1
|
Arnold CJ, (Meyers) Hahn EA, Whetten R, Chartrain L, Cheema J, Brown JKM, Cowger C. Multiple routes to fungicide resistance: Interaction of Cyp51 gene sequences, copy number and expression. MOLECULAR PLANT PATHOLOGY 2024; 25:e13498. [PMID: 39305021 PMCID: PMC11415427 DOI: 10.1111/mpp.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 10/01/2024]
Abstract
We examined the molecular basis of triazole resistance in Blumeria graminis f. sp. tritici (wheat mildew, Bgt), a model organism among powdery mildews. Four genetic models for responses to triazole fungicides were identified among US and UK isolates, involving multiple genetic mechanisms. Firstly, only two amino acid substitutions in CYP51B lanosterol demethylase, the target of triazoles, were associated with resistance, Y136F and S509T (homologous to Y137F and S524T in the reference fungus Zymoseptoria tritici). As sequence variation did not explain the wide range of resistance, we also investigated Cyp51B copy number and expression, the latter using both reverse transcription-quantitative PCR and RNA-seq. The second model for resistance involved higher copy number and expression in isolates with a resistance allele; thirdly, however, moderate resistance was associated with higher copy number of wild-type Cyp51B in some US isolates. A fourth mechanism was heteroallelism with multiple alleles of Cyp51B. UK isolates, with significantly higher mean resistance than their US counterparts, had higher mean copy number, a high frequency of the S509T substitution, which was absent from the United States, and in the most resistant isolates, heteroallelism involving both sensitivity residues Y136+S509 and resistance residues F136+T509. Some US isolates were heteroallelic for Y136+S509 and F136+S509, but this was not associated with higher resistance. The obligate biotrophy of Bgt may constrain the tertiary structure and thus the sequence of CYP51B, so other variation that increases resistance may have a selective advantage. We describe a process by which heteroallelism may be adaptive when Bgt is intermittently exposed to triazoles.
Collapse
Affiliation(s)
- Corinne J. Arnold
- John Innes Centre, Norwich Research ParkNorwichUK
- Present address:
Camena Bioscience, Chesterford Research ParkCambridgeUK
| | - Emily A. (Meyers) Hahn
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Present address:
Wisconsin Crop Innovation CenterUniversity of Wisconsin8520 University GreenMiddletonWisconsinUSA
| | - Rebecca Whetten
- United States Department of Agriculture‐Agricultural Research Service, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | | | - Christina Cowger
- United States Department of Agriculture‐Agricultural Research Service, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
2
|
Ghorbel D, Amouri I, Khemekhem N, Neji S, Trabelsi H, Elloumi M, Sellami H, Makni F, Ayadi A, Hadrich I. Investigation of Azole Resistance Involving cyp51A and cyp51B Genes in Clinical Aspergillus flavus Isolates. Pol J Microbiol 2024; 73:131-142. [PMID: 38700908 PMCID: PMC11192525 DOI: 10.33073/pjm-2024-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/03/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.
Collapse
Affiliation(s)
- Dhoha Ghorbel
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Amouri
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemekhem
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Houaida Trabelsi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Haematology Department, UH Hedi Chaker, Sfax, Tunisia
| | - Hayet Sellami
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
- Faculty of Science, University of Gabes, Gabes, Tunisia
| |
Collapse
|
3
|
Hargrove T, Lamb DC, Wawrzak Z, Hull M, Kelly SL, Guengerich FP, Lepesheva GI. Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target. J Med Chem 2024; 67:7443-7457. [PMID: 38683753 PMCID: PMC11089504 DOI: 10.1021/acs.jmedchem.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 μM), VT1598 (0.25 μM), and VT1161 (0.20 μM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.
Collapse
Affiliation(s)
- Tatiana
Y. Hargrove
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David C. Lamb
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Zdzislaw Wawrzak
- Synchrotron
Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Marcus Hull
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Steven L. Kelly
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - F. Peter Guengerich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
6
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
7
|
Achilonu CC, Gryzenhout M, Ghosh S, Marais GJ. In Vitro Evaluation of Azoxystrobin, Boscalid, Fentin-Hydroxide, Propiconazole, Pyraclostrobin Fungicides against Alternaria alternata Pathogen Isolated from Carya illinoinensis in South Africa. Microorganisms 2023; 11:1691. [PMID: 37512864 PMCID: PMC10384428 DOI: 10.3390/microorganisms11071691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Black spot disease or Alternaria black spot (ABS) of pecan (Carya illinoinensis) in South Africa is caused by Alternaria alternata. This fungal pathogen impedes the development of pecan trees and leads to low yield in pecan nut production. The present study investigated the in vitro effect of six fungicides against the mycelial growth of A. alternata isolates from ABS symptoms. Fungicides tested include Tilt (propiconazole), Ortiva (azoxystrobin), AgTin (fentin hydroxide), and Bellis (boscalid + pyraclostrobin). All fungicides were applied in 3 concentrations (0.2, 1, and 5 μg mL-1). Tilt and Bumper 250 EC containing propiconazole active ingredient (demethylation Inhibitors) were the most effective and inhibited all mycelial growth from up to 6 days post-incubation. The other active ingredients (succinate dehydrogenase inhibitors, organotin compounds, and quinone outside inhibitors) showed 75-85% mycelial growth inhibition. The effective concentration to inhibit mycelial growth by 50% (EC50) was estimated for each isolate and fungicide. The overall mean EC50 values for each fungicide on the six isolates were 1.90 μg mL-1 (Tilt), 1.86 μg mL-1 (Ortiva), 1.53 μg mL-1 (AgTin), and 1.57 μg mL-1 for (Bellis). This initial screening suggested that propiconazole fungicide was the most effective for future field trials test and how these fungicides could be used in controlling ABS disease.
Collapse
Affiliation(s)
- Conrad Chibunna Achilonu
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| | - Gert Johannes Marais
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, Free State, South Africa
| |
Collapse
|
8
|
Induced expression of Ganoderma boninense Lanosterol 14α-Demethylase (ERG11) during interaction with oil palm. Mol Biol Rep 2023; 50:2367-2379. [PMID: 36580194 DOI: 10.1007/s11033-022-08131-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today. METHODS AND RESULTS This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm. CONCLUSION This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.
Collapse
|
9
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
10
|
Ni T, Xie F, Hao Y, Li L, Zhu S, Wu H, Chi X, Yan L, Jiang Y, Zhang D. Discovery of Novel Orally Bioavailable Triazoles with Potent and Broad-Spectrum Antifungal Activity In Vitro and In Vivo. J Med Chem 2022; 65:16665-16678. [PMID: 36512715 DOI: 10.1021/acs.jmedchem.2c01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our continuing efforts to discover novel triazoles with improved antifungal activity in vitro and in vivo, a series of 41 novel compounds containing 1,2,3-triazole side chains were designed and synthesized via a click reaction based on our previous work. Most of the compounds showed moderate to excellent broad-spectrum antifungal activity in vitro. Among them, the most promising compound 9A16 displayed excellent antifungal and anti-drug-resistant fungal ability (MIC80 = 0.0156-8 μg/mL). In addition, compound 9A16 showed powerful in vivo efficacy on mice systematically infected with Candida albicans SC5314, Cryptococcus neoformans H99, fluconazole-resistant C. albicans 100, and Aspergillus fumigatus 7544. Moreover, compared to fluconazole, compound 9A16 showed better in vitro anti-biofilm activity and was more difficult to induce drug resistance in a 1 month induction of resistance assay in C. albicans. With favorable pharmacokinetics, an acceptable safety profile, and high potency in vitro and in vivo, compound 9A16 is currently under preclinical investigation.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.,School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaochen Chi
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.,School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
11
|
Celia-Sanchez BN, Mangum B, Brewer M, Momany M. Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 (BETHESDA, MD.) 2022; 12:jkac249. [PMID: 36130263 PMCID: PMC9635630 DOI: 10.1093/g3journal/jkac249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Azole drugs target fungal sterol biosynthesis and are used to treat millions of human fungal infections each year. Resistance to azole drugs has emerged in multiple fungal pathogens including Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and Aspergillus fumigatus. The most well-studied resistance mechanism in A. fumigatus arises from missense mutations in the coding sequence combined with a tandem repeat in the promoter of cyp51A, which encodes a cytochrome P450 enzyme in the fungal sterol biosynthesis pathway. Filamentous members of Ascomycota such as A. fumigatus have either 1 or 2 of 3 Cyp51 paralogs (Cyp51A, Cyp51B, and Cyp51C). Most previous research in A. fumigatus has focused on Cyp51A due to its role in azole resistance. We used the A. fumigatus Cyp51A protein sequence as the query in database searches to identify Cyp51 proteins across fungi. We found 435 Cyp51 proteins in 295 species spanning from early-diverging fungi (Blastocladiomycota, Chytridiomycota, Zoopagomycota, and Mucormycota) to late-diverging fungi (Ascomycota and Basidiomycota). We found these sequences formed 4 major Cyp51 groups: Cyp51, Cyp51A, Cyp51B, and Cyp51C. Surprisingly, we found all filamentous Ascomycota had a Cyp51B paralog, while only 50% had a Cyp51A paralog. We created maximum likelihood trees to investigate the evolution of Cyp51 in fungi. Our results suggest Cyp51 is present in all fungi with 3 paralogs emerging in Pezizomycotina, including Cyp51C which appears to have diverged from the progenitor of the Cyp51A and Cyp51B groups.
Collapse
Affiliation(s)
| | - Brandon Mangum
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| | - Marin Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA 30606, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
12
|
Amin Attas MK, Naqvi S, Kumar V, Al-Abbasi FA, Alhayyani S, Anwar F. Emergence of Candida auris - A Human Isolate with Atorvastatin as a Growth Promoter. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1079.1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Stalder L, Oggenfuss U, Mohd‐Assaad N, Croll D. The population genetics of adaptation through copy‐number variation in a fungal plant pathogen. Mol Ecol 2022; 32:2443-2460. [PMID: 35313056 DOI: 10.1111/mec.16435] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
Microbial pathogens can adapt rapidly to changing environments such as the application of pesticides or host resistance. Copy number variations (CNVs) are a major source of adaptive genetic variation for recent adaptation. Here, we analyse how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to the host environment and fungicide applications. We screen the genomes of 125 isolates sampled across a worldwide set of populations and identify a total of 7,879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. Although CNVs are generally under negative selection, we find that genes affected by CNVs are enriched in functions related to host exploitation (i.e., effectors and cell-wall-degrading enzymes). We perform genome-wide association studies (GWAS) and identify a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance and a duplication encompassing an effector gene affecting virulence. We show that the adaptive CNVs were probably created by recently active transposable element families. Moreover, we find that specific transposable element families are important drivers of recent gene CNV. Finally, we use a genome-wide single nucleotide polymorphism data set to replicate the GWAS and contrast it with the CNV-focused analysis. Together, our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.
Collapse
Affiliation(s)
- Luzia Stalder
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| | - Norfarhan Mohd‐Assaad
- Plant Pathology Institute of Integrative Biology ETH, Zurich 8092 Zurich Switzerland
- Department of Applied Physics Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 Bangi Selangor Malaysia
| | - Daniel Croll
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| |
Collapse
|
14
|
Heckel DG. Perspectives on gene copy number variation and pesticide resistance. PEST MANAGEMENT SCIENCE 2022; 78:12-18. [PMID: 34480789 DOI: 10.1002/ps.6631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Although the generation of evolutionary diversity by gene duplication has long been known, the implications for pesticide resistance are just now beginning to be appreciated. A few examples will be cited to illustrate the point that there are many variations on the theme that gene duplication does not follow a set pattern. Transposable elements may facilitate the process but the mechanistic details are obscure and unpredictable. New developments in DNA sequencing technology and genome assembly promise to reveal more examples, yet care must be taken in interpreting the results of transcriptome and genome assemblies and independent means of validation are important. Once a specific gene family is identified, special methods generally must be used to avoid underestimating population polymorphisms and being trapped in preconceptions about the simplicity of the process. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
Burmester A, Hipler UC, Elsner P, Wiegand C. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses 2021; 65:97-102. [PMID: 34767653 DOI: 10.1111/myc.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The T indotineae population shows a high amount of terbinafine resistant isolates based on different point mutations of squalene epoxidase erg1 (ergosterol) gene. A significant proportion of these isolates also show azole resistance. OBJECTIVES Elucidation of the molecular mechanism for azole resistance, especially the identification of mutations in the sterol 14-α demethylase Erg11 genes, which encode for enzymes interacting with azoles. METHODS Sequencing of putative Erg11 genes and analysis of phenotypic resistance pattern using a microplate-laser-nephelometry-based growth assay. RESULTS Four different types of Erg11B mutants were detected; two double mutants with Ala230Thr/Asp441Gly, respectively, Ala230/Tyr444His and single mutants with Gly443Glu, Tyr444Cys and Tyr444His. All isolates featured the wild type genotype of Erg11A. All strains demonstrated different combinations of Erg1 and Erg11 genotypes. CONCLUSION Resistance against terbinafine and azoles developed several times independently within the T indotineae population. The challenge for fungal treatment is, therefore, that species identification is not enough for prediction of therapeutic efficacy of antifungals. In the future, it will also become important to analyse genes involved in resistance mechanisms.
Collapse
Affiliation(s)
- Anke Burmester
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | - Peter Elsner
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Jena, Germany
| |
Collapse
|
16
|
Stravoravdis S, Marra RE, LeBlanc NR, Crouch JA, Hulvey JP. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. Int J Mol Sci 2021; 22:ijms22179255. [PMID: 34502161 PMCID: PMC8430531 DOI: 10.3390/ijms22179255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to reduced azole sensitivity when compared to Cps. RNA-Seq and bioinformatic analyses found that following azole treatment, 55 genes in Cps, belonging to diverse pathways, displayed a significant decrease in expression. Putative xenobiotic detoxification genes overexpressed in tetraconazole-treated Che encoded predicted monooxygenase and oxidoreductase enzymes. In summary, expression of a functional CYP51A gene and overexpression of predicted xenobiotic detoxification genes appear likely to contribute to differential fungicide sensitivity in these two sister taxa.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA;
| | - Nicholas R. LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
| | - Jonathan P. Hulvey
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
- Correspondence:
| |
Collapse
|
17
|
Hu M, Chen S. Non-Target Site Mechanisms of Fungicide Resistance in Crop Pathogens: A Review. Microorganisms 2021; 9:microorganisms9030502. [PMID: 33673517 PMCID: PMC7997439 DOI: 10.3390/microorganisms9030502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
The rapid emergence of resistance in plant pathogens to the limited number of chemical classes of fungicides challenges sustainability and profitability of crop production worldwide. Understanding mechanisms underlying fungicide resistance facilitates monitoring of resistant populations at large-scale, and can guide and accelerate the development of novel fungicides. A majority of modern fungicides act to disrupt a biochemical function via binding a specific target protein in the pathway. While target-site based mechanisms such as alternation and overexpression of target genes have been commonly found to confer resistance across many fungal species, it is not uncommon to encounter resistant phenotypes without altered or overexpressed target sites. However, such non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal genome network. This type of resistance can oftentimes be transient and noninheritable, further hindering research efforts. In this review, we focused on crop pathogens and summarized reported mechanisms of resistance that are otherwise related to target-sites, including increased activity of efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition, novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the context of nontarget-directed resistance.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (M.H.); (S.C.)
| | - Shuning Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (M.H.); (S.C.)
| |
Collapse
|
18
|
Characterization of Aspergillus fumigatus cross-resistance between clinical and DMI azole drugs. Appl Environ Microbiol 2021; 87:AEM.02539-20. [PMID: 33355104 PMCID: PMC8090891 DOI: 10.1128/aem.02539-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug resistance poses a serious threat to human health and agricultural production. Azole drugs are the largest group of 14-α sterol demethylation inhibitor fungicides that are used both in agriculture and in clinical practice. As plant pathogenic molds share their natural environment with fungi that cause opportunistic infections in humans, both are exposed to a strong and persistent pressure of demethylase inhibitor (DMI) fungicides, including imidazole and triazole drugs. As a result, a loss of efficacy has occurred for this drug class in several species. In the clinical setting, Aspergillus fumigatus azole resistance is a growing public health problem and finding the source of this resistance has gained much attention. It is urgent to determine if there is a direct link between the agricultural use of azole compounds and the different A. fumigatus resistance mechanisms described for clinical triazoles. In this work we have performed A. fumigatus susceptibility testing to clinical triazoles and crop protection DMIs using a collection of azole susceptible and resistant strains which harbor most of the described azole resistance mechanisms. Various DMI susceptibility profiles have been found in the different A. fumigatus populations groups based on their azole resistance mechanism and previous WGS analysis, which suggests that the different resistance mechanisms have different origins and are specifically associated to the local use of a particular DMI.Importance Due to the worldwide emergence of A. fumigatus azole resistance, this opportunistic pathogen poses a serious health threat and, therefore, it has been included in the Watch List of the CDC 2019 Antimicrobial Resistance Threats Report. Azoles play a critical role in the control and management of fungal diseases, not only in the clinical setting but also in agriculture. Thus, azole resistance leads to a limited therapeutic arsenal which reduces the treatment options for aspergillosis patients, increasing their mortality risk. Evidence is needed to understand whether A. fumigatus azole resistance is emerging from an agricultural source due to the extended use of demethylase inhibitors as fungicides, or whether it is coming from somewhere else such as the clinical setting. If the environmental route is demonstrated, the current use and management of azole antifungal compounds might be forced to change in the forthcoming years.
Collapse
|
19
|
Current Scenario and Integrated Approaches for Management of Finger Millet Blast (Magnaporthe grisea). Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Mair WJ, Thomas GJ, Dodhia K, Hills AL, Jayasena KW, Ellwood SR, Oliver RP, Lopez-Ruiz FJ. Parallel evolution of multiple mechanisms for demethylase inhibitor fungicide resistance in the barley pathogen Pyrenophora teres f. sp. maculata. Fungal Genet Biol 2020; 145:103475. [DOI: 10.1016/j.fgb.2020.103475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
|
21
|
Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R, Alcazar-Fuoli L, Mellado E. A Cyp51B Mutation Contributes to Azole Resistance in Aspergillus fumigatus. J Fungi (Basel) 2020; 6:jof6040315. [PMID: 33255951 PMCID: PMC7712412 DOI: 10.3390/jof6040315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence and spread of Aspergillus fumigatus azole resistance has been acknowledged worldwide. The main problem of azole resistance is the limited therapeutic options for patients suffering aspergillosis. Azole resistance mechanisms have been mostly linked to the enzyme Cyp51A, a target of azole drugs, with a wide variety of modifications responsible for the different resistance mechanisms described to date. However, there are increasing reports of A. fumigatus strains showing azole resistance without Cyp51A modifications, and thus, novel resistance mechanisms are being explored. Here, we characterized two isogenic A. fumigatus clinical strains isolated two years apart from the same patient. Both strains were resistant to clinical azoles but showed different azole resistance mechanisms. One strain (CM8940) harbored a previously described G54A mutation in Cyp51A while the other strain (CM9640) had a novel G457S mutation in Cyp51B, the other target of azoles. In addition, this second strain had a F390L mutation in Hmg1. CM9640 showed higher levels of gene expression of cyp51A, cyp51B and hmg1 than the CM8940 strain. The role of the novel mutation found in Cyp51B together with the contribution of a mutation in Hmg1 in azole resistance is discussed.
Collapse
Affiliation(s)
- Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK;
| | - Isabel Cuesta
- Bioinformatics Unit, Common Scientific Technical Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain;
| | | | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain
- Correspondence:
| |
Collapse
|
22
|
Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O, Alastruey-Izquierdo A, Pelaez T, Alcazar-Fuoli L, Mellado E. Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes (Basel) 2020; 11:genes11101217. [PMID: 33080784 PMCID: PMC7602989 DOI: 10.3390/genes11101217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by Aspergillus species are being increasingly reported. Aspergillus flavus is the second most common species within this genus causing invasive infections in humans, and isolates showing azole resistance have been recently described. A. flavus has three cyp51-related genes (cyp51A, cyp51B, and cyp51C) encoding 14-α sterol demethylase-like enzymes which are the target of azole drugs. In order to study triazole drug resistance in A. flavus, three strains showing reduced azole susceptibility and 17 azole susceptible isolates were compared. The three cyp51-related genes were amplified and sequenced. A comparison of the deduced Cyp51A, Cyp51B, and Cyp51C protein sequences with other protein sequences from orthologous genes in different filamentous fungi led to a protein identity that ranged from 50% to 80%. Cyp51A and Cyp51C presented several synonymous and non-synonymous point mutations among both susceptible and non-susceptible strains. However, two amino acid mutations were present only in two resistant isolates: one strain harbored a P214L substitution in Cyp51A, and another a H349R in Cyp51C that also showed an increase of cyp51A and cyp51C gene expression compared to the susceptible strain ATCC2004304. Isolates that showed reduced in vitro susceptibility to clinical azoles exhibited a different susceptibility profile to demethylation inhibitors (DMIs). Although P214L substitution might contribute to azole resistance, the role of H349R substitution together with changes in gene expression remains unclear.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Teresa Pelaez
- Hospital Universitario Central de Asturias, Fundación para la Investigación Biosanitaria del Principado de Asturias (FINBA), Oviedo, 33011 Asturias, Spain;
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
- Correspondence:
| |
Collapse
|
23
|
Zhang X, Ovenden B, Milgate A. Recent insights into barley and Rhynchosporium commune interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1111-1128. [PMID: 32537933 PMCID: PMC7368125 DOI: 10.1111/mpp.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Rhynchosporium commune is the causal pathogen of scald in barley (Hordeum vulgare), a foliar disease that can reduce yield by up to 40% in susceptible cultivars. R. commune is found worldwide in all temperate growing regions and is regarded as one of the most economically important barley pathogens. It is a polycyclic pathogen with the ability to rapidly evolve new virulent strains in response to resistance genes deployed in commercial cultivars. Hence, introgression and pyramiding of different loci for resistance (qualitative or quantitative) through marker-assisted selection is an effective way to improve scald resistance in barley. This review summarizes all 148 resistance quantitative trait loci reported at the date of submission of this review and projects them onto the barley physical map, where it is clear many loci co-locate on chromosomes 3H and 7H. We have summarized the major named resistance loci and reiterated the renaming of Rrs15 (CI8288) to Rrs17. This review provides a comprehensive resource for future discovery and breeding efforts of qualitative and quantitative scald resistance loci.
Collapse
Affiliation(s)
- Xuechen Zhang
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Ben Ovenden
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| |
Collapse
|
24
|
Dos Santos RAC, Steenwyk JL, Rivero-Menendez O, Mead ME, Silva LP, Bastos RW, Alastruey-Izquierdo A, Goldman GH, Rokas A. Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front Genet 2020; 11:459. [PMID: 32477406 PMCID: PMC7236307 DOI: 10.3389/fgene.2020.00459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal pathogens are a global threat to human health. For example, fungi from the genus Aspergillus cause a spectrum of diseases collectively known as aspergillosis. Most of the >200,000 life-threatening aspergillosis infections per year worldwide are caused by Aspergillus fumigatus. Recently, molecular typing techniques have revealed that aspergillosis can also be caused by organisms that are phenotypically similar to A. fumigatus but genetically distinct, such as Aspergillus lentulus and Aspergillus fumigatiaffinis. Importantly, some of these so-called cryptic species are thought to exhibit different virulence and drug susceptibility profiles than A. fumigatus, however, our understanding of their biology and pathogenic potential has been stymied by the lack of genome sequences and phenotypic profiling of multiple clinical strains. To fill this gap, we phenotypically characterized the virulence and drug susceptibility of 15 clinical strains of A. fumigatus, A. lentulus, and A. fumigatiaffinis from Spain and sequenced their genomes. We found heterogeneity in drug susceptibility across species and strains. We further found heterogeneity in virulence within each species but no significant differences in the virulence profiles between the three species. Genes known to influence drug susceptibility (cyp51A and fks1) vary in paralog number and sequence among these species and strains and correlate with differences in drug susceptibility. Similarly, genes known to be important for virulence in A. fumigatus showed variability in number of paralogs across strains and across species. Characterization of the genomic similarities and differences of clinical strains of A. lentulus, A. fumigatiaffinis, and A. fumigatus that vary in disease-relevant traits will advance our understanding of the variance in pathogenicity between Aspergillus species and strains that are collectively responsible for the vast majority of aspergillosis infections in humans.
Collapse
Affiliation(s)
- Renato A C Dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Lilian P Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael W Bastos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020; 9:pathogens9050340. [PMID: 32369942 PMCID: PMC7281180 DOI: 10.3390/pathogens9050340] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
There is an urgency to supplant the heavy reliance on chemical control of Fusarium diseases in different economically important, staple food crops due to development of resistance in the pathogen population, the high cost of production to the risk-averse grower, and the concomitant environmental impacts. Pathogenomics has enabled (i) the creation of genetic inventories which identify those putative genes, regulators, and effectors that are associated with virulence, pathogenicity, and primary and secondary metabolism; (ii) comparison of such genes among related pathogens; (iii) identification of potential genetic targets for chemical control; and (iv) better characterization of the complex dynamics of host–microbe interactions that lead to disease. This type of genomic data serves to inform host-induced gene silencing (HIGS) technology for targeted disruption of transcription of select genes for the control of Fusarium diseases. This review discusses the various repositories and browser access points for comparison of genomic data, the strategies for identification and selection of pathogenicity- and virulence-associated genes and effectors in different Fusarium species, HIGS and successful Fusarium disease control trials with a consideration of loss of RNAi, off-target effects, and future challenges in applying HIGS for management of Fusarium diseases.
Collapse
|
26
|
Li Y, Tsuji SS, Hu M, Câmara MPS, Michereff SJ, Schnabel G, Chen F. Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil. PEST MANAGEMENT SCIENCE 2020; 76:1344-1352. [PMID: 31605502 DOI: 10.1002/ps.5645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Stem-end rot caused by Lasiodiplodia theobromae is one of the most important diseases of papaya in northeastern Brazil. It can be controlled effectively by demethylation inhibitor (DMI) fungicides, but the occurrence of DMI resistance may decrease fungicide efficacy. RESULTS Detached fruit studies revealed that isolates with EC50 values of 6.07 and 6.28 μg mL-1 were not controlled effectively, but reduced virulence and ability to grow at temperatures ranging from 12 to 32 °C suggesting fitness penalties were observed. Cross-resistance was observed only between difenoconazole and propiconazole. The entire cytochrome P450 sterol 14α-demethylase (LtCYP51) gene and its flanking regions were cloned. The gene was 1746 bp in length and contained three introns. The predicted protein contained 525 amino acids. Phylogenetic tree analysis showed that the LtCYP51 belongs to the CYP51B clade. No amino acid variation was found between sensitive and resistant isolates; however, the gene was constitutively more highly expressed in resistant isolates. CONCLUSION Resistance to DMI fungicides in L. theobromae is based on LtCYP51 gene overexpression and fitness penalties may be present in difenoconazole-resistant isolates. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Li
- Department of Plant Pathology, Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Susan Satie Tsuji
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | | | - Sami Jorge Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Guido Schnabel
- Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Fengping Chen
- Department of Plant Pathology, Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Three-Locus Sequence Identification and Differential Tebuconazole Sensitivity Suggest Novel Fusarium equiseti Haplotype from Trinidad. Pathogens 2020; 9:pathogens9030175. [PMID: 32121520 PMCID: PMC7157627 DOI: 10.3390/pathogens9030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) consists of 33 phylogenetic species according to multi-locus sequence typing (MLST) and Genealogical Concordance Phylogenetic Species Recognition (GCPSR). A multi-locus dataset consisting of nucleotide sequences of the translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1), and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish among phylogenetic species within the FIESC isolates infecting bell pepper in Trinidad. Three phylogenetic species belonged to the Incarnatum clade (FIESC-15, FIESC-16, and FIESC-26), and one species belonged to the Equiseti clade (FIESC-14). Specific MLST types were sensitive to 10 µg/mL of tebuconazole fungicide as a discriminatory dose. The EC50 values were significantly different among the four MLST groups, which were separated into two homogeneous groups: FIESC-26a and FIESC-14a, demonstrating the “sensitive” azole phenotype and FIESC-15a and FIESC-16a as the “less sensitive” azole phenotype. CYP51C sequences of the Trinidad isolates, although under positive selection, were without any signatures of recombination, were highly conserved, and were not correlated with these azole phenotypes. CYP51C sequences were unable to resolve the FIESC isolates as phylogenetic inference indicated polytomic branching for these sequences. This data is important to different research communities, including those studying Fusarium phytopathology, mycotoxins, and public health impacts.
Collapse
|
28
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
29
|
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich RA, Kema GHJ, Bieri S, Sierotzki H, Torriani SFF, Scalliet G. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog 2019; 15:e1007780. [PMID: 31860693 PMCID: PMC6941823 DOI: 10.1371/journal.ppat.1007780] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 01/03/2020] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20–30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery. Zymoseptoria tritici is the causal agent of Septoria tritici leaf blotch (STB) of wheat, the most devastating disease for cereal production in Europe. Multiple succinate dehydrogenase inhibitor (SDHI) fungicides have been developed and introduced for the control of STB. We report the discovery and detailed characterization of a paralog of the C subunit of the SDH enzyme conferring standing resistance towards the SHA-SDHIs, a particular chemical subclass of the SDHIs. The SDHC paralog is characterized by its presence/absence, expression and alternative splicing polymorphisms, which in turn influence resistance levels. The identified mechanisms exemplify the importance of population genomics for the discovery and rational design of the most adapted solutions.
Collapse
Affiliation(s)
| | - Marie Salat
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Regula Frey
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Rasmus Hansen
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Stephanie Widdison
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Grace Logan
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Robert A. Dietrich
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
30
|
Stravoravdis S, LeBlanc NR, Marra RE, Crouch JA, Hulvey JP. Widespread Occurrence of a CYP51A Pseudogene in Calonectria pseudonaviculata. MYCOBIOLOGY 2019; 48:44-50. [PMID: 32158605 PMCID: PMC7048176 DOI: 10.1080/12298093.2019.1689600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Calonectria pseudonaviculata and C. henricotiae are two closely related fungal species responsible for boxwood blight disease of ornamental shrubs (Buxus spp.) in the U.S. and Europe. A previous study has shown isolates of the latter species, which is restricted to Europe, to be less sensitive to tetraconazole, an azole fungicide. In this study, we have analyzed the CYP51 paralogs for polymorphism in 26 genomes, representing geographically disparate populations of C. pseudonaviculata (n = 19) and C. henricotiae (n = 7), from the U.S., Europe, Asia, and New Zealand. The presence of a CYP51A pseudogene and lack of a functional CYP51A paralog in all C. pseudonaviculata genomes examined is a novel discovery for fungi and could have implications for the evolution of resistance to antifungal chemicals.
Collapse
Affiliation(s)
| | - Nicholas R. LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN, USA
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Jonathan P. Hulvey
- Biology Department, Eastern Connecticut State University, Willimantic, CT, USA
| |
Collapse
|
31
|
New Insights into the Cyp51 Contribution to Azole Resistance in Aspergillus Section Nigri. Antimicrob Agents Chemother 2019; 63:AAC.00543-19. [PMID: 31061160 DOI: 10.1128/aac.00543-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) is a severe condition mainly caused by Aspergillus fumigatus, although other species of the genus, such as section Nigri members, can also be involved. Voriconazole (VRC) is the recommended treatment for IA; however, the prevalence of azole-resistant Aspergillus isolates has alarmingly increased in recent years, and the underlying resistance mechanisms in non-fumigatus species remain unclear. We have determined the in vitro susceptibility of 36 strains from section Nigri to VRC, posaconazole (POS), and itraconazole (ITC), and we have explored the role of Cyp51A and Cyp51B, both targets of azoles, in azole resistance. The three drugs were highly active; POS displayed the best in vitro activity, while ITC and VRC showed MICs above the established epidemiological cutoff values in 9 and 16% of the strains, respectively. Furthermore, expression studies of cyp51A and cyp51B in control condition and after VRC exposure were performed in 14 strains with different VRC susceptibility. We found higher transcription of cyp51A, which was upregulated upon VRC exposure, but no correlation between MICs and cyp51 transcription levels was observed. In addition, cyp51A sequence analyses revealed nonsynonymous mutations present in both, wild-type and non-wild-type strains of A. niger and A. tubingensis Nevertheless, a few mutations were exclusively present in non-wild-type A. tubingensis strains. Altogether, our results suggest that azole resistance in section Nigri is not clearly explained by Cyp51A protein alteration or by cyp51 gene upregulation, which indicates that other mechanisms might be involved.
