1
|
Li J, Tang YE, Lv B, Wang J, Wang Z, Song Q. Integrated transcriptome and metabolome analysis reveals the molecular responses of Pardosa pseudoannulata to hypoxic environments. BMC ZOOL 2024; 9:15. [PMID: 38965564 PMCID: PMC11225295 DOI: 10.1186/s40850-024-00206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Terrestrial organisms are likely to face hypoxic stress during natural disasters such as floods or landslides, which can lead to inevitable hypoxic conditions for those commonly residing within soil. Pardosa pseudoannulata often inhabits soil crevices and has been extensively studied, yet research on its response to hypoxic stress remains unclear. Therefore, we investigated the adaptive strategies of Pardosa pseudoannulata under hypoxic stress using metabolomics and transcriptomics approaches. The results indicated that under hypoxic stress, metabolites related to energy and antioxidants such as ATP, D-glucose 6-phosphate, flavin adenine dinucleotide (FAD), and reduced L-glutathione were significantly differentially expressed. Pathways such as the citric acid (TCA) cycle and oxidative phosphorylation were significantly enriched. Transcriptome analysis and related assessments also revealed a significant enrichment of pathways associated with energy metabolism, suggesting that Pardosa pseudoannulata primarily copes with hypoxic environments by modulating energy metabolism and antioxidant-related substances.
Collapse
Affiliation(s)
- Jinjin Li
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Bo Lv
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
3
|
Torres-Gonzalez E, Makova KD. Exploring the Effects of Mitonuclear Interactions on Mitochondrial DNA Gene Expression in Humans. Front Genet 2022; 13:797129. [PMID: 35846132 PMCID: PMC9277102 DOI: 10.3389/fgene.2022.797129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Most mitochondrial protein complexes include both nuclear and mitochondrial gene products, which coevolved to work together. This coevolution can be disrupted due to disparity in genetic ancestry between the nuclear and mitochondrial genomes in recently admixed populations. Such mitonuclear DNA discordance might result in phenotypic effects. Several nuclear-encoded proteins regulate expression of mitochondrial DNA (mtDNA) genes. We hypothesized that mitonuclear DNA discordance affects expression of genes encoded by mtDNA. To test this, we utilized the data from the GTEx project, which contains expression levels for ∼100 African Americans and >600 European Americans. The varying proportion of African and European ancestry in recently admixed African Americans provides a range of mitonuclear discordance values, which can be correlated with mtDNA gene expression levels (adjusted for age and ischemic time). In contrast, European Americans did not undergo recent admixture. We demonstrated that, for most mtDNA protein-coding genes, expression levels in energetically-demanding tissues were lower in African Americans than in European Americans. Furthermore, gene expression levels were lower in individuals with higher mitonuclear discordance, independent of population. Moreover, we found a negative correlation between mtDNA gene expression and mitonuclear discordance. In African Americans, the average value of African ancestry was higher for nuclear-encoded mitochondrial than non-mitochondrial genes, facilitating a match in ancestry with the mtDNA and more optimal interactions. These results represent an example of a phenotypic effect of mitonuclear discordance on human admixed populations, and have potential biomedical applications.
Collapse
Affiliation(s)
| | - Kateryna D. Makova
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Mitonuclear mismatch alters nuclear gene expression in naturally introgressed Rhinolophus bats. Front Zool 2021; 18:42. [PMID: 34488775 PMCID: PMC8419968 DOI: 10.1186/s12983-021-00424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Background Mitochondrial function involves the interplay between mitochondrial and nuclear genomes. Such mitonuclear interactions can be disrupted by the introgression of mitochondrial DNA between taxa or divergent populations. Previous studies of several model systems (e.g. Drosophila) indicate that the disruption of mitonuclear interactions, termed mitonuclear mismatch, can alter nuclear gene expression, yet few studies have focused on natural populations. Results Here we study a naturally introgressed population in the secondary contact zone of two subspecies of the intermediate horseshoe bat (Rhinolophus affinis), in which individuals possess either mitonuclear matched or mismatched genotypes. We generated transcriptome data for six tissue types from five mitonuclear matched and five mismatched individuals. Our results revealed strong tissue-specific effects of mitonuclear mismatch on nuclear gene expression with the largest effect seen in pectoral muscle. Moreover, consistent with the hypothesis that genes associated with the response to oxidative stress may be upregulated in mitonuclear mismatched individuals, we identified several such gene candidates, including DNASE1L3, GPx3 and HSPB6 in muscle, and ISG15 and IFI6 in heart. Conclusion Our study reveals how mitonuclear mismatch arising from introgression in natural populations is likely to have fitness consequences. Underlying the processes that maintain mitonuclear discordance is a step forward to understand the role of mitonuclear interactions in population divergence and speciation. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00424-x.
Collapse
|
5
|
Chen W, Mao X. Extensive alternative splicing triggered by mitonuclear mismatch in naturally introgressed Rhinolophus bats. Ecol Evol 2021; 11:12003-12010. [PMID: 34522356 PMCID: PMC8427577 DOI: 10.1002/ece3.7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial function needs strong interactions of mitochondrial and nuclear (mitonuclear) genomes, which can be disrupted by mitonuclear mismatch due to mitochondrial DNA (mtDNA) introgression between two formerly isolated populations or taxa. This mitonuclear disruption may cause severe cellular stress in mismatched individuals. Gene expression changes and alternative splicing (AS) are two important transcriptional regulations to respond to environmental or cellular stresses. We previously identified a naturally introgressed population in the intermediate horseshoe bat (Rhinolophus affinis). Individuals from this population belong to R. a. himalayanus and share almost identical nuclear genetic background; however, some of them had mtDNA from another subspecies (R. a. macrurus). With this unique natural system, we examined gene expression changes in six tissues between five mitonuclear mismatched and five matched individuals. A small number of differentially expressed genes (DEGs) were identified, and functional enrichment analysis revealed that most DEGs were related to immune response although some may be involved in response to oxidative stress. In contrast, we identified extensive AS events and alternatively spliced genes (ASGs) between mismatched and matched individuals. Functional enrichment analysis revealed that multiple ASGs were directly or indirectly associated with energy production in mitochondria which is vital for survival of organism. To our knowledge, this is the first study to examine the role of AS in responding to cellular stress caused by mitonuclear mismatch in natural populations. Our results suggest that AS may play a more important role than gene expression regulation in responding to severe environmental or cellular stresses.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Xiuguang Mao
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| |
Collapse
|
6
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
7
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Carnegie L, Reuter M, Fowler K, Lane N, Camus MF. Mother's curse is pervasive across a large mitonuclear Drosophila panel. Evol Lett 2021; 5:230-239. [PMID: 34136271 PMCID: PMC8190446 DOI: 10.1002/evl3.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 01/16/2023] Open
Abstract
The maternal inheritance of mitochondrial genomes entails a sex‐specific selective sieve, whereby mutations in mitochondrial DNA can only respond to selection acting on females. In theory, this enables male‐harming mutations to accumulate in mitochondrial genomes as long as they are neutral, beneficial, or only slightly deleterious to females. Ultimately, this bias could drive the evolution of male‐specific mitochondrial mutation loads, