1
|
Hull KL, Greenwood MP, Lloyd M, Brink-Hull M, Bester-van der Merwe AE, Rhode C. Drivers of genomic diversity and phenotypic development in early phases of domestication in Hermetia illucens. INSECT MOLECULAR BIOLOGY 2024; 33:756-776. [PMID: 38963286 DOI: 10.1111/imb.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The black soldier fly (BSF), Hermetia illucens, has the ability to efficiently bioremediate organic waste into usable bio-compounds. Understanding the impact of domestication and mass rearing on fitness and production traits is therefore important for sustainable production. This study aimed to assess patterns of genomic diversity and its association to phenotypic development across early generations of mass rearing under two selection strategies: selection for greater larval mass (SEL lines) and no direct artificial selection (NS lines). Genome-wide single nucleotide polymorphism (SNP) data were generated using 2bRAD sequencing, while phenotypic traits relating to production and population fitness were measured. Declining patterns of genomic diversity were observed across three generations of captive breeding, with the lowest diversity recorded for the F3 generation of both selection lines, most likely due to founder effects. The SEL cohort displayed statistically significantly greater larval weight com the NS lines with pronounced genetic and phenotypic directional changes across generations. Furthermore, lower genetic and phenotypic diversity, particularly for fitness traits, were evident for SEL lines, illustrating the trade-off between selecting for mass and the resulting decline in population fitness. SNP-based heritability was significant for growth, but was low or non-significant for fitness traits. Genotype-phenotype correlations were observed for traits, but individual locus effect sizes where small and very few of these loci demonstrated a signature for selection. Pronounced genetic drift, due to small effective population sizes, is likely overshadowing the impacts of selection on genomic diversity and consequently phenotypic development. The results hold particular relevance for genetic management and selective breeding for BSF in future.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
5
|
Shinde SS, Sharma A, Vijay N. Decoding the fibromelanosis locus complex chromosomal rearrangement of black-bone chicken: genetic differentiation, selective sweeps and protein-coding changes in Kadaknath chicken. Front Genet 2023; 14:1180658. [PMID: 37424723 PMCID: PMC10325862 DOI: 10.3389/fgene.2023.1180658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Black-bone chicken (BBC) meat is popular for its distinctive taste and texture. A complex chromosomal rearrangement at the fibromelanosis (Fm) locus on the 20th chromosome results in increased endothelin-3 (EDN3) gene expression and is responsible for melanin hyperpigmentation in BBC. We use public long-read sequencing data of the Silkie breed to resolve high-confidence haplotypes at the Fm locus spanning both Dup1 and Dup2 regions and establish that the Fm_2 scenario is correct of the three possible scenarios of the complex chromosomal rearrangement. The relationship between Chinese and Korean BBC breeds with Kadaknath native to India is underexplored. Our data from whole-genome re-sequencing establish that all BBC breeds, including Kadaknath, share the complex chromosomal rearrangement junctions at the fibromelanosis (Fm) locus. We also identify two Fm locus proximal regions (∼70 Kb and ∼300 Kb) with signatures of selection unique to Kadaknath. These regions harbor several genes with protein-coding changes, with the bactericidal/permeability-increasing-protein-like gene having two Kadaknath-specific changes within protein domains. Our results indicate that protein-coding changes in the bactericidal/permeability-increasing-protein-like gene hitchhiked with the Fm locus in Kadaknath due to close physical linkage. Identifying this Fm locus proximal selective sweep sheds light on the genetic distinctiveness of Kadaknath compared to other BBC.
Collapse
Affiliation(s)
| | | | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
6
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Li Y, Barton JP. Estimating linkage disequilibrium and selection from allele frequency trajectories. Genetics 2023; 223:iyac189. [PMID: 36610715 PMCID: PMC9991507 DOI: 10.1093/genetics/iyac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Genetic sequences collected over time provide an exciting opportunity to study natural selection. In such studies, it is important to account for linkage disequilibrium to accurately measure selection and to distinguish between selection and other effects that can cause changes in allele frequencies, such as genetic hitchhiking or clonal interference. However, most high-throughput sequencing methods cannot directly measure linkage due to short-read lengths. Here we develop a simple method to estimate linkage disequilibrium from time-series allele frequencies. This reconstructed linkage information can then be combined with other inference methods to infer the fitness effects of individual mutations. Simulations show that our approach reliably outperforms inference that ignores linkage disequilibrium and, with sufficient sampling, performs similarly to inference using the true linkage information. We also introduce two regularization methods derived from random matrix theory that help to preserve its performance under limited sampling effects. Overall, our method enables the use of linkage-aware inference methods even for data sets where only allele frequency time series are available.
Collapse
Affiliation(s)
- Yunxiao Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
9
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
10
|
Christodoulaki E, Nolte V, Lai WY, Schlötterer C. Natural variation in Drosophila shows weak pleiotropic effects. Genome Biol 2022; 23:116. [PMID: 35578368 PMCID: PMC9109288 DOI: 10.1186/s13059-022-02680-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pleiotropy describes the phenomenon in which a gene affects multiple phenotypes. The extent of pleiotropy is still disputed, mainly because of issues of inadequate power of analyses. A further challenge is that empirical tests of pleiotropy are restricted to a small subset of all possible phenotypes. To overcome these limitations, we propose a new measurement of pleiotropy that integrates across many phenotypes and multiple generations to improve power. Results We infer pleiotropy from the fitness cost imposed by frequency changes of pleiotropic loci. Mixing Drosophila simulans populations, which adapted independently to the same new environment using different sets of genes, we show that the adaptive frequency changes have been accompanied by measurable fitness costs. Conclusions Unlike previous studies characterizing the molecular basis of pleiotropy, we show that many loci, each of weak effect, contribute to genome-wide pleiotropy. We propose that the costs of pleiotropy are reduced by the modular architecture of gene expression, which facilitates adaptive gene expression changes with low impact on other functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02680-4.
Collapse
Affiliation(s)
- Eirini Christodoulaki
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | | |
Collapse
|
11
|
Phillips MA, Kutch IC, McHugh KM, Taggard SK, Burke MK. Crossing design shapes patterns of genetic variation in synthetic recombinant populations of Saccharomyces cerevisiae. Sci Rep 2021; 11:19551. [PMID: 34599243 PMCID: PMC8486856 DOI: 10.1038/s41598-021-99026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
"Synthetic recombinant" populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Ian C Kutch
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kaitlin M McHugh
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Savannah K Taggard
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
12
|
Davis JS, Pearcy MJ, Yew JY, Moyle LC. A shift to shorter cuticular hydrocarbons accompanies sexual isolation among Drosophila americana group populations. Evol Lett 2021; 5:521-540. [PMID: 34621538 PMCID: PMC8484720 DOI: 10.1002/evl3.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Because sensory signals often evolve rapidly, they could be instrumental in the emergence of reproductive isolation between species. However, pinpointing their specific contribution to isolating barriers, and the mechanisms underlying their divergence, remains challenging. Here, we demonstrate sexual isolation due to divergence in chemical signals between two populations of Drosophila americana (SC and NE) and one population of D. novamexicana, and dissect its underlying phenotypic and genetic mechanisms. Mating trials revealed strong sexual isolation between Drosophila novamexicana males and SC Drosophila americana females, as well as more moderate bi-directional isolation between D. americana populations. Mating behavior data indicate SC D. americana males have the highest courtship efficiency and, unlike males of the other populations, are accepted by females of all species. Quantification of cuticular hydrocarbon (CHC) profiles-chemosensory signals that are used for species recognition and mate finding in Drosophila-shows that the SC D. americana population differs from the other populations primarily on the basis of compound carbon chain-length. Moreover, manipulation of male CHC composition via heterospecific perfuming-specifically perfuming D. novamexicana males with SC D. americana males-abolishes their sexual isolation from these D. americana females. Of a set of candidates, a single gene-elongase CG17821-had patterns of gene expression consistent with a role in CHC differences between species. Sequence comparisons indicate D. novamexicana and our Nebraska (NE) D. americana population share a derived CG17821 truncation mutation that could also contribute to their shared "short" CHC phenotype. Together, these data suggest an evolutionary model for the origin and spread of this allele and its consequences for CHC divergence and sexual isolation in this group.
Collapse
Affiliation(s)
- Jeremy S. Davis
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
- Department of BiologyUniversity of KentuckyLexingtonKentucky40508
| | | | - Joanne Y. Yew
- Pacific Biosciences Research CenterUniversity of Hawaii at MānoaHonoluluHawaii96822
| | - Leonie C. Moyle
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| |
Collapse
|
13
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
14
|
Langmüller AM, Dolezal M, Schlötterer C. Fine Mapping without Phenotyping: Identification of Selection Targets in Secondary Evolve and Resequence Experiments. Genome Biol Evol 2021; 13:6311659. [PMID: 34190980 PMCID: PMC8358229 DOI: 10.1093/gbe/evab154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Evolve and Resequence (E&R) studies investigate the genomic selection response of populations in an Experimental Evolution setup. Despite the popularity of E&R, empirical studies in sexually reproducing organisms typically suffer from an excess of candidate loci due to linkage disequilibrium, and single gene or SNP resolution is the exception rather than the rule. Recently, so-called "secondary E&R" has been suggested as promising experimental follow-up procedure to confirm putatively selected regions from a primary E&R study. Secondary E&R provides also the opportunity to increase mapping resolution by allowing for additional recombination events, which separate the selection target from neutral hitchhikers. Here, we use computer simulations to assess the effect of different crossing schemes, population size, experimental duration, and number of replicates on the power and resolution of secondary E&R. We find that the crossing scheme and population size are crucial factors determining power and resolution of secondary E&R: A simple crossing scheme with few founder lines consistently outcompetes crossing schemes where evolved populations from a primary E&R experiment are mixed with a complex ancestral founder population. Regardless of the experimental design tested, a population size of at least 4,800 individuals, which is roughly five times larger than population sizes in typical E&R studies, is required to achieve a power of at least 75%. Our study provides an important step toward improved experimental designs aiming to characterize causative SNPs in Experimental Evolution studies.
Collapse
Affiliation(s)
- Anna Maria Langmüller
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
15
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
16
|
O’Connor CH, Sikkink KL, Nelson TC, Fierst JL, Cresko WA, Phillips PC. Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2021; 11:jkab045. [PMID: 33605401 PMCID: PMC8049431 DOI: 10.1093/g3journal/jkab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/01/2021] [Indexed: 12/04/2022]
Abstract
The adaptation of complex organisms to changing environments has been a central question in evolutionary quantitative genetics since its inception. The structure of the genotype-phenotype maps is critical because pleiotropic effects can generate widespread correlated responses to selection and potentially restrict the extent of evolutionary change. In this study, we use experimental evolution to dissect the genetic architecture of natural variation for acute heat stress and oxidative stress response in the nematode Caenorhabiditis remanei. Previous work in the classic model nematode Caenorhabiditis elegans has found that abiotic stress response is controlled by a handful of genes of major effect and that mutations in any one of these genes can have widespread pleiotropic effects on multiple stress response traits. Here, we find that acute heat stress response and acute oxidative response in C. remanei are polygenic, complex traits, with hundreds of genomic regions responding to selection. In contrast to expectation from mutation studies, we find that evolved acute heat stress and acute oxidative stress response for the most part display independent genetic bases. This lack of correlation is reflected at the levels of phenotype, gene expression, and in the genomic response to selection. Thus, while these findings support the general view that rapid adaptation can be generated by changes at hundreds to thousands of sites in the genome, the architecture of segregating variation is likely to be determined by the pleiotropic structure of the underlying genetic networks.
Collapse
Affiliation(s)
- Christine H O’Connor
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Kristin L Sikkink
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas C Nelson
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - William A Cresko
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
17
|
Burny C, Nolte V, Nouhaud P, Dolezal M, Schlötterer C. Secondary Evolve and Resequencing: An Experimental Confirmation of Putative Selection Targets without Phenotyping. Genome Biol Evol 2021; 12:151-159. [PMID: 32159748 PMCID: PMC7144549 DOI: 10.1093/gbe/evaa036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evolve and resequencing (E&R) studies investigate the genomic responses of adaptation during experimental evolution. Because replicate populations evolve in the same controlled environment, consistent responses to selection across replicates are frequently used to identify reliable candidate regions that underlie adaptation to a new environment. However, recent work demonstrated that selection signatures can be restricted to one or a few replicate(s) only. These selection signatures frequently have weak statistical support, and given the difficulties of functional validation, additional evidence is needed before considering them as candidates for functional analysis. Here, we introduce an experimental procedure to validate candidate loci with weak or replicate-specific selection signature(s). Crossing an evolved population from a primary E&R experiment to the ancestral founder population reduces the frequency of candidate alleles that have reached a high frequency. We hypothesize that genuine selection targets will experience a repeatable frequency increase after the mixing with the ancestral founders if they are exposed to the same environment (secondary E&R experiment). Using this approach, we successfully validate two overlapping selection targets, which showed a mutually exclusive selection signature in a primary E&R experiment of Drosophila simulans adapting to a novel temperature regime. We conclude that secondary E&R experiments provide a reliable confirmation of selection signatures that either are not replicated or show only a low statistical significance in a primary E&R experiment unless epistatic interactions predominate. Such experiments are particularly helpful to prioritize candidate loci for time-consuming functional follow-up investigations.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria.,Vienna Graduate school of Population Genetics, Vetmeduni Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | - Pierre Nouhaud
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria.,Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Austria
| | | |
Collapse
|
18
|
Karimi K, Ngoc Do D, Sargolzaei M, Miar Y. Population Genomics of American Mink Using Whole Genome Sequencing Data. Genes (Basel) 2021; 12:genes12020258. [PMID: 33670138 PMCID: PMC7916864 DOI: 10.3390/genes12020258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (K.K.); (D.N.D.)
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (K.K.); (D.N.D.)
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Select Sires Inc., Plain City, OH 43064, USA
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (K.K.); (D.N.D.)
- Correspondence:
| |
Collapse
|
19
|
Phillips MA, Kutch IC, Long AD, Burke MK. Increased time sampling in an evolve-and-resequence experiment with outcrossing Saccharomyces cerevisiae reveals multiple paths of adaptive change. Mol Ecol 2020; 29:4898-4912. [PMID: 33135198 DOI: 10.1111/mec.15687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
"Evolve and resequence" (E&R) studies combine experimental evolution and whole-genome sequencing to interrogate the genetics underlying adaptation. Due to ease of handling, E&R work with asexual organisms such as bacteria can employ optimized experimental design, with large experiments and many generations of selection. By contrast, E&R experiments with sexually reproducing organisms are more difficult to implement, and design parameters vary dramatically among studies. Thus, efforts have been made to assess how these differences, such as number of independent replicates, or size of experimental populations, impact inference. We add to this work by investigating the role of time sampling-the number of discrete time points sequence data are collected from evolving populations. Using data from an E&R experiment with outcrossing Saccharomyces cerevisiae in which populations were sequenced 17 times over ~540 generations, we address the following questions: (a) Do more time points improve the ability to identify candidate regions underlying selection? And (b) does high-resolution sampling provide unique insight into evolutionary processes driving adaptation? We find that while time sampling does not improve the ability to identify candidate regions, high-resolution sampling does provide valuable opportunities to characterize evolutionary dynamics. Increased time sampling reveals three distinct trajectories for adaptive alleles: one consistent with classic population genetic theory (i.e., models assuming constant selection coefficients), and two where trajectories suggest more context-dependent responses (i.e., models involving dynamic selection coefficients). We conclude that while time sampling has limited impact on candidate region identification, sampling eight or more time points has clear benefits for studying complex evolutionary dynamics.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Ian C Kutch
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
20
|
Langmüller AM, Nolte V, Galagedara R, Poupardin R, Dolezal M, Schlötterer C. Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. BMC Biol 2020; 18:157. [PMID: 33121485 PMCID: PMC7597021 DOI: 10.1186/s12915-020-00882-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature. RESULTS Experimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = - 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = - 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments. CONCLUSION We show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.
Collapse
Affiliation(s)
- Anna Maria Langmüller
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ruwansha Galagedara
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Rodolphe Poupardin
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Present Address: Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
21
|
Signor SA. Evolution of Plasticity in Response to Ethanol between Sister Species with Different Ecological Histories ( Drosophila melanogaster and D. simulans). Am Nat 2020; 196:620-633. [PMID: 33064591 DOI: 10.1086/710763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhen populations evolve adaptive reaction norms in response to novel environments, it can occur through a process termed genetic accommodation. Under this model, the initial response to the environment is widely variable between genotypes as a result of cryptic genetic variation, which is then refined by selection to a single adaptive response. Here, I empirically test these predictions from genetic accommodation by measuring reaction norms in individual genotypes and across several time points. I compare two species of Drosophila that differ in their adaptation to ethanol (D. melanogaster and D. simulans). Both species are human commensals with a recent cosmopolitan expansion, but only D. melanogaster is adapted to ethanol exposure. Using gene expression as a phenotype and an approach that combines information about expression and alternative splicing, I find that D. simulans exhibits cryptic genetic variation in the response to ethanol, while D. melanogaster has almost no genotype-specific variation in reaction norm. This is evidence for adaptation to ethanol through genetic accommodation, suggesting that the evolution of phenotypic plasticity could be an important contributor to the ability to exploit novel resources.
Collapse
|
22
|
Otte KA, Schlötterer C. Detecting selected haplotype blocks in evolve and resequence experiments. Mol Ecol Resour 2020; 21:93-109. [PMID: 32810339 PMCID: PMC7754423 DOI: 10.1111/1755-0998.13244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Shifting from the analysis of single nucleotide polymorphisms to the reconstruction of selected haplotypes greatly facilitates the interpretation of evolve and resequence (E&R) experiments. Merging highly correlated hitchhiker SNPs into haplotype blocks reduces thousands of candidates to few selected regions. Current methods of haplotype reconstruction from Pool‐seq data need a variety of data‐specific parameters that are typically defined ad hoc and require haplotype sequences for validation. Here, we introduce haplovalidate, a tool which detects selected haplotypes in Pool‐seq time series data without the need for sequenced haplotypes. Haplovalidate makes data‐driven choices of two key parameters for the clustering procedure, the minimum correlation between SNPs constituting a cluster and the window size. Applying haplovalidate to simulated E&R data reliably detects selected haplotype blocks with low false discovery rates. Importantly, our analyses identified a restriction of the haplotype block‐based approach to describe the genomic architecture of adaptation. We detected a substantial fraction of haplotypes containing multiple selection targets. These blocks were considered as one region of selection and therefore led to underestimation of the number of selection targets. We demonstrate that the separate analysis of earlier time points can significantly increase the separation of selection targets into individual haplotype blocks. We conclude that the analysis of selected haplotype blocks has great potential for the characterization of the adaptive architecture with E&R experiments.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
23
|
Langmüller AM, Schlötterer C. Low concordance of short-term and long-term selection responses in experimental Drosophila populations. Mol Ecol 2020; 29:3466-3475. [PMID: 32762052 PMCID: PMC7540288 DOI: 10.1111/mec.15579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Experimental evolution is becoming a popular approach to study the genomic selection response of evolving populations. Computer simulation studies suggest that the accuracy of the signature increases with the duration of the experiment. Since some assumptions of the computer simulations may be violated, it is important to scrutinize the influence of the experimental duration with real data. Here, we use a highly replicated Evolve and Resequence study in Drosophila simulans to compare the selection targets inferred at different time points. At each time point, approximately the same number of SNPs deviates from neutral expectations, but only 10% of the selected haplotype blocks identified from the full data set can be detected after 20 generations. Those haplotype blocks that emerge already after 20 generations differ from the others by being strongly selected at the beginning of the experiment and display a more parallel selection response. Consistent with previous computer simulations, our results demonstrate that only Evolve and Resequence experiments with a sufficient number of generations can characterize complex adaptive architectures.
Collapse
Affiliation(s)
- Anna Maria Langmüller
- Vienna Graduate School of Population GeneticsViennaAustria
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
| | | |
Collapse
|
24
|
Roberts KE, Meaden S, Sharpe S, Kay S, Doyle T, Wilson D, Bartlett LJ, Paterson S, Boots M. Resource quality determines the evolution of resistance and its genetic basis. Mol Ecol 2020; 29:4128-4142. [PMID: 32860314 DOI: 10.1111/mec.15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Parasites impose strong selection on their hosts, but the level of any evolved resistance may be constrained by the availability of resources. However, studies identifying the genomic basis of such resource-mediated selection are rare, particularly in nonmodel organisms. Here, we investigated the role of nutrition in the evolution of resistance to a DNA virus (PiGV), and any associated trade-offs in a lepidopteran pest species (Plodia interpunctella). Through selection experiments and whole-genome resequencing, we identify genetic markers of resistance that vary between the nutritional environments during selection. We do not find consistent evolution of resistance in the presence of virus but rather see substantial variation among replicate populations. Resistance in a low-nutrition environment is negatively correlated with growth rate, consistent with an established trade-off between immunity and development, but this relationship is highly context dependent. Whole-genome resequencing of the host shows that resistance mechanisms are likely to be highly polygenic and although the underlying genetic architecture may differ between high and low-nutrition environments, similar mechanisms are commonly used. As a whole, our results emphasize the importance of the resource environment on influencing the evolution of resistance.
Collapse
Affiliation(s)
- Katherine E Roberts
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Stephen Sharpe
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Suzanne Kay
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Drew Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mike Boots
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK.,Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
Mazzucco R, Nolte V, Vijayan T, Schlötterer C. Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Front Genet 2020; 11:482. [PMID: 32477411 PMCID: PMC7241558 DOI: 10.3389/fgene.2020.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change is a major evolutionary force triggering thermal adaptation in a broad range of species. While the consequences of global warming are being studied for an increasing number of species, limited attention has been given to the evolutionary dynamics of endosymbionts in response to climate change. Here, we address this question by studying the dynamics of Wolbachia, a well-studied endosymbiont of Drosophila melanogaster. D. melanogaster populations infected with 13 different Wolbachia strains were exposed to novel hot and cold laboratory environments for up to 180 generations. The short-term dynamics suggested a temperature-related fitness difference resulting in the increase of clade V strains in the cold environment only. Our long-term analysis now uncovers that clade V dominates in all replicates after generation 60 irrespective of temperature treatment. We propose that adaptation of the Drosophila host to either temperature or Drosophila C virus (DCV) infection are the cause of the replicated, temporally non-concordant Wolbachia dynamics. Our study provides an interesting case demonstrating that even simple, well-controlled experiments can result in complex, but repeatable evolutionary dynamics, thus providing a cautionary note on too simple interpretations on the impact of climate change.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Thapasya Vijayan
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| |
Collapse
|
26
|
Barghi N, Schlötterer C. Shifting the paradigm in Evolve and Resequence studies: From analysis of single nucleotide polymorphisms to selected haplotype blocks. Mol Ecol 2020; 28:521-524. [PMID: 30793868 PMCID: PMC6850332 DOI: 10.1111/mec.14992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
For almost a decade the combination of whole genome sequencing with experimental evolution (Evolve and Resequence, E&R; Turner, Stewart, Fields, Rice, & Tarone, 2011) has been used to study adaptation in outcrossing organisms. However, complications caused by inversions and hitchhiking variants have prevented this powerful approach from living up to its potential. In this issue of Molecular Ecology, Michalak, Kang, Schou, Garner, and Loeschke (2018), provide an important step ahead by using a population of Drosophila melanogaster devoid of segregating inversions to identify the genetic basis of resistance to five environmental stressors. They further address the challenge of hitchhiking variants by reconstructing selected haplotype blocks. While it is apparent that the haplotype block reconstruction needs further refinements, their work underpins the potential of E&R studies in Drosophila to address fundamental questions in evolutionary biology.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
27
|
Park L. Population-specific long-range linkage disequilibrium in the human genome and its influence on identifying common disease variants. Sci Rep 2019; 9:11380. [PMID: 31388069 PMCID: PMC6684625 DOI: 10.1038/s41598-019-47832-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the availability of large-scale sequencing data, long-range linkage disequilibrium (LRLD) has not been extensively studied. The theoretical aspects of LRLD estimates were studied to determine the best estimation method for the sequencing data of three different populations of African (AFR), European (EUR), and East-Asian (EAS) descent from the 1000 Genomes Project. Genome-wide LRLDs excluding centromeric regions revealed clear population specificity, presenting substantially more population-specific LRLDs than coincident LRLDs. Clear relationships between the functionalities of the regions in LRLDs denoted long-range interactions in the genome. The proportions of gene regions were increased in LRLD variants, and the coding sequence (CDS)-CDS LRLDs showed obvious functional similarities between genes in LRLDs. Application to theoretical case-control associations confirmed that the LRLDs in genome-wide association studies (GWASs) could contribute to false signals, although the impacts might not be severe in most cases. LRLDs with variants with functional similarity exist in the human genome indicating possible gene-gene interactions, and they differ depending on populations. Based on the current study, LRLDs should be examined in GWASs to identify true signals. More importantly, population specificity in LRLDs should be examined in relevant studies.
Collapse
Affiliation(s)
- Leeyoung Park
- Natural Science Research Institute, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
28
|
Kelly JK, Hughes KA. Pervasive Linked Selection and Intermediate-Frequency Alleles Are Implicated in an Evolve-and-Resequencing Experiment of Drosophila simulans. Genetics 2019; 211:943-961. [PMID: 30593495 PMCID: PMC6404262 DOI: 10.1534/genetics.118.301824] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/15/2018] [Indexed: 11/18/2022] Open
Abstract
We develop analytical and simulation tools for evolve-and-resequencing experiments and apply them to a new study of rapid evolution in Drosophila simulans Likelihood test statistics applied to pooled population sequencing data suggest parallel evolution of 138 SNPs across the genome. This number is reduced by orders of magnitude from previous studies (thousands or tens of thousands), owing to differences in both experimental design and statistical analysis. Whole genome simulations calibrated from Drosophila genetic data sets indicate that major features of the genome-wide response could be explained by as few as 30 loci under strong directional selection with a corresponding hitchhiking effect. Smaller effect loci are likely also responding, but are below the detection limit of the experiment. Finally, SNPs showing strong parallel evolution in the experiment are intermediate in frequency in the natural population (usually 30-70%) indicative of balancing selection in nature. These loci also exhibit elevated differentiation among natural populations of D. simulans, suggesting environmental heterogeneity as a potential balancing mechanism.
Collapse
Affiliation(s)
- John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
29
|
Scott PA, Glenn TC, Rissler LJ. Formation of a recent hybrid zone offers insight into the geographic puzzle and maintenance of species boundaries in musk turtles. Mol Ecol 2019; 28:761-771. [DOI: 10.1111/mec.14983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Peter A. Scott
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama
| | - Travis C. Glenn
- Department of Environmental Health Science and Institute of Bioinformatics University of Georgia Athens Georgia
| | - Leslie J. Rissler
- Department of Biological Sciences University of Alabama Tuscaloosa Alabama
| |
Collapse
|
30
|
Barghi N, Tobler R, Nolte V, Jakšić AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, Schlötterer C. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biol 2019; 17:e3000128. [PMID: 30716062 PMCID: PMC6375663 DOI: 10.1371/journal.pbio.3000128] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Raymond Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Plattform Bioinformatik und Biostatistik, Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Thomas Taus
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
31
|
Michalak P, Kang L, Schou MF, Garner HR, Loeschcke V. Genomic signatures of experimental adaptive radiation in Drosophila. Mol Ecol 2018; 28:600-614. [PMID: 30375065 DOI: 10.1111/mec.14917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Abiotic environmental factors play a fundamental role in determining the distribution, abundance and adaptive diversification of species. Empowered by new technologies enabling rapid and increasingly accurate examination of genomic variation in populations, researchers may gain new insights into the genomic background of adaptive radiation and stress resistance. We investigated genomic variation across generations of large-scale experimental selection regimes originating from a single founder population of Drosophila melanogaster, diverging in response to ecologically relevant environmental stressors: heat shock, heat knock down, cold shock, desiccation and starvation. When compared to the founder population, and to parallel unselected controls, there were more than 100,000 single nucleotide polymorphisms (SNPs) displaying consistent allelic changes in response to selective pressures across generations. These SNPs were found in both coding and noncoding sequences, with the highest density in promoter regions, and involved a broad range of functionalities, including molecular chaperoning by heat-shock proteins. The SNP patterns were highly stressor-specific despite considerable variation among line replicates within each selection regime, as reflected by a principal component analysis, and co-occurred with selective sweep regions. Only ~15% of SNPs with putatively adaptive changes were shared by at least two selective regimes, while less than 1% of SNPs diverged in opposite directions. Divergent stressors driving evolution in the experimental system of adaptive radiation left distinct genomic signatures, most pronounced in starvation and heat-shock selection regimes.
Collapse
Affiliation(s)
- Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,One Health Research Center, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia.,Institute of Evolution, University of Haifa, Haifa, Israel
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
| | - Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia.,The Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | | |
Collapse
|
32
|
Phillips MA, Rutledge GA, Kezos JN, Greenspan ZS, Talbott A, Matty S, Arain H, Mueller LD, Rose MR, Shahrestani P. Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genomics 2018; 19:743. [PMID: 30305018 PMCID: PMC6180417 DOI: 10.1186/s12864-018-5118-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies combining experimental evolution and next-generation sequencing have found that adaptation in sexually reproducing populations is primarily fueled by standing genetic variation. Consequently, the response to selection is rapid and highly repeatable across replicate populations. Some studies suggest that the response to selection is highly repeatable at both the phenotypic and genomic levels, and that evolutionary history has little impact. Other studies suggest that even when the response to selection is repeatable phenotypically, evolutionary history can have significant impacts at the genomic level. Here we test two hypotheses that may explain this discrepancy. Hypothesis 1: Past intense selection reduces evolutionary repeatability at the genomic and phenotypic levels when conditions change. Hypothesis 2: Previous intense selection does not reduce evolutionary repeatability, but other evolutionary mechanisms may. We test these hypotheses using D. melanogaster populations that were subjected to 260 generations of intense selection for desiccation resistance and have since been under relaxed selection for the past 230 generations. RESULTS We find that, with the exception of longevity and to a lesser extent fecundity, 230 generations of relaxed selection has erased the extreme phenotypic differentiation previously found. We also find no signs of genetic fixation, and only limited evidence of genetic differentiation between previously desiccation resistance selected populations and their controls. CONCLUSION Our findings suggest that evolution in our system is highly repeatable even when populations have been previously subjected to bouts of extreme selection. We therefore conclude that evolutionary repeatability can overcome past bouts of extreme selection in Drosophila experimental evolution, provided experiments are sufficiently long and populations are not inbred.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA.
| | - Grant A Rutledge
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - James N Kezos
- Department of Development, Aging, and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Zachary S Greenspan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Andrew Talbott
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sara Matty
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Hamid Arain
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Parvin Shahrestani
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| |
Collapse
|
33
|
Mallard F, Nolte V, Tobler R, Kapun M, Schlötterer C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol 2018; 19:119. [PMID: 30122150 PMCID: PMC6100727 DOI: 10.1186/s13059-018-1503-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Population genetic theory predicts that rapid adaptation is largely driven by complex traits encoded by many loci of small effect. Because large-effect loci are quickly fixed in natural populations, they should not contribute much to rapid adaptation. RESULTS To investigate the genetic architecture of thermal adaptation - a highly complex trait - we performed experimental evolution on a natural Drosophila simulans population. Transcriptome and respiration measurements reveal extensive metabolic rewiring after only approximately 60 generations in a hot environment. Analysis of genome-wide polymorphisms identifies two interacting selection targets, Sestrin and SNF4Aγ, pointing to AMPK, a central metabolic switch, as a key factor for thermal adaptation. CONCLUSIONS Our results demonstrate that large-effect loci segregating at intermediate allele frequencies can allow natural populations to rapidly respond to selection. Because SNF4Aγ also exhibits clinal variation in various Drosophila species, we suggest that this large-effect polymorphism is maintained by temporal and spatial temperature variation in natural environments.
Collapse
Affiliation(s)
- François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ray Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present address: Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Kapun
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present address: Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
34
|
R Nené N, Mustonen V, J R Illingworth C. Evaluating genetic drift in time-series evolutionary analysis. J Theor Biol 2018; 437:51-57. [PMID: 28958783 PMCID: PMC5703635 DOI: 10.1016/j.jtbi.2017.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022]
Abstract
The Wright-Fisher model is the most popular population model for describing the behaviour of evolutionary systems with a finite population size. Approximations have commonly been used but the model itself has rarely been tested against time-resolved genomic data. Here, we evaluate the extent to which it can be inferred as the correct model under a likelihood framework. Given genome-wide data from an evolutionary experiment, we validate the Wright-Fisher drift model as the better option for describing evolutionary trajectories in a finite population. This was found by evaluating its performance against a Gaussian model of allele frequency propagation. However, we note a range of circumstances under which standard Wright-Fisher drift cannot be correctly identified.
Collapse
Affiliation(s)
- Nuno R Nené
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Biosciences, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
35
|
Hardy CM, Burke MK, Everett LJ, Han MV, Lantz KM, Gibbs AG. Genome-Wide Analysis of Starvation-Selected Drosophila melanogaster-A Genetic Model of Obesity. Mol Biol Evol 2018; 35:50-65. [PMID: 29309688 PMCID: PMC5850753 DOI: 10.1093/molbev/msx254] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution affords the opportunity to investigate adaptation to stressful environments. Studies combining experimental evolution with whole-genome resequencing have provided insight into the dynamics of adaptation and a new tool to uncover genes associated with polygenic traits. Here, we selected for starvation resistance in populations of Drosophila melanogaster for over 80 generations. In response, the starvation-selected lines developed an obese condition, storing nearly twice the level of total lipids than their unselected controls. Although these fats provide a ∼3-fold increase in starvation resistance, the imbalance in lipid homeostasis incurs evolutionary cost. Some of these tradeoffs resemble obesity-associated pathologies in mammals including metabolic depression, low activity levels, dilated cardiomyopathy, and disrupted sleeping patterns. To determine the genetic basis of these traits, we resequenced genomic DNA from the selected lines and their controls. We found 1,046,373 polymorphic sites, many of which diverged between selection treatments. In addition, we found a wide range of genetic heterogeneity between the replicates of the selected lines, suggesting multiple mechanisms of adaptation. Genome-wide heterozygosity was low in the selected populations, with many large blocks of SNPs nearing fixation. We found candidate loci under selection by using an algorithm to control for the effects of genetic drift. These loci were mapped to a set of 382 genes, which associated with many processes including nutrient response, catabolic metabolism, and lipid droplet function. The results of our study speak to the evolutionary origins of obesity and provide new targets to understand the polygenic nature of obesity in a unique model system.
Collapse
Affiliation(s)
- Christopher M Hardy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Logan J Everett
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Kathryn M Lantz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
36
|
Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep. PLoS Genet 2017; 13:e1007098. [PMID: 29240764 PMCID: PMC5730107 DOI: 10.1371/journal.pgen.1007098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022] Open
Abstract
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways—EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive. One of the biggest mysteries in biology is the need to sleep. Sleep duration has an underlying genetic basis, suggesting that very long and short sleep times could be bred for experimentally. How far can sleep duration be driven up or down? Here we achieved extremely long and short night sleep duration by subjecting a wild-derived population of Drosophila melanogaster to an experimental breeding program. At the end of the breeding program, long sleepers averaged 9.97 hours more nightly sleep than short sleepers. We analyzed whole-genome sequences from seven generations of the experimental breeding to identify allele frequencies that diverged between long and short sleepers, and verified genes and genomic regions with mutation and deficiency testing. These alleles map to classic developmental and signaling pathways, implicating many diverse processes that potentially affect sleep duration.
