1
|
Poppeliers J, Focquet M, Boon M, De Mey M, Thomas J, Lavigne R. Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: Uncovering the small regulatory details of a giant phage. Microb Biotechnol 2024; 17:e70037. [PMID: 39460739 PMCID: PMC11512511 DOI: 10.1111/1751-7915.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of Pseudomonas infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model Pseudomonas phage ϕKZ confirmed that the transcriptional programs of these prototypes of the Serwervirus and Phikzvirus genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as Pseudomonas atacamensis, a close relative of the important agricultural biocontrol agent Pseudomonas chlororaphis. Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in P. chlororaphis. Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.
Collapse
Affiliation(s)
| | | | - Maarten Boon
- Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB)Ghent UniversityGhentBelgium
| | - Julie Thomas
- Thomas H. Gosnell School of Life SciencesRochester Institute of TechnologyRochesterUSA
| | - Rob Lavigne
- Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Farookhi H, Xia X. Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species. Microorganisms 2024; 12:768. [PMID: 38674712 PMCID: PMC11052298 DOI: 10.3390/microorganisms12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
Collapse
Affiliation(s)
- Heba Farookhi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Gu BL, She Y, Pei GK, Du Y, Yang R, Ma LX, Zhao Q, Gao SG. Systematic analysis of prophages carried by Porphyromonas gingivalis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105489. [PMID: 37572952 DOI: 10.1016/j.meegid.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
To systematically investigate the prophages carrying in Porphyromonas gingivalis (P. gingivalis) strains, analyze potential antibiotic resistance genes (ARGs) and virulence genes in these prophages. We collected 90 whole genome sequences of P. gingivalis from NCBI and utilized the Prophage Hunter online software to predict prophages; Comprehensive antibiotic research database (CARD) and virulence factors database (VFDB) were adopted to analyze the ARGs and virulence factors (VFs) carried by the prophages. Sixty-nine prophages were identified among 24/90 P. gingivalis strains, including 17 active prophages (18.9%) and 52 ambiguous prophages (57.8%). The proportion of prophages carried by each P. gingivalis genome ranged from 0.5% to 6.7%. A total of 188 antibiotic resistance genes belonging to 25 phenotypes and 46 different families with six mechanisms of antibiotic resistance were identified in the 17 active prophages. Three active prophages encoded 4 virulence genes belonging to type III and type VI secretion systems. The potential hosts of these virulence genes included Escherichia coli, Shigella sonnei, Salmonella typhi, and Klebsiella pneumoniae. In conclusion, 26.7% P. gingivalis strains carry prophages, while the proportion of prophage genes in the P. gingivalis genome is relatively low. In addition, approximately 39.7% of the P. gingivalis prophage genes have ARGs identified, mainly against streptogramin, peptides, and aminoglycosides. Only a few prophages carry virulence genes. Prophages may play an important role in the acquisition, dissemination of antibiotic resistance genes, and pathogenicity evolution in P. gingivalis.
Collapse
Affiliation(s)
- B L Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y She
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G K Pei
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - R Yang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - L X Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Q Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - S G Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China.
| |
Collapse
|
4
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
5
|
Qin Z, Song J, Lin A, Yang W, Zhang W, Zhong F, Huang L, Lü Y, Yu W. GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome. J Neuroinflammation 2022; 19:121. [PMID: 35624482 PMCID: PMC9137133 DOI: 10.1186/s12974-022-02482-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The complex pathophysiology of epilepsy hampers the development of effective treatments. Although more than ten kinds of anti-seizures drugs (ASDs) have good effects on seizure control worldwide, about 30% of patients still display pharmacoresistance against ASDs. Neuroinflammation seems to play a crucial role in disease progression. G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis. However, the role of GPR120 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of GPR120 in epilepsy. Methods Male adult C57BL/6 mice were intracranially injected with kainic acid (KA) to establish epilepsy model, and the adeno associated virus (AAV) was administered intracranially at 3 weeks before KA injection. VX765 was administered by intragastric administration at 30 min before KA induced and an equal dose administrated twice a day (10 a.m. and 4 p.m.) lasting 7 days until the mice were killed. Western blot analysis, immunofluorescence staining, video monitoring of seizure, LFP recording, Nissl staining were performed. Results GPR120 was increased in both the hippocampus and cortex in the KA-induced model with temporal lobe epilepsy (TLE), and both were most highly expressed at 7 days after KA injection. Overexpression of GPR120 significantly alleviated epileptic activity, reduced neuronal death after status epilepticus (SE), downregulated the expression of IL-1β, IL-6, IL-18, and pyrin domain-containing protein 3 (NLRP3) inflammasome, whereas knockdown GPR120 showed the opposite effect. The effects of GPR120 knockdown were reversed by VX765 inhibition cysteinyl aspartate specific proteinase-1 (Caspase-1). Conclusion GPR120 modulates epileptic seizure activity and affects neuronal survival in KA-induced mouse model of temporal lobe epilepsy. Furthermore, GPR120 regulated neuroinflammation in epileptic animals through NLRP3/Caspase-1/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Zhangjin Qin
- Institute of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Aolei Lin
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fuxin Zhong
- Institute of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lihong Huang
- Institute of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Ho AT, Hurst LD. Variation in Release Factor Abundance Is Not Needed to Explain Trends in Bacterial Stop Codon Usage. Mol Biol Evol 2022; 39:msab326. [PMID: 34751397 PMCID: PMC8789281 DOI: 10.1093/molbev/msab326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3'untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
7
|
Simón D, Cristina J, Musto H. Nucleotide Composition and Codon Usage Across Viruses and Their Respective Hosts. Front Microbiol 2021; 12:646300. [PMID: 34262534 PMCID: PMC8274242 DOI: 10.3389/fmicb.2021.646300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic material of the three domains of life (Bacteria, Archaea, and Eukaryota) is always double-stranded DNA, and their GC content (molar content of guanine plus cytosine) varies between ≈ 13% and ≈ 75%. Nucleotide composition is the simplest way of characterizing genomes. Despite this simplicity, it has several implications. Indeed, it is the main factor that determines, among other features, dinucleotide frequencies, repeated short DNA sequences, and codon and amino acid usage. Which forces drive this strong variation is still a matter of controversy. For rather obvious reasons, most of the studies concerning this huge variation and its consequences, have been done in free-living organisms. However, no recent comprehensive study of all known viruses has been done (that is, concerning all available sequences). Viruses, by far the most abundant biological entities on Earth, are the causative agents of many diseases. An overview of these entities is important also because their genetic material is not always double-stranded DNA: indeed, certain viruses have as genetic material single-stranded DNA, double-stranded RNA, single-stranded RNA, and/or retro-transcribing. Therefore, one may wonder if what we have learned about the evolution of GC content and its implications in prokaryotes and eukaryotes also applies to viruses. In this contribution, we attempt to describe compositional properties of ∼ 10,000 viral species: base composition (globally and according to Baltimore classification), correlations among non-coding regions and the three codon positions, and the relationship of the nucleotide frequencies and codon usage of viruses with the same feature of their hosts. This allowed us to determine how the base composition of phages strongly correlate with the value of their respective hosts, while eukaryotic viruses do not (with fungi and protists as exceptions). Finally, we discuss some of these results concerning codon usage: reinforcing previous results, we found that phages and hosts exhibit moderate to high correlations, while for eukaryotes and their viruses the correlations are weak or do not exist.
