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) is an efficient cytogenetic technology to study chromosome structure. Transposable element (TE) is an important component in eukaryotic genomes and can provide insights in the structure and evolution of eukaryotic genomes. RESULTS A FISH probe derived from bacterial artificial chromosome (BAC) clone 299N22 generated striking signals on all 26 chromosomes of the cotton diploid A genome (AA, 2x=26) but very few on the diploid D genome (DD, 2x=26). All 26 chromosomes of the A sub genome (At) of tetraploid cotton (AADD, 2n=4x=52) also gave positive signals with this FISH probe, whereas very few signals were observed on the D sub genome (Dt). Sequencing and annotation of BAC clone 299N22, revealed a novel Ty3/gypsy transposon family, which was named as 'CICR'. This family is a significant contributor to size expansion in the A (sub) genome but not in the D (sub) genome. Further FISH analysis with the LTR of CICR as a probe revealed that CICR is lineage-specific, since massive repeats were found in A and B genomic groups, but not in C-G genomic groups within the Gossypium genus. Molecular evolutionary analysis of CICR suggested that tetraploid cottons evolved after silence of the transposon family 1-1.5 million years ago (Mya). Furthermore, A genomes are more homologous with B genomes, and the C, E, F, and G genomes likely diverged from a common ancestor prior to 3.5-4 Mya, the time when CICR appeared. The genomic variation caused by the insertion of CICR in the A (sub) genome may have played an important role in the speciation of organisms with A genomes. CONCLUSIONS The CICR family is highly repetitive in A and B genomes of Gossypium, but not amplified in the C-G genomes. The differential amount of CICR family in At and Dt will aid in partitioning sub genome sequences for chromosome assemblies during tetraploid genome sequencing and will act as a method for assessing the accuracy of tetraploid genomes by looking at the proportion of CICR elements in resulting pseudochromosome sequences. The timeline of the expansion of CICR family provides a new reference for cotton evolutionary analysis, while the impact on gene function caused by the insertion of CICR elements will be a target for further analysis of investigating phenotypic differences between A genome and D genome species.
Collapse
Affiliation(s)
- Hejun Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Xinglei Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Jinping Hua
- Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhiying Ma
- Key Laboratory for Crop Germplasm Resources of Hebei province, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiyin Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000 Hebei China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003 USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409 USA
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
17
|
Shen Z, Asa SL, Ezzat S. The retrotransposon gag domain containing protein Rgag4 is an Ikaros target in the pituitary. Mol Cell Endocrinol 2018; 461:188-193. [PMID: 28919299 DOI: 10.1016/j.mce.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022]
Abstract
Previous studies have established the common and critical involvement of the zinc finger protein Ikaros in lymphoid and pituitary cell development and expansion. Key to the assembly of several transcriptional networks, we have demonstrated up-regulation of Ikaros and its interacting partner the C-terminal Binding Protein (CtBP) in response to hypoxia. This prompted us to explore common transcriptional targets using a chromatin immunoprecipitate (ChIP) screen of DNA from pituitary corticotroph cells. This strategy yielded a finite list of targets common to both transcription factors that included the metalloprotease ADAMTS10. In this report, we focus on validation of a second candidate target, the retrotransposon gag domain containing protein Rgag4. We identified the ability of Ikaros to bind the Rgag4 promoter, influence its transcriptional activity, and induce endogenous gene expression. Robust expression of Rgag4 was noted in the anterior lobe of the pituitary gland which was diminished in Ikaros knockout mice. Down-regulation of Rgag4 resulted in profound reduction of hormone gene expression with diminished ACTH secretion, recapitulating the effect of Ikaros deficiency in knockout mice. The results introduce Rgag4 to the repertoire of effectors serving to couple the chromatin remodeler Ikaros with the hormonal stress response.
Collapse
Affiliation(s)
- Zhongyi Shen
- Departments of Medicine, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada
| | - Sylvia L Asa
- Laboratory Medicine & Pathobiology, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada
| | - Shereen Ezzat
- Departments of Medicine, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
18
|
Hunter DR, Bao L, Poss M. Assignment of endogenous retrovirus integration sites using a mixture model. Ann Appl Stat 2017. [DOI: 10.1214/16-aoas1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
20
|
Smýkal P, K Varshney R, K Singh V, Coyne CJ, Domoney C, Kejnovský E, Warkentin T. From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2267-2280. [PMID: 27717955 DOI: 10.1007/s00122-016-2803-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Slechtitelu 27, Olomouc, Czech Republic.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | | | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
22
|
Mukherjee S, Sharma D, Upadhyaya KC. L1 Retrotransposons Are Transcriptionally Active in Hippocampus of Rat Brain. Prague Med Rep 2016; 117:42-53. [DOI: 10.14712/23362936.2016.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
LINE1 (L1) is an autonomous, non-LTR retrotransposon and the L1 family of retrotransposons constitute around 17%, 20% and 23% in the human, mouse and rat genomes respectively. Under normal physiological conditions, the retroelements remain by and large transcriptionally silent but are activated in response to biotic and abiotic stress conditions and during perturbation in cellular metabolism. They have also been shown to be transiently activated under certain developmental programs. Using RT-PCR, we show that the L1 elements are transcriptionally active in the hippocampus region of the brain of four-month-old rat under normal conditions without any apparent stress. Twenty non-redundant LINE1-specific reverse transcriptase (RTase) sequences form ORF2 region were isolated, cloned and sequenced. Full length L1 element sequences complementary to the isolated sequences were retrieved from the L1 database. In silico analysis was used to determine the presence of these retroelements proximal (up to 10 kb) to the genes transcriptionally active in the hippocampus. Many important genes were found to be in close proximity of the transcriptionally active L1 elements. Transcriptional activation of the elements possibly affects the expression of the neighbouring genes.
Collapse
|
23
|
Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, Galiana D, Volff JN. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 2016; 22:312-323. [PMID: 26899828 DOI: 10.1016/j.cmi.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/24/2022]
Abstract
Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage.
Collapse
Affiliation(s)
- M Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - I A Warren
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - Z Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France; Department of Genetics, University of Georgia, Athens, GA, USA
| | - F Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - P Levin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - J-N Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France.
| |
Collapse
|
24
|
Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M, Kaessmann H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res 2016; 26:301-14. [PMID: 26728716 PMCID: PMC4772013 DOI: 10.1101/gr.198473.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 02/03/2023]
Abstract
New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88–280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the “life history” of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution.
Collapse
Affiliation(s)
- Francesco Nicola Carelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Company, Limited), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Monkey Center, Inuyama, Aichi 484-0081, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 484-8585, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Maria Warnefors
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Abstract
There is a huge variety of RNA- and DNA-containing entities that multiply within and propagate between cells across all kingdoms of life, having no cells of their own. Apart from cellular organisms, these entities (viroids, plasmids, mobile elements and viruses among others) are the only ones with distinct genetic identities but which are not included in any traditional tree of life. We suggest to introduce or, rather, revive the distinct category of acellular organisms, Acytota, as an additional, undeservedly ignored full-fledged kingdom of life. Acytota are indispensable players in cellular life and its evolution. The six traditional kingdoms (Cytota) and Acytota together complete the classification of the biological world (Biota), leaving nothing beyond.