Collapse
|
37
|
Rudman SM, Barbour MA, Csilléry K, Gienapp P, Guillaume F, Hairston Jr NG, Hendry AP, Lasky JR, Rafajlović M, Räsänen K, Schmidt PS, Seehausen O, Therkildsen NO, Turcotte MM, Levine JM. What genomic data can reveal about eco-evolutionary dynamics. Nat Ecol Evol 2017; 2:9-15. [DOI: 10.1038/s41559-017-0385-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023]
|
38
|
Schou MF, Loeschcke V, Bechsgaard J, Schlötterer C, Kristensen TN. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Mol Ecol 2017; 26:6510-6523. [PMID: 28746770 DOI: 10.1111/mec.14262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The effective population size (Ne ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on Ne , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using pooled RAD sequencing. In small populations, variation was lost at a substantially lower rate than expected. This observation was consistent across two ecological relevant thermal regimes, one stable and one with a stressful increase in temperature across generations. Estimated ratios between Ne and adult census size were consistently higher in small than in larger populations. The finding provides evidence for a slower than expected loss of genetic diversity and consequently a higher than expected long-term evolutionary potential in small fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent with this hypothesis, the X-chromosome, which is largely free of recessive deleterious alleles due to hemizygosity in males, fits neutral expectations even in small populations. Our experiments provide experimental answers to a range of unexpected patterns in natural populations, ranging from variable diversity on X-chromosomes and autosomes to surprisingly high levels of nucleotide diversity in small populations.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | | | | | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Seabra SG, Fragata I, Antunes MA, Faria GS, Santos MA, Sousa VC, Simões P, Matos M. Different Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting History. Mol Biol Evol 2017; 35:549-563. [PMID: 29029198 DOI: 10.1093/molbev/msx247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experimental evolution is a powerful tool to understand the adaptive potential of populations under environmental change. Here, we study the importance of the historical genetic background in the outcome of evolution at the genome-wide level. Using the natural clinal variation of Drosophila subobscura, we sampled populations from two contrasting latitudes (Adraga, Portugal and Groningen, Netherlands) and introduced them in a new common environment in the laboratory. We characterized the genome-wide temporal changes underlying the evolutionary dynamics of these populations, which had previously shown fast convergence at the phenotypic level, but not at chromosomal inversion frequencies. We found that initially differentiated populations did not converge either at genome-wide level or at candidate SNPs with signs of selection. In contrast, populations from Portugal showed convergence to the control population that derived from the same geographical origin and had been long-established in the laboratory. Candidate SNPs showed a variety of different allele frequency change patterns across generations, indicative of an underlying polygenic basis. We did not detect strong linkage around candidate SNPs, but rather a small but long-ranging effect. In conclusion, we found that history played a major role in genomic variation and evolution, with initially differentiated populations reaching the same adaptive outcome through different genetic routes.
Collapse
Affiliation(s)
- Sofia G Seabra
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo S Faria
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,CEDOC - Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vitor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
40
|
Graves JL, Hertweck KL, Phillips MA, Han MV, Cabral LG, Barter TT, Greer LF, Burke MK, Mueller LD, Rose MR. Genomics of Parallel Experimental Evolution in Drosophila. Mol Biol Evol 2017; 34:831-842. [PMID: 28087779 PMCID: PMC5400383 DOI: 10.1093/molbev/msw282] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
What are the genomic foundations of adaptation in sexual populations? We address this question using fitness–character and whole-genome sequence data from 30 Drosophila laboratory populations. These 30 populations are part of a nearly 40-year laboratory radiation featuring 3 selection regimes, each shared by 10 populations for up to 837 generations, with moderately large effective population sizes. Each of 3 sets of the 10 populations that shared a selection regime consists of 5 populations that have long been maintained under that selection regime, paired with 5 populations that had only recently been subjected to that selection regime. We find a high degree of evolutionary parallelism in fitness phenotypes when most-recent selection regimes are shared, as in previous studies from our laboratory. We also find genomic parallelism with respect to the frequencies of single-nucleotide polymorphisms, transposable elements, insertions, and structural variants, which was expected. Entirely unexpected was a high degree of parallelism for linkage disequilibrium. The evolutionary genetic changes among these sexual populations are rapid and genomically extensive. This pattern may be due to segregating functional genetic variation that is abundantly maintained genome-wide by selection, variation that responds immediately to changes of selection regime.
Collapse
Affiliation(s)
- J L Graves
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University and UNC Greensboro, Greensboro, NC
| | - K L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, TX
| | - M A Phillips
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - M V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV
| | - L G Cabral
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - T T Barter
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - L F Greer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - M K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - L D Mueller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - M R Rose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
41
|
Drosophila simulans: A Species with Improved Resolution in Evolve and Resequence Studies. G3-GENES GENOMES GENETICS 2017; 7:2337-2343. [PMID: 28546383 PMCID: PMC5499140 DOI: 10.1534/g3.117.043349] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The combination of experimental evolution with high-throughput sequencing of pooled individuals—i.e., evolve and resequence (E&R)—is a powerful approach to study adaptation from standing genetic variation under controlled, replicated conditions. Nevertheless, E&R studies in Drosophila melanogaster have frequently resulted in inordinate numbers of candidate SNPs, particularly for complex traits. Here, we contrast the genomic signature of adaptation following ∼60 generations in a novel hot environment for D. melanogaster and D. simulans. For D. simulans, the regions carrying putatively selected loci were far more distinct, and thus harbored fewer false positives, than those in D. melanogaster. We propose that species without segregating inversions and higher recombination rates, such as D. simulans, are better suited for E&R studies that aim to characterize the genetic variants underlying the adaptive response.
Collapse
|
42
|
Wiberg RAW, Gaggiotti OE, Morrissey MB, Ritchie MG. Identifying consistent allele frequency differences in studies of stratified populations. Methods Ecol Evol 2017; 8:1899-1909. [PMID: 29263778 PMCID: PMC5726381 DOI: 10.1111/2041-210x.12810] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022]
Abstract
With increasing application of pooled‐sequencing approaches to population genomics robust methods are needed to accurately quantify allele frequency differences between populations. Identifying consistent differences across stratified populations can allow us to detect genomic regions under selection and that differ between populations with different histories or attributes. Current popular statistical tests are easily implemented in widely available software tools which make them simple for researchers to apply. However, there are potential problems with the way such tests are used, which means that underlying assumptions about the data are frequently violated. These problems are highlighted by simulation of simple but realistic population genetic models of neutral evolution and the performance of different tests are assessed. We present alternative tests (including Generalised Linear Models [GLMs] with quasibinomial error structure) with attractive properties for the analysis of allele frequency differences and re‐analyse a published dataset. The simulations show that common statistical tests for consistent allele frequency differences perform poorly, with high false positive rates. Applying tests that do not confound heterogeneity and main effects significantly improves inference. Variation in sequencing coverage likely produces many false positives and re‐scaling allele frequencies to counts out of a common value or an effective sample size reduces this effect. Many researchers are interested in identifying allele frequencies that vary consistently across replicates to identify loci underlying phenotypic responses to selection or natural variation in phenotypes. Popular methods that have been suggested for this task perform poorly in simulations. Overall, quasibinomial GLMs perform better and also have the attractive feature of allowing correction for multiple testing by standard procedures and are easily extended to other designs.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Oscar E Gaggiotti
- Scottish Oceans Institute Gatty Marine Laboratory University of St Andrews East Sands St Andrews, Scotland United Kingdom
| | - Michael B Morrissey
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Michael G Ritchie
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| |
Collapse
|
43
|
Abstract
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data.
Collapse
|
44
|
Revisiting Adaptive Potential, Population Size, and Conservation. Trends Ecol Evol 2017; 32:506-517. [PMID: 28476215 DOI: 10.1016/j.tree.2017.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022]
Abstract
Additive genetic variance (VA) reflects the potential for evolutionary shifts and can be low for some traits or populations. High VA is critical for the conservation of threatened species under selection to facilitate adaptation. Theory predicts tight associations between population size and VA, but data from some experimental models, and managed and natural populations do not always support this prediction. However, VA comparisons often have low statistical power, are undertaken in highly controlled environments distinct from natural habitats, and focus on traits with limited ecological relevance. Moreover, investigations of VA typically fail to consider rare alleles, genetic load, or linkage disequilibrium, resulting in deleterious effects associated with favored alleles in small populations. Large population size remains essential for ensuring adaptation.
Collapse
|
45
|
Oppold AM, Schmidt H, Rose M, Hellmann SL, Dolze F, Ripp F, Weich B, Schmidt-Ott U, Schmidt E, Kofler R, Hankeln T, Pfenninger M. Chironomus riparius
(Diptera) genome sequencing reveals the impact of minisatellite transposable elements on population divergence. Mol Ecol 2017; 26:3256-3275. [DOI: 10.1111/mec.14111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Ann-Marie Oppold
- Molecular Ecology Group; Institute for Ecology, Evolution & Diversity; Goethe-University Frankfurt am Main; Max-von-Laue-Str. 9, 60438 Frankfurt am Main Hessen Germany
- Senckenberg Biodiversity and Climate Research Centre; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Hessen Germany
| | - Hanno Schmidt
- Senckenberg Biodiversity and Climate Research Centre; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Hessen Germany
| | - Marcel Rose
- Molecular Ecology Group; Institute for Ecology, Evolution & Diversity; Goethe-University Frankfurt am Main; Max-von-Laue-Str. 9, 60438 Frankfurt am Main Hessen Germany
| | - Sören Lukas Hellmann
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Florian Dolze
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Fabian Ripp
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Bettina Weich
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy; University of Chicago; 920 E. 58th Street, 1061C Chicago IL 60637 USA
| | - Erwin Schmidt
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Robert Kofler
- Institut für Populationsgenetik; Vetmeduni Vienna 1210 Vienna Austria
| | - Thomas Hankeln
- Institute of Molecular Genetics; Johannes Gutenberg-University; Johann-Joachim-Becherweg 30a 55128 Mainz Rheinland-Pfalz Germany
| | - Markus Pfenninger
- Molecular Ecology Group; Institute for Ecology, Evolution & Diversity; Goethe-University Frankfurt am Main; Max-von-Laue-Str. 9, 60438 Frankfurt am Main Hessen Germany
- Senckenberg Biodiversity and Climate Research Centre; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Hessen Germany
| |
Collapse
|
46
|
Clear: Composition of Likelihoods for Evolve and Resequence Experiments. Genetics 2017; 206:1011-1023. [PMID: 28396506 PMCID: PMC5499160 DOI: 10.1534/genetics.116.197566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/31/2017] [Indexed: 01/26/2023] Open
Abstract
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.
Collapse
|
47
|
Garlapow ME, Everett LJ, Zhou S, Gearhart AW, Fay KA, Huang W, Morozova TV, Arya GH, Turlapati L, St Armour G, Hussain YN, McAdams SE, Fochler S, Mackay TFC. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster. Behav Genet 2017; 47:227-243. [PMID: 27704301 PMCID: PMC5305434 DOI: 10.1007/s10519-016-9819-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.
Collapse
Affiliation(s)
- Megan E Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Logan J Everett
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Shanshan Zhou
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Alexander W Gearhart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Kairsten A Fay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Yasmeen N Hussain
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sarah E McAdams
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sophia Fochler
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Trudy F C Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
48
|
Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines. Genetics 2016; 205:871-890. [PMID: 28007884 DOI: 10.1534/genetics.116.187104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance-a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52-0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic.
Collapse
|
49
|
Uncovering the genetic signature of quantitative trait evolution with replicated time series data. Heredity (Edinb) 2016; 118:42-51. [PMID: 27848948 DOI: 10.1038/hdy.2016.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/04/2023] Open
Abstract
The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.
Collapse
|
50
|
Franssen SU, Barton NH, Schlötterer C. Reconstruction of Haplotype-Blocks Selected during Experimental Evolution. Mol Biol Evol 2016; 34:174-184. [PMID: 27702776 DOI: 10.1093/molbev/msw210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genetic analysis of experimentally evolving populations typically relies on short reads from pooled individuals (Pool-Seq). While this method provides reliable allele frequency estimates, the underlying haplotype structure remains poorly characterized. With small population sizes and adaptive variants that start from low frequencies, the interpretation of selection signatures in most Evolve and Resequencing studies remains challenging. To facilitate the characterization of selection targets, we propose a new approach that reconstructs selected haplotypes from replicated time series, using Pool-Seq data. We identify selected haplotypes through the correlated frequencies of alleles carried by them. Computer simulations indicate that selected haplotype-blocks of several Mb can be reconstructed with high confidence and low error rates, even when allele frequencies change only by 20% across three replicates. Applying this method to real data from D. melanogaster populations adapting to a hot environment, we identify a selected haplotype-block of 6.93 Mb. We confirm the presence of this haplotype-block in evolved populations by experimental haplotyping, demonstrating the power and accuracy of our haplotype reconstruction from Pool-Seq data. We propose that the combination of allele frequency estimates with haplotype information will provide the key to understanding the dynamics of adaptive alleles.
Collapse
Affiliation(s)
| | - Nicholas H Barton
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | |
Collapse
|