Collapse
Affiliation(s)
- Diego Simón
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.,Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Sirén K, Millard A, Petersen B, Gilbert M, Clokie MRJ, Sicheritz-Pontén T. Rapid discovery of novel prophages using biological feature engineering and machine learning. NAR Genom Bioinform 2021; 3:lqaa109. [PMID: 33575651 PMCID: PMC7787355 DOI: 10.1093/nargab/lqaa109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023] Open
Abstract
Prophages are phages that are integrated into bacterial genomes and which are key to understanding many aspects of bacterial biology. Their extreme diversity means they are challenging to detect using sequence similarity, yet this remains the paradigm and thus many phages remain unidentified. We present a novel, fast and generalizing machine learning method based on feature space to facilitate novel prophage discovery. To validate the approach, we reanalyzed publicly available marine viromes and single-cell genomes using our feature-based approaches and found consistently more phages than were detected using current state-of-the-art tools while being notably faster. This demonstrates that our approach significantly enhances bacteriophage discovery and thus provides a new starting point for exploring new biologies.
Collapse
Affiliation(s)
- Kimmo Sirén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen,1353 Denmark
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen,1353 Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University,08100 Kedah, Malaysia
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen,1353 Denmark
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen,1353 Copenhagen, Denmark
- University Museum, NTNU, 7012 Trondheim, Norway
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen,1353 Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University,08100 Kedah, Malaysia
| |
Collapse
|
9
|
Fu LX, Gong JS, Gao B, Ji DJ, Han XG, Zeng LB. Controlled expression of lysis gene E by a mutant of the promoter pL of the thermo-inducible λcI857-pL system. J Appl Microbiol 2020; 130:2008-2017. [PMID: 32358825 DOI: 10.1111/jam.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
AIMS To identify a lambda promoter pL mutant that could extend the thermal stability of the thermo-inducible λcI857-pR/pL system and to evaluate the effects of the modified system for the controlled expression of lysis gene E during the production of bacterial ghosts (BGs). METHODS AND RESULTS The promoter pL mutant was identified by random mutagenesis and site-directed mutagenesis. The results showed that a T → 35C mutation in the pL promoter was responsible for the phenotype alteration. Under the same induction conditions, the lysis rates of the modified lytic system on Escherichia coli and Salmonella enteritidis were significantly lower than that of the control, while the lysis rates of Escherichia coli with the thermo-inducible lytic system were significantly higher than that of S. enteritidis with the corresponding plasmid (P < 0·05). CONCLUSIONS Increasing the heat stability of the thermo-inducible lytic systems decreased lysis efficiency during the production of BGs. There exist differences in the lysis efficiency of thermo-inducible lytic systems between different bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY These findings enrich current knowledge about modifications to thermo-inducible systems and provide a reference for the application of these modified systems for the production of BGs and controlled gene expression in bacteria.
Collapse
Affiliation(s)
- L X Fu
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - J S Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - B Gao
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - D J Ji
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - X G Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - L B Zeng
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
10
|
Van Leuven JT, Ederer MM, Burleigh K, Scott L, Hughes RA, Codrea V, Ellington AD, Wichman HA, Miller CR. ΦX174 Attenuation by Whole-Genome Codon Deoptimization. Genome Biol Evol 2020; 13:5921183. [PMID: 33045052 PMCID: PMC7881332 DOI: 10.1093/gbe/evaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Collapse
Affiliation(s)
- James T Van Leuven
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | | | - Katelyn Burleigh
- Department of Biological Science, University of Idaho.,Present address: Seattle Children's Research Institute, Seattle, WA
| | - LuAnn Scott
- Department of Biological Science, University of Idaho
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas, Austin.,Present address: Biotechnology Branch, CCDC US Army Research Laboratory, Adelphi, MD
| | - Vlad Codrea
- Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Applied Research Laboratories, University of Texas, Austin.,Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Holly A Wichman
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | - Craig R Miller
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| |
Collapse
|
11
|
Xia X. Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life (Basel) 2020; 10:life10090171. [PMID: 32872619 PMCID: PMC7555918 DOI: 10.3390/life10090171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Recovering deep phylogeny is challenging with animal mitochondrial genes because of their rapid evolution. Codon degeneration decreases the phylogenetic noise and bias by aiming to achieve two objectives: (1) alleviate the bias associated with nucleotide composition, which may lead to homoplasy and long-branch attraction, and (2) reduce differences in the phylogenetic results between nucleotide-based and amino acid (AA)-based analyses. The discrepancy between nucleotide-based analysis and AA-based analysis is partially caused by some synonymous codons that differ more from each other at the nucleotide level than from some nonsynonymous codons, e.g., Leu codon TTR in the standard genetic code is more similar to Phe codon TTY than to synonymous CTN codons. Thus, nucleotide similarity conflicts with AA similarity. There are many such examples involving other codon families in various mitochondrial genetic codes. Proper codon degeneration will make synonymous codons more similar to each other at the nucleotide level than they are to nonsynonymous codons. Here, I illustrate a "principled" codon degeneration method that achieves these objectives. The method was applied to resolving the mammalian basal lineage and phylogenetic position of rheas among ratites. The codon degeneration method was implemented in the user-friendly and freely available DAMBE software for all known genetic codes (genetic codes 1 to 33).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Ge Z, Li X, Cao X, Wang R, Hu W, Gen L, Han S, Shang Y, Liu Y, Zhou JH. Viral adaption of staphylococcal phage: A genome-based analysis of the selective preference based on codon usage Bias. Genomics 2020; 112:4657-4665. [PMID: 32818632 DOI: 10.1016/j.ygeno.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/09/2022]
Abstract
Given the high therapeutic value of the staphylococcal phage, the genome co-evolution of the phage and the host has gained great attention. Though the genome-wide AT richness in staphylococcal phages has been well-studied with nucleotide usage bias, here we proved that host factor, lifestyle and taxonomy are also important factors in understanding the phage nucleotide usages bias using information entropy formula. Such correlation is especially prominent when it comes to the synonymous codon usages of staphylococcal phages, despite the overall scattered codon usage pattern represented by principal component analysis. This strong relationship is explained by nucleotide skew which testified that the usage biases of nucleotide at different codon positions are acting on synonymous codons. Therefore, our study reveals a hidden relationship of genome evolution with host limitation and phagic phenotype, providing new insight into phage genome evolution at genetic level.
Collapse
Affiliation(s)
- Zhiyi Ge
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Wen Hu
- Gansu Police Vocational College, Lanzhou 730046, Gansu, PR China
| | - Ling Gen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China; The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu Province, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| |
Collapse
|
13
|
Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat Ecol Evol 2020; 4:589-600. [PMID: 32123323 DOI: 10.1038/s41559-020-1124-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Eighteen of the 20 amino acids are each encoded by more than one synonymous codon. Due to differential transfer RNA supply within the cell, synonymous codons are not used with equal frequency, a phenomenon termed codon usage bias (CUB). Previous studies have demonstrated that CUB of endogenous genes trans-regulates the translational efficiency of other genes. We hypothesized similar effects for CUB of exogenous genes on host translation, and tested it in the case of viral infection, a common form of naturally occurring exogenous gene translation. We analysed public Ribo-Seq datasets from virus-infected yeast and human cells and showed that virus CUB trans-regulated tRNA availability, and therefore the relative decoding time of codons. Manipulative experiments in yeast using 37 synonymous fluorescent proteins confirmed that an exogenous gene with CUB more similar to that of the host would apply decreased translational load on the host per unit of expression, whereas expression of the exogenous gene was elevated. The combination of these two effects was that exogenous genes with CUB overly similar to that of the host severely impeded host translation. Finally, using a manually curated list of viruses and natural and symptomatic hosts, we found that virus CUB tended to be more similar to that of symptomatic hosts than that of natural hosts, supporting a general deleterious effect of excessive CUB similarity between virus and host. Our work revealed repulsion between virus and host CUBs when they are overly similar, a previously unrecognized complexity in the coevolution of virus and host.
Collapse
|
14
|
An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci Rep 2019; 9:3184. [PMID: 30816249 PMCID: PMC6395768 DOI: 10.1038/s41598-019-39369-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
Collapse
|
15
|
Global In-Silico Scenario of tRNA Genes and Their Organization in Virus Genomes. Viruses 2019; 11:v11020180. [PMID: 30795514 PMCID: PMC6409571 DOI: 10.3390/v11020180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are known to be highly dependent on the host translation machinery for their protein synthesis. However, tRNA genes are occasionally identified in such organisms, and in addition, few of them harbor tRNA gene clusters comprising dozens of genes. Recently, tRNA gene clusters have been shown to occur among the three domains of life. In such a scenario, the viruses could play a role in the dispersion of such structures among these organisms. Thus, in order to reveal the prevalence of tRNA genes as well as tRNA gene clusters in viruses, we performed an unbiased large-scale genome survey. Interestingly, tRNA genes were predicted in ssDNA (single-stranded DNA) and ssRNA (single-stranded RNA) viruses as well in many other dsDNA viruses of families from Caudovirales order. In the latter group, tRNA gene clusters composed of 15 to 37 tRNA genes were characterized, mainly in bacteriophages, enlarging the occurrence of such structures within viruses. These bacteriophages were from hosts that encompass five phyla and 34 genera. This in-silico study presents the current global scenario of tRNA genes and their organization in virus genomes, contributing and opening questions to be explored in further studies concerning the role of the translation apparatus in these organisms.
Collapse
|
16
|
Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis. BMC Genomics 2018; 19:685. [PMID: 30227847 PMCID: PMC6145125 DOI: 10.1186/s12864-018-5056-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background In the present study, we sequenced the complete genomes of three novel bacteriophages v_B-Bak1, v_B-Bak6, v_B-Bak10 previously isolated from historical anthrax burial sites in the South Caucasus country of Georgia. We report here major trends in the molecular evolution of these phages, which we designate as “Basilisk-Like-Phages” (BLPs), and illustrate patterns in their evolution, genomic plasticity and core genome architecture. Results Comparative whole genome sequence analysis revealed a close evolutionary relationship between our phages and two unclassified Bacillus cereus group phages, phage Basilisk, a broad host range phage (Grose JH et al., J Vir. 2014;88(20):11846-11860) and phage PBC4, a highly host-restricted phage and close relative of Basilisk (Na H. et al. FEMS Microbiol. letters. 2016;363(12)). Genome comparisons of phages v_B-Bak1, v_B-Bak6, and v_B-Bak10 revealed significant similarity in sequence, gene content, and synteny with both Basilisk and PBC4. Transmission electron microscopy (TEM) confirmed the three phages belong to the Siphoviridae family. In contrast to the broad host range of phage Basilisk and the single-strain specificity of PBC4, our three phages displayed host specificity for Bacillus anthracis. Bacillus species including Bacillus cereus, Bacillus subtilis, Bacillus anthracoides, and Bacillus megaterium were refractory to infection. Conclusions Data reported here provide further insight into the shared genomic architecture, host range specificity, and molecular evolution of these rare B. cereus group phages. To date, the three phages represent the only known close relatives of the Basilisk and PBC4 phages and their shared genetic attributes and unique host specificity for B. anthracis provides additional insight into candidate host range determinants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5056-4) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
18
|
Kula A, Saelens J, Cox J, Schubert AM, Travisano M, Putonti C. The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host. Sci Rep 2018; 8:8350. [PMID: 29844443 PMCID: PMC5974221 DOI: 10.1038/s41598-018-25914-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/05/2022] Open
Abstract
Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.
Collapse
Affiliation(s)
- Alexander Kula
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Joseph Saelens
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jennifer Cox
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Alyxandria M Schubert
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA. .,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol 2017; 2:17112. [PMID: 28692019 PMCID: PMC5540316 DOI: 10.1038/nmicrobiol.2017.112] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/09/2017] [Indexed: 01/21/2023]
Abstract
Bacteriophages play key roles in microbial evolution1,2, marine nutrient cycling3 and human disease4. Phages are genetically diverse, and their genome architectures are characteristically mosaic, driven by horizontal gene transfer with other phages and host genomes5. As a consequence, phage evolution is complex and their genomes are composed of genes with distinct and varied evolutionary histories6,7. However, there are conflicting perspectives on the roles of mosaicism and the extent to which it generates a spectrum of genome diversity8 or genetically discrete populations9,10. Here, we show that bacteriophages evolve within two general evolutionary modes that differ in the extent of horizontal gene transfer by an order of magnitude. Temperate phages distribute into high and low gene flux modes, whereas lytic phages share only the lower gene flux mode. The evolutionary modes are also a function of the bacterial host and different proportions of temperate and lytic phages are distributed in either mode depending on the host phylum. Groups of genetically related phages fall into either the high or low gene flux modes, suggesting there are genetic as well as ecological drivers of horizontal gene transfer rates. Consequently, genome mosaicism varies depending on the host, lifestyle and genetic constitution of phages.
Collapse
|
20
|
Devi M, Lyngdoh RD. Favored and less favored codon–anticodon duplexes arising from the GC codon family box encoding for alanine: some computational perspectives. J Biomol Struct Dyn 2017; 36:1029-1049. [DOI: 10.1080/07391102.2017.1308886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R.H. Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
21
|
Isolation and Characterization of a Shewanella Phage-Host System from the Gut of the Tunicate, Ciona intestinalis. Viruses 2017; 9:v9030060. [PMID: 28327522 PMCID: PMC5371815 DOI: 10.3390/v9030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023] Open
Abstract
Outnumbering all other biological entities on earth, bacteriophages (phages) play critical roles in structuring microbial communities through bacterial infection and subsequent lysis, as well as through horizontal gene transfer. While numerous studies have examined the effects of phages on free-living bacterial cells, much less is known regarding the role of phage infection in host-associated biofilms, which help to stabilize adherent microbial communities. Here we report the cultivation and characterization of a novel strain of Shewanella fidelis from the gut of the marine tunicate Ciona intestinalis, inducible prophages from the S. fidelis genome, and a strain-specific lytic phage recovered from surrounding seawater. In vitro biofilm assays demonstrated that lytic phage infection affects biofilm formation in a process likely influenced by the accumulation and integration of the extracellular DNA released during cell lysis, similar to the mechanism that has been previously shown for prophage induction.
Collapse
|
22
|
Wei Y, Xia X. The Role of +4U as an Extended Translation Termination Signal in Bacteria. Genetics 2017; 205:539-549. [PMID: 27903612 PMCID: PMC5289835 DOI: 10.1534/genetics.116.193961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022] Open
Abstract
Termination efficiency of stop codons depends on the first 3' flanking (+4) base in bacteria and eukaryotes. In both Escherichia coli and Saccharomyces cerevisiae, termination read-through is reduced in the presence of +4U; however, the molecular mechanism underlying +4U function is poorly understood. Here, we perform comparative genomics analysis on 25 bacterial species (covering Actinobacteria, Bacteriodetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, and Spirochaetae) with bioinformatics approaches to examine the influence of +4U in bacterial translation termination by contrasting highly- and lowly-expressed genes (HEGs and LEGs, respectively). We estimated gene expression using the recently formulated Index of Translation Elongation, ITE, and identified stop codon near-cognate transfer RNAs (tRNAs) from well-annotated genomes. We show that +4U was consistently overrepresented in UAA-ending HEGs relative to LEGs. The result is consistent with the interpretation that +4U enhances termination mainly for UAA. Usage of +4U decreases in GC-rich species where most stop codons are UGA and UAG, with few UAA-ending genes, which is expected if UAA usage in HEGs drives up +4U usage. In HEGs, +4U usage increases significantly with abundance of UAA nc_tRNAs (near-cognate tRNAs that decode codons differing from UAA by a single nucleotide), particularly those with a mismatch at the first stop codon site. UAA is always the preferred stop codon in HEGs, and our results suggest that UAAU is the most efficient translation termination signal in bacteria.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ontario K1H 8M5, Canada
| |
Collapse
|
23
|
Abstract
Bioinformatic analysis can not only accelerate drug target identification and drug candidate screening and refinement, but also facilitate characterization of side effects and predict drug resistance. High-throughput data such as genomic, epigenetic, genome architecture, cistromic, transcriptomic, proteomic, and ribosome profiling data have all made significant contribution to mechanismbased drug discovery and drug repurposing. Accumulation of protein and RNA structures, as well as development of homology modeling and protein structure simulation, coupled with large structure databases of small molecules and metabolites, paved the way for more realistic protein-ligand docking experiments and more informative virtual screening. I present the conceptual framework that drives the collection of these high-throughput data, summarize the utility and potential of mining these data in drug discovery, outline a few inherent limitations in data and software mining these data, point out news ways to refine analysis of these diverse types of data, and highlight commonly used software and databases relevant to drug discovery.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa K1H 8M5, Canada
| |
Collapse
|
24
|
Esposito LA, Gupta S, Streiter F, Prasad A, Dennehy JJ. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias. Microb Genom 2016; 2:e000079. [PMID: 28348827 PMCID: PMC5359403 DOI: 10.1099/mgen.0.000079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Collapse
Affiliation(s)
| | - Swati Gupta
- Biology Department, Queens College, Queens, NY 11367, USA
| | | | - Ashley Prasad
- Biology Department, Queens College, Queens, NY 11367, USA
| | - John J. Dennehy
- Biology Department, Queens College, Queens, NY 11367, USA
- Biology PhD Program, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence John J. Dennehy ()
| |
Collapse
|
25
|
Xia X. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences. Mol Phylogenet Evol 2016; 102:331-43. [PMID: 27377322 DOI: 10.1016/j.ympev.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 11/30/2022]
Abstract
While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
26
|
Wei Y, Wang J, Xia X. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species. Mol Biol Evol 2016; 33:2357-67. [PMID: 27297468 PMCID: PMC4989110 DOI: 10.1093/molbev/msw107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3. This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Juan Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| |
Collapse
|
27
|
Prabhakaran R, Chithambaram S, Xia X. Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles. J Gen Virol 2015; 96:1169-1179. [PMID: 25614589 PMCID: PMC4631060 DOI: 10.1099/vir.0.000050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/11/2015] [Indexed: 12/19/2022] Open
Abstract
Rapid biosynthesis is key to the success of bacteria and viruses. Highly expressed genes in bacteria exhibit a strong codon bias corresponding to the differential availability of tRNAs. However, a large clade of lambdoid coliphages exhibits relatively poor codon adaptation to the host translation machinery, in contrast to other coliphages that exhibit strong codon adaptation to the host. Three possible explanations were previously proposed but dismissed: (1) the phage-borne tRNA genes that reduce the dependence of phage translation on host tRNAs, (2) lack of time needed for evolving codon adaptation due to recent host switching, and (3) strong strand asymmetry with biased mutation disrupting codon adaptation. Here, we examined the possibility that phages with relatively poor codon adaptation have poor translation initiation which would weaken the selection on codon adaptation. We measured translation initiation by: (1) the strength and position of the Shine-Dalgarno (SD) sequence, and (2) the stability of the secondary structure of sequences flanking the SD and start codon known to affect accessibility of the SD sequence and start codon. Phage genes with strong codon adaptation had significantly stronger SD sequences than those with poor codon adaptation. The former also had significantly weaker secondary structure in sequences flanking the SD sequence and start codon than the latter. Thus, lambdoid phages do not exhibit strong codon adaptation because they have relatively inefficient translation initiation and would benefit little from increased elongation efficiency. We also provided evidence suggesting that phage lifestyle (virulent versus temperate) affected selection intensity on the efficiency of translation initiation and elongation.
Collapse
Affiliation(s)
- Ramanandan Prabhakaran
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
| | - Shivapriya Chithambaram
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
| | - Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
- Correspondence Xuhua Xia
| |
Collapse
|
28
|
Abstract
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.
Collapse
|