Collapse
Affiliation(s)
- Edward N Trifonov
- a Genome Diversity Center, Institute of Evolution , University of Haifa, Mount Carmel , Haifa 3498838 , Israel
| | - Eduard Kejnovsky
- b Department of Plant Developmental Genetics , Institute of Biophysics, Academy of Sciences of the Czech Republic , Brno , Czech Republic
| |
Collapse
|
26
|
Henke C, Strissel PL, Schubert MT, Mitchell M, Stolt CC, Faschingbauer F, Beckmann MW, Strick R. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon--derived family during mouse placentogenesis. Retrovirology 2015; 12:9. [PMID: 25888968 PMCID: PMC4340606 DOI: 10.1186/s12977-015-0138-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/07/2015] [Indexed: 01/12/2023] Open
Abstract
Background LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation. Results Quantitative PCR, in situ hybridization (ISH) and immunoblotting showed various expression patterns of the 11 mouse Mart genes through different placental stages. Zcchc5/Mart3, Zcchc16/ Mart4 and Rgag1/Mart9 expression was undetectable. Rtl1/Mart1, Peg10/Mart2, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a gene expression was very low at the blastocyst stage. Later placental stages showed an increase of expression for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a, the latter up to 1,489 molecules/ng cDNA at E9.5. From our recently published findings Peg10/Mart2 was the most highly expressed Mart gene. ISH demonstrated sense and antisense transcript co-localization of Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a in trophoblast subtypes at the junctional zone, with an accumulation of antisense transcripts in the nuclei. To validate these results, we developed a TAG-aided sense/antisense transcript detection (TASA-TD) method, which verified sense and antisense transcripts for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a. Except for Rtl1/Mart1 and Cxx1a,b/Mart8b,c all other Mart genes showed a reduced amount of antisense transcripts. Northern blot and 5′ and 3′ RACE confirmed both sense and antisense transcripts for Ldoc1/Mart7 and Cxx1a,b,c/Mart8b,c,a. Immunoblotting demonstrated a single protein throughout all placental stages for Ldoc1/Mart7, but for Cxx1a,b,c/Mart8b,c,a a switch occurred from a 57 kDa protein at E10.5 and E14.5 to a 25 kDa protein at E16.5 and E18.5. Conclusions RNA and protein detection of mouse Mart genes support neo-functionalization of retrotransposons in mammalian genomes. Undetectable expression of Zcchc5/Mart3, Zcchc16/Mart4 and Rgag1/Mart9 indicate no role during mouse placentogenesis. Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a gene expression support a role for differentiation from the ectoplacental cone. Mart antisense transcripts and protein alterations predict unique and complex molecular regulation in a time directed manner throughout mouse placentogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Henke
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Pamela L Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Maria-Theresa Schubert
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Megan Mitchell
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Claus C Stolt
- Institute of Biochemistry, D-91054, Erlangen, Germany.
| | - Florian Faschingbauer
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
29
|
Abstract
The development of rigorous molecular taxonomy pioneered by Carl Woese has freed evolution science to explore numerous cellular activities that lead to genome change in evolution. These activities include symbiogenesis, inter- and intracellular horizontal DNA transfer, incorporation of DNA from infectious agents, and natural genetic engineering, especially the activity of mobile elements. This article reviews documented examples of all these processes and proposes experiments to extend our understanding of cell-mediated genome change.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology; University of Chicago; Chicago, IL USA
| |
Collapse
|
30
|
Bohl K, Hummert S, Werner S, Basanta D, Deutsch A, Schuster S, Theißen G, Schroeter A. Evolutionary game theory: molecules as players. ACTA ACUST UNITED AC 2014; 10:3066-74. [DOI: 10.1039/c3mb70601j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In many situations macromolecules, such as proteins, DNA and RNA, can be considered as players in the sense of game theory. In this review we discuss the usefulness of game theory in describing macromolecular processes.
Collapse
Affiliation(s)
- Katrin Bohl
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
- Friedrich-Schiller-University Jena
| | - Sabine Hummert
- Fachhochschule Schmalkalden
- Faculty of Electrical Engineering
- 98574 Schmalkalden, Germany
- Friedrich-Schiller-University Jena
- University Medical Centre (Universitätsklinikum) Jena
| | - Sarah Werner
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| | - David Basanta
- Integrated Mathematical Oncology
- H. Lee Moffitt Cancer Center & Research Institute
- Tampa, USA
| | - Andreas Deutsch
- Centre for Information Services and High Performance Computing (ZIH)
- Dresden University of Technology
- Germany
| | - Stefan Schuster
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| | - Günter Theißen
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Genetics
- 07743 Jena, Germany
| | - Anja Schroeter
- Friedrich-Schiller-University Jena
- Faculty of Biology and Pharmacy
- Department of Bioinformatics
- 07743 Jena, Germany
| |
Collapse
|