Collapse
|
32
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
33
|
Zheng B, Yan L, Liang W, Yang Q. Paralogous Cyp51s mediate the differential sensitivity of Fusarium oxysporum to sterol demethylation inhibitors. PEST MANAGEMENT SCIENCE 2019; 75:396-404. [PMID: 29931739 DOI: 10.1002/ps.5127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND As a soilborne fungus, Fusarium oxysporum can cause vascular wilt in numerous economically important crops. Application of antifungal drugs is the primary method for the control of F. oxysporum. Cyp51, a key enzyme of sterol biosynthesis is the main target of sterol demethylation inhibitors. RESULTS The F. oxysporum genome contains three paralogous CYP51 genes (named FoCYP51A, FoCYP51B and FoCYP51C) that putatively encode sterol 14α-demethylase enzymes. Each of the three genes was able to partially complement the Saccharomyces cerevisiae ERG11 mutant. Growth assays demonstrated that deletion mutants of FoCYP51B, but not FoCYP51A and FoCYP51C were significantly retarded in hyphal growth. Deletion of FoCYP51A (ΔFoCyp51A and ΔFoCyp51AC) led to increased sensitivity to 11 sterol demethylation inhibitors (DMIs). Interestingly, FoCYP51B deletion mutants (ΔFoCyp51B and ΔFoCyp51BC) exhibited significantly increased sensitivity to only four DMIs (two of which are in common with the 11 DMIs mentioned earlier). Deletion of FoCYP51C did not change DMI sensitivity of F. oxysporum. None of the three FoCYP51s are involved in F. oxysporum virulence. The sensitivity of F. oxysporum isolates increased significantly when subjected to a mixture of different subgroups of DMIs classified based on the different sensitivities of FoCYP51 mutants to DMIs compared to the individual components. CONCLUSIONS FoCYP51A and FoCYP51B are responsible for sensitivity to different azoles. These findings have direct implications for fungicide application strategies of plant and human diseases caused by F. oxysporum. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bangxian Zheng
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Department of Plant Pathology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Institute of Vegetables, Ningbo, P. R. China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Department of Plant Pathology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Department of Plant Pathology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
34
|
Zhang J, Li L, Lv Q, Yan L, Wang Y, Jiang Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front Microbiol 2019; 10:691. [PMID: 31068906 PMCID: PMC6491756 DOI: 10.3389/fmicb.2019.00691] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific sterol. It is also the target of azole drugs in clinical practice. In recent years, researches on fungal CYP51 have stepped into a new stage attributing to the discovery of crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51 proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant mechanisms associated with the fungal CYP51s are introduced. The sequences and crystal structures of CYP51 proteins in different fungal species are also compared. These will provide new insights for the advancement of research on antifungal agents.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liping Li
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Quanzhen Lv
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| |
Collapse
|
35
|
Chen S, Wang Y, Schnabel G, Peng CA, Lagishetty S, Smith K, Luo C, Yuan H. Inherent Resistance to 14α-Demethylation Inhibitor Fungicides in Colletotrichum truncatum Is Likely Linked to CYP51A and/or CYP51B Gene Variants. PHYTOPATHOLOGY 2018; 108:1263-1275. [PMID: 29792573 DOI: 10.1094/phyto-02-18-0054-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor (DMI) fungicides are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the United States and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol, and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 values of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factors of 27.4 and 96.0) and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factors of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373 N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alterations may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373 N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.
Collapse
Affiliation(s)
- Shuning Chen
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunyun Wang
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guido Schnabel
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Congyue Annie Peng
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Satyanarayana Lagishetty
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kerry Smith
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhu Yuan
- First and eighth authors: Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; second author: College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; third author: Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; fourth, fifth, and sixth author: Eukaryotic Pathogens Innovations Center and Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and seventh author: Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China and Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Hawkins NJ, Fraaije BA. Fitness Penalties in the Evolution of Fungicide Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:339-360. [PMID: 29958074 DOI: 10.1146/annurev-phyto-080417-050012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.
Collapse
Affiliation(s)
- N J Hawkins
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| | - B A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| |
Collapse
|
37
|
Identification of 14-α-Lanosterol Demethylase (CYP51) in Scedosporium Species. Antimicrob Agents Chemother 2018; 62:AAC.02599-17. [PMID: 29891611 DOI: 10.1128/aac.02599-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Scedosporium spp. cause infections (scedosporiosis) in both immunocompetent and immunocompromised individuals and may persistently colonize the respiratory tract in patients with cystic fibrosis (CF). They are less susceptible against azoles than are other molds, such as Aspergillus spp., suggesting the presence of resistance mechanisms. It can be hypothesized that the decreased susceptibility of Scedosporium spp. to azoles is also CYP51 dependent. Analysis of the Scedosporium apiospermum and Scedosporiumaurantiacum genomes revealed one CYP51 gene encoding the 14-α-lanosterol demethylase. This gene from 159 clinical or environmental Scedosporium isolates and three Lomentospora prolificans isolates has been sequenced and analyzed. The Scedosporium CYP51 protein clustered with the group of known CYP51B orthologues and showed species-specific polymorphisms. A tandem repeat in the 5' upstream region of Scedosporium CYP51 like that in Aspergillus fumigatus could not be detected. Species-specific amino acid alterations in CYP51 of Scedosporium boydii, Scedosporiumellipsoideum, Scedosporium dehoogii, and Scedosporiumminutisporum isolates were located at positions that have not been described as having an impact on azole susceptibility. In contrast, two of the three Sapiospermum-specific amino acid changes (Y136F and G464S) corresponded to respective mutations in A. fumigatus CYP51A at amino acid positions 121 and 448 (Y121F and G448S, respectively) that had been linked to azole resistance.
Collapse
|
38
|
Song J, Zhang S, Lu L. Fungal cytochrome P450 protein Cyp51: What we can learn from its evolution, regulons and Cyp51-based azole resistance. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Sekar J, Raju K, Duraisamy P, Ramalingam Vaiyapuri P. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management-Growth Promotion and Compatibility With the Resident Rhizomicrobiome. Front Microbiol 2018; 9:1029. [PMID: 29875748 PMCID: PMC5974220 DOI: 10.3389/fmicb.2018.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
Finger millet [Eleusine coracona (L). Gaertner] "Ragi" is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50-100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml-1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.
Collapse
Affiliation(s)
- Jegan Sekar
- Microbiology Lab, M.S. Swaminathan Research Foundation, Chennai, India
| | - Kathiravan Raju
- Microbiology Lab, M.S. Swaminathan Research Foundation, Chennai, India
| | | | | |
Collapse
|
40
|
Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360:739-742. [DOI: 10.1126/science.aap7999] [Citation(s) in RCA: 624] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Yamashita M, Fraaije B. Non-target site SDHI resistance is present as standing genetic variation in field populations of Zymoseptoria tritici. PEST MANAGEMENT SCIENCE 2018; 74:672-681. [PMID: 29024365 PMCID: PMC5814837 DOI: 10.1002/ps.4761] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/14/2017] [Accepted: 09/30/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND A new generation of more active succinate dehydrogenase (Sdh) inhibitors (SDHIs) is currently widely used to control Septoria leaf blotch in northwest Europe. Detailed studies were conducted on Zymoseptoria tritici field isolates with reduced sensitivity to fluopyram and isofetamid; SDHIs which have only just or not been introduced for cereal disease control, respectively. RESULTS Strong cross-resistance between fluopyram and isofetamid, but not with other SDHIs, was confirmed through sensitivity tests using laboratory mutants and field isolates with and without Sdh mutations. The sensitivity profiles of most field isolates resistant to fluopyram and isofetamid were very similar to a lab mutant carrying SdhC-A84V, but no alterations were found in SdhB, C and D. Inhibition of mitochondrial Sdh enzyme activity and control efficacy in planta for those isolates was severely impaired by fluopyram and isofetamid, but not by bixafen. Isolates with similar phenotypes were not only detected in northwest Europe but also in New Zealand before the widely use of SDHIs. CONCLUSION This is the first report of SDHI-specific non-target site resistance in Z. tritici. Monitoring studies show that this resistance mechanism is present and can be selected from standing genetic variation in field populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Masao Yamashita
- Rothamsted Research, Biointeractions and Crop Protection DepartmentHarpendenUK
- Research CentreNihon Nohyaku Co. LtdOsakaJapan
| | - Bart Fraaije
- Rothamsted Research, Biointeractions and Crop Protection DepartmentHarpendenUK
| |
Collapse
|
42
|
Azole sensitivity in Leptosphaeria pathogens of oilseed rape: the role of lanosterol 14α-demethylase. Sci Rep 2017; 7:15849. [PMID: 29158527 PMCID: PMC5696480 DOI: 10.1038/s41598-017-15545-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Lanosterol 14-α demethylase is a key enzyme intermediating the biosynthesis of ergosterol in fungi, and the target of azole fungicides. Studies have suggested that Leptosphaeria maculans and L. biglobosa, the causal agents of phoma stem canker on oilseed rape, differ in their sensitivity to some azoles, which could be driving pathogen frequency change in crops. Here we used CYP51 protein modelling and heterologous expression to determine whether there are interspecific differences at the target-site level. Moreover, we provide an example of intrinsic sensitivity differences exhibited by both Leptosphaeria spp. in vitro and in planta. Comparison of homologous protein models identified highly conserved residues, particularly at the azole binding site, and heterologous expression of LmCYP51B and LbCYP51B, with fungicide sensitivity testing of the transformants, suggests that both proteins are similarly sensitive to azole fungicides flusilazole, prothioconazole-desthio and tebuconazole. Fungicide sensitivity testing on isolates shows that they sometimes have a minor difference in sensitivity in vitro and in planta. These results suggest that azole fungicides remain a useful component of integrated phoma stem canker control in the UK due to their effectiveness on both Leptosphaeria spp. Other factors, such as varietal resistance or climate, may be driving observed frequency changes between species.
Collapse
|
43
|
Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species. Clin Microbiol Rev 2017; 30:1065-1091. [PMID: 28903985 DOI: 10.1128/cmr.00095-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of azole resistance in Aspergillus species has increased over the past years, most importantly for Aspergillus fumigatus. This is partially attributable to the global spread of only a few resistance alleles through the environment. Secondary resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible strains is already difficult to treat, and exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive aspergillosis in high-risk patients would dramatically limit drug choices, thus increasing mortality rates for immunocompromised patients. Management options for invasive aspergillosis caused by azole-resistant A. fumigatus strains were recently reevaluated by an international expert panel, which concluded that drug resistance testing of cultured isolates is highly indicated when antifungal therapy is intended. In geographical regions with a high environmental prevalence of azole-resistant strains, initial therapy should be guided by such analyses. More environmental and clinical screening studies are therefore needed to generate the local epidemiologic data if such measures are to be implemented on a sound basis. Here we propose a first workflow for evaluating isolates from screening studies, and we compile the MIC values correlating with individual amino acid substitutions in the products of cyp51 genes for interpretation of DNA sequencing data, especially in the absence of cultured isolates.
Collapse
|
44
|
Hollomon D. Does agricultural use of azole fungicides contribute to resistance in the human pathogen Aspergillus fumigatus? PEST MANAGEMENT SCIENCE 2017; 73:1987-1993. [PMID: 28485100 DOI: 10.1002/ps.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Azole resistance in human fungal pathogens has increased over the past twenty years, especially in immunocompromised patients. Similarities between medical and agricultural azoles, and extensive azole (14α-demethylase inhibitor, DMI) use in crop protection, prompted speculation that resistance in patients with aspergillosis originated in the environment. Aspergillus species, and especially Aspergillus fumigatus, are the largest cause of patient deaths from fungi. Azole levels in soils following crop spraying, and differences in sensitivity between medical and agricultural azoles (DMIs), indicate weaker selection in cropping systems than in patients receiving azole therapy. Most fungi have just one CYP51 paralogue (isozyme CYP51B), but in Aspergillus sp. mutations conferring azole resistance are largely confined to a second paralogue, CYP51A. Binding within the active centre is similar for medical and agricultural azoles but differences elsewhere between the two paralogues may ensure selection depends on the DMI used on crops. Two imidazoles, imazalil and prochloraz, have been widely used since the early 1970s, yet unlike triazoles they have not been linked to resistance in patients. Evidence that DMIs are the origin, or increase the frequency, of azole resistance in human fungal pathogens is lacking. Limiting DMI use would have serious impacts on disease control in many crops, and remove key tools in anti-resistance strategies. © 2017 Society of Chemical Industry.
Collapse
|
45
|
Gutiérrez-Alonso O, Hawkins NJ, Cools HJ, Shaw MW, Fraaije BA. Dose-dependent selection drives lineage replacement during the experimental evolution of SDHI fungicide resistance in Zymoseptoria tritici. Evol Appl 2017; 10:1055-1066. [PMID: 29151860 PMCID: PMC5680630 DOI: 10.1111/eva.12511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/16/2017] [Indexed: 01/22/2023] Open
Abstract
Fungicide resistance is a constant threat to agricultural production worldwide. Molecular mechanisms of fungicide resistance have been studied extensively in the wheat pathogen Zymoseptoria tritici. However, less is known about the evolutionary processes driving resistance development. In vitro evolutionary studies give the opportunity to investigate this. Here, we examine the adaptation of Z. tritici to fluxapyroxad, a succinate dehydrogenase (Sdh) inhibitor. Replicate populations of Z. tritici derived from the sensitive isolate IPO323 were exposed to increasing concentrations of fluxapyroxad with or without UV mutagenesis. After ten increases in fungicide concentration, sensitivity had decreased dramatically, with replicate populations showing similar phenotypic trajectories. Sequencing the Sdh subunit B, C, and D encoding genes identified seven mutations associated with resistance to fluxapyroxad. Mutation frequency over time was measured with a pyrosequencing assay, revealing sequential lineage replacement in the UV‐mutagenized populations but not in the untreated populations. Repeating selection from set time‐points with different fungicide concentrations revealed that haplotype replacement of Sdh variants was driven by dose‐dependent selection as fungicide concentration changed, and was not mutation‐limited. These findings suggest that fungicide field applications may select for highly insensitive Sdh variants with higher resistance factors if the fungicide concentration is increased to achieve a better disease control. However, in the absence or presence of lower fungicide concentrations, the spread of these strains might be restricted if the underlying Sdh mutations carry fitness penalties.
