1
|
Cramer JF, Miller ET, Ko MC, Liang Q, Cockburn G, Nakagita T, Cardinale M, Fusani L, Toda Y, Baldwin MW. A single residue confers selective loss of sugar sensing in wrynecks. Curr Biol 2022; 32:4270-4278.e5. [PMID: 35985327 DOI: 10.1016/j.cub.2022.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Sensory receptors evolve, and changes to their response profiles can directly impact sensory perception and affect diverse behaviors, from mate choice to foraging decisions.1-3 Although receptor sensitivities can be highly contingent on changes occurring early in a lineage's evolutionary history,4 subsequent shifts in a species' behavior and ecology may exert selective pressure to modify and even reverse sensory receptor capabilities.5-7 Neither the extent to which sensory reversion occurs nor the mechanisms underlying such shifts is well understood. Using receptor profiling and behavioral tests, we uncover both an early gain and an unexpected subsequent loss of sugar sensing in woodpeckers, a primarily insectivorous family of landbirds.8,9 Our analyses show that, similar to hummingbirds10 and songbirds,4 the ancestors of woodpeckers repurposed their T1R1-T1R3 savory receptor to detect sugars. Importantly, whereas woodpeckers seem to have broadly retained this ability, our experiments demonstrate that wrynecks (an enigmatic ant-eating group sister to all other woodpeckers) selectively lost sugar sensing through a novel mechanism involving a single amino acid change in the T1R3 transmembrane domain. The identification of this molecular microswitch responsible for a sensory shift in taste receptors provides an example of the molecular basis of a sensory reversion in vertebrates and offers novel insights into structure-function relationships during sensory receptor evolution.
Collapse
Affiliation(s)
- Julia F Cramer
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Massimiliano Cardinale
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, 453 30 Lysekil, Sweden
| | - Leonida Fusani
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, 1160 Wien, Austria
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| |
Collapse
|
2
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
3
|
Yokoyama S, Jia H. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates. FEBS Open Bio 2020; 10:873-882. [PMID: 32189477 PMCID: PMC7193153 DOI: 10.1002/2211-5463.12843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
One of the critical times for the survival of animals is twilight where the most abundant visible lights are between 400 and 550 nanometres (nm). Green-sensitive RH2 pigments help nonmammalian vertebrate species to better discriminate wavelengths in this blue-green region. Here, evaluation of the wavelengths of maximal absorption (λmax s) of genetically engineered RH2 pigments representing 13 critical stages of vertebrate evolution revealed that the RH2 pigment of the most recent common ancestor of vertebrates had a λmax of 503 nm, while the 12 ancestral pigments exhibited an expanded range in λmax s between 474 and 524 nm, and present-day RH2 pigments have further expanded the range to ~ 450-530 nm. During vertebrate evolution, eight out of the 16 significant λmax shifts (or |Δλmax | ≥ 10 nm) of RH2 pigments identified were fully explained by the repeated mutations E122Q (twice), Q122E (thrice) and M207L (twice), and A292S (once). Our data indicated that the highly variable λmax s of teleost RH2 pigments arose from gene duplications followed by accelerated amino acid substitution.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of BiologyEmory UniversityAtlantaGAUSA
- Willamette ViewPortlandORUSA
| | - Huiyong Jia
- Department of BiologyEmory UniversityAtlantaGAUSA
| |
Collapse
|
4
|
Saito S, Saito CT, Nozawa M, Tominaga M. Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction. Mol Ecol 2019; 28:3561-3571. [PMID: 31291493 DOI: 10.1111/mec.15170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Ambient temperature fluctuations are detected via the thermosensory system which allows animals to seek preferable thermal conditions or escape from harmful temperatures. Evolutionary changes in thermal perception have thus potentially played crucial roles in niche selection. The genus Xenopus (clawed frog) is suitable for investigating the relationship between thermal perception and niche selection due to their diverse latitudinal and altitudinal distributions. Here we performed comparative analyses of the neuronal heat sensors TRPV1 and TRPA1 among closely related Xenopus species (X. borealis, X. muelleri, X. laevis, and X. tropicalis) to elucidate their functional evolution and to assess whether their functional differences correlate with thermal niche selection among the species. Comparison of TRPV1 among four extant Xenopus species and reconstruction of the ancestral TRPV1 revealed that TRPV1 responses to repeated heat stimulation were specifically altered in the lineage leading to X. tropicalis which inhabits warmer niches. Moreover, the thermal sensitivity of TRPA1 was lower in X. tropicalis than the other species, although the thermal sensitivity of TRPV1 and TRPA1 was not always lower in species that inhabit warmer niches than the species inhabit cooler niches. However, a clear correlation was found in species differences in TRPA1 activity. Heat-evoked activity of TRPA1 in X. borealis and X. laevis, which are adapted to cooler niches, was significantly higher than in X. tropicalis and X. muelleri which are adapted to warmer niches. These findings suggest that the functional properties of heat sensors changed during Xenopus evolution, potentially altering the preferred temperature ranges among species.
Collapse
Affiliation(s)
- Shigeru Saito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Claire T Saito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Japan.,Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
5
|
Saito S, Tominaga M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature (Austin) 2017; 4:141-152. [PMID: 28680930 DOI: 10.1080/23328940.2017.1315478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022] Open
Abstract
Thermal perception is an essential sensory system for survival since temperature fluctuations affect various biologic processes. Therefore, evolutionary changes in thermosensory systems may have played important roles in adaptation processes. Comparative analyses of sensory receptors among different species can provide us with important clues to understand the molecular basis for adaptation. Several ion channels belonging to the transient receptor potential (TRP) superfamily serve as thermal sensors in a wide variety of animal species. These TRP proteins are multimodal receptors that are activated by temperature as well as other sensory stimuli. Among them TRPV1 and TRPA1 are activated by noxious ranges of thermal stimuli and irritating chemicals, and are mainly expressed in nociceptive sensory neurons. Comparative analyses of TRPV1 and TRPA1 among various vertebrate species revealed evolutionary changes that likely contributed to diversification of sensory perception. Whereas heat-induced TRPV1 responses have been conserved across many vertebrates, TRPA1 varied among species. Mutagenesis experiments using these two channels from various species also helped characterize the molecular basis for their activation and inhibition. Meanwhile, recent detailed comparative analyses using closely related species showed shifts in TRPV1 and TRPA1 thermal sensitivity that allowed adaptation to different thermal environments. Changes in TRPV1 heat responses appear to arise from just a few amino acid differences among species. These observations suggest that evolutionary changes in peripheral sensors are likely driving force for shifting thermal perception in adaptation processes.
Collapse
Affiliation(s)
- Shigeru Saito
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
6
|
Saito S, Ohkita M, Saito CT, Takahashi K, Tominaga M, Ohta T. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches. J Biol Chem 2016; 291:11446-59. [PMID: 27022021 DOI: 10.1074/jbc.m115.702498] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 11/06/2022] Open
Abstract
Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation.
Collapse
Affiliation(s)
- Shigeru Saito
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan, the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan, and
| | - Masashi Ohkita
- the Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Claire T Saito
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Kenji Takahashi
- the Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Makoto Tominaga
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan, the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan, and
| | - Toshio Ohta
- the Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
7
|
Yokoyama S, Tada T, Liu Y, Faggionato D, Altun A. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates. BMC Evol Biol 2016; 16:64. [PMID: 27001075 PMCID: PMC4802639 DOI: 10.1186/s12862-016-0637-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Many vertebrate species use ultraviolet (UV) reception for such basic behaviors as foraging and mating, but many others switched to violet reception and improved their visual resolution. The respective phenotypes are regulated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 and 395-440 nm. Because of strong epistatic interactions, the biological significance of the extensive mutagenesis results on the molecular basis of spectral tuning in SWS1 pigments and the mechanisms of their phenotypic adaptations remains uncertain. RESULTS The magnitudes of the λmax-shifts caused by mutations in a present-day SWS1 pigment and by the corresponding forward mutations in its ancestral pigment are often dramatically different. To resolve these mutagenesis results, the A/B ratio, in which A and B are the areas formed by amino acids at sites 90, 113 and 118 and by those at sites 86, 90 and 118 and 295, respectively, becomes indispensable. Then, all critical mutations that generated the λmax of a SWS1 pigment can be identified by establishing that 1) the difference between the λmax of the ancestral pigment with these mutations and that of the present-day pigment is small (3 ~ 5 nm, depending on the entire λmax-shift) and 2) the difference between the corresponding A/B ratios is < 0.002. CONCLUSION Molecular adaptation has been studied mostly by using comparative sequence analyses. These statistical results provide biological hypotheses and need to be tested using experimental means. This is an opportune time to explore the currently available and new genetic systems and test these statistical hypotheses. Evaluating the λmaxs and A/B ratios of mutagenized present-day and their ancestral pigments, we now have a method to identify all critical mutations that are responsible for phenotypic adaptation of SWS1 pigments. The result also explains spectral tuning of the same pigments, a central unanswered question in phototransduction.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - Takashi Tada
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Yang Liu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Ahmet Altun
- Department of Physics, Fatih University, Istanbul, 34500, Turkey.,Department of Genetics and Bioengineering, Fatih University, Istanbul, 34500, Turkey
| |
Collapse
|
8
|
Yokoyama S, Altun A, Jia H, Yang H, Koyama T, Faggionato D, Liu Y, Starmer WT. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions. SCIENCE ADVANCES 2015; 1:e1500162. [PMID: 26601250 PMCID: PMC4643761 DOI: 10.1126/sciadv.1500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/02/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, λmax = 423 nm) from the UV pigment in the amphibian ancestor (λmax = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I-III segments. We show that epistatic interactions involving the remaining TM IV-VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV-VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Ahmet Altun
- Department of Physics and Department of Genetics and Bioengineering, Fatih University, Istanbul 34500, Turkey
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Hui Yang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Takashi Koyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Yang Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
9
|
Webb AE, Gerek ZN, Morgan CC, Walsh TA, Loscher CE, Edwards SV, O'Connell MJ. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response. Mol Biol Evol 2015; 32:1717-29. [PMID: 25758009 PMCID: PMC4476151 DOI: 10.1093/molbev/msv051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes.
Collapse
Affiliation(s)
- Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Dublin 9, Ireland Centre for Scientific Computing & Complex Systems Modeling (SCI-SYM), Dublin City University, Dublin 9, Ireland
| | - Z Nevin Gerek
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia
| | - Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Dublin 9, Ireland Centre for Scientific Computing & Complex Systems Modeling (SCI-SYM), Dublin City University, Dublin 9, Ireland
| | - Thomas A Walsh
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Dublin 9, Ireland Centre for Scientific Computing & Complex Systems Modeling (SCI-SYM), Dublin City University, Dublin 9, Ireland
| | - Christine E Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Dublin 9, Ireland Centre for Scientific Computing & Complex Systems Modeling (SCI-SYM), Dublin City University, Dublin 9, Ireland Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| |
Collapse
|
10
|
Yokoyama S, Xing J, Liu Y, Faggionato D, Altun A, Starmer WT. Epistatic adaptive evolution of human color vision. PLoS Genet 2014; 10:e1004884. [PMID: 25522367 PMCID: PMC4270479 DOI: 10.1371/journal.pgen.1004884] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Jinyi Xing
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- College of Life Science, Linyi University, Linyi, Shandong, China
| | - Yang Liu
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Davide Faggionato
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Ahmet Altun
- Department of Physics, Fatih University, Istanbul, Turkey
| | - William T. Starmer
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
11
|
Sandler I, Zigdon N, Levy E, Aharoni A. The functional importance of co-evolving residues in proteins. Cell Mol Life Sci 2014; 71:673-82. [PMID: 23995987 PMCID: PMC11113390 DOI: 10.1007/s00018-013-1458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Computational approaches for detecting co-evolution in proteins allow for the identification of protein-protein interaction networks in different organisms and the assignment of function to under-explored proteins. The detection of co-variation of amino acids within or between proteins, moreover, allows for the discovery of residue-residue contacts and highlights functional residues that can affect the binding affinity, catalytic activity, or substrate specificity of a protein. To explore the functional impact of co-evolutionary changes in proteins, a combined experimental and computational approach must be recruited. Here, we review recent studies that apply computational and experimental tools to obtain novel insight into the structure, function, and evolution of proteins. Specifically, we describe the application of co-evolutionary analysis for predicting high-resolution three-dimensional structures of proteins. In addition, we describe computational approaches followed by experimental analysis for identifying specificity-determining residues in proteins. Finally, we discuss studies addressing the importance of such residues in terms of the functional divergence of proteins, allowing proteins to evolve new functions while avoiding crosstalk with existing cellular pathways or forming reproductive barriers and hence promoting speciation.
Collapse
Affiliation(s)
- Inga Sandler
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Nitzan Zigdon
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Efrat Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel
| |
Collapse
|