Collapse
Affiliation(s)
- Omar Gutiérrez-Alonso
- Biointeractions and Crop Protection Department Rothamsted Research Harpenden Hertfordshir UK
| | - Nichola J Hawkins
- Biointeractions and Crop Protection Department Rothamsted Research Harpenden Hertfordshir UK
| | - Hans J Cools
- Jealott's Hill International Research Centre Syngenta Bracknell Berkshire UK
| | - Michael W Shaw
- School of Agriculture Policy and Development University of Reading Reading Berkshire UK
| | - Bart A Fraaije
- Biointeractions and Crop Protection Department Rothamsted Research Harpenden Hertfordshir UK
| |
Collapse
|
46
|
Esquivel BD, White TC. Accumulation of Azole Drugs in the Fungal Plant Pathogen Magnaporthe oryzae Is the Result of Facilitated Diffusion Influx. Front Microbiol 2017; 8:1320. [PMID: 28751884 PMCID: PMC5508014 DOI: 10.3389/fmicb.2017.01320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
Magnaporthe oryzae is an agricultural mold that causes disease in rice, resulting in devastating crop losses. Since rice is a world-wide staple food crop, infection by M. oryzae poses a serious global food security threat. Fungicides, including azole antifungals, are used to prevent and combat M. oryzae plant infections. The target of azoles is CYP51, an enzyme localized on the endoplasmic reticulum (ER) and required for fungal ergosterol biosynthesis. However, many basic drug-pathogen interactions, such as how the azole gets past the fungal cell wall and plasma membrane, and is transported to the ER, are not understood. In addition, reduced intracellular accumulation of antifungals has consistently been observed as a drug resistance mechanism in many fungal species. Studying the basic biology of drug-pathogen interactions may elucidate uncharacterized mechanisms of drug resistance and susceptibility in M. oryzae and potentially other related fungal pathogens. We characterized intracellular accumulation of azole drugs in M. oryzae using a radioactively labeled fluconazole uptake assay to gain insight on whether azoles enter the cell by passive diffusion, active transport, or facilitated diffusion. We show that azole accumulation is not ATP-dependent, nor does it rely on a pH-dependent process. Instead there is evidence for azole drug uptake in M. oryzae by a facilitated diffusion mechanism. The uptake system is specific for azole or azole-like compounds and can be modulated depending on cell phase and growth media. In addition, we found that co-treatment of M. oryzae with ‘repurposed’ clorgyline and radio-labeled fluconazole prevented energy-dependent efflux of fluconazole, resulting in an increased intracellular concentration of fluconazole in the fungal cell.
Collapse
Affiliation(s)
- Brooke D Esquivel
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas CityMO, United States
| | - Theodore C White
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas CityMO, United States
| |
Collapse
|
47
|
Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity. Antimicrob Agents Chemother 2017; 61:AAC.00570-17. [PMID: 28461309 DOI: 10.1128/aac.00570-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.
Collapse
|
48
|
Mohd-Assaad N, McDonald BA, Croll D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol 2016; 25:6124-6142. [PMID: 27859799 DOI: 10.1111/mec.13916] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023]
Abstract
Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
49
|
Mair WJ, Deng W, Mullins JGL, West S, Wang P, Besharat N, Ellwood SR, Oliver RP, Lopez-Ruiz FJ. Demethylase Inhibitor Fungicide Resistance in Pyrenophora teres f. sp. teres Associated with Target Site Modification and Inducible Overexpression of Cyp51. Front Microbiol 2016; 7:1279. [PMID: 27594852 PMCID: PMC4990540 DOI: 10.3389/fmicb.2016.01279] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Pyrenophora teres f. sp. teres is the cause of net form of net blotch (NFNB), an economically important foliar disease in barley (Hordeum vulgare). Net and spot forms of net blotch are widely controlled using site-specific systemic fungicides. Although resistance to succinate dehydrogenase inhibitors and quinone outside inhibitors has been addressed before in net blotches, mechanisms controlling demethylation inhibitor resistance have not yet been reported at the molecular level. Here we report the isolation of strains of NFNB in Australia since 2013 resistant to a range of demethylase inhibitor fungicides. Cyp51A:KO103-A1, an allele with the mutation F489L, corresponding to the archetype F495I in Aspergillus fumigatus, was only present in resistant strains and was correlated with resistance factors to various demethylase inhibitors ranging from 1.1 for epoxiconazole to 31.7 for prochloraz. Structural in silico modeling of the sensitive and resistant CYP51A proteins docked with different demethylase inhibitor fungicides showed how the interaction of F489L within the heme cavity produced a localized constriction of the region adjacent to the docking site that is predicted to result in lower binding affinities. Resistant strains also displayed enhanced induced expression of the two Cyp51A paralogs and of Cyp51B genes. While Cyp51B was found to be constitutively expressed in the absence of fungicide, Cyp51A was only detected at extremely low levels. Under fungicide induction, expression of Cyp51B, Cyp51A2, and Cyp51A1 was shown to be 1.6-, 3,- and 5.3-fold higher, respectively in the resistant isolate compared to the wild type. These increased levels of expression were not supported by changes in the promoters of any of the three genes. The implications of these findings on demethylase inhibitor activity will require current net blotch management strategies to be reconsidered in order to avoid the development of further resistance and preserve the lifespan of fungicides in use.
Collapse
Affiliation(s)
- Wesley J Mair
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Weiwei Deng
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | | | - Samuel West
- Institute of Life Science, School of Medicine, Swansea University Swansea, UK
| | - Penghao Wang
- School of Veterinary and Life Sciences, Murdoch University Murdoch, WA, Australia
| | - Naghmeh Besharat
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Simon R Ellwood
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Richard P Oliver
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| | - Francisco J Lopez-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University Bentley, WA, Australia
| |
Collapse
|
50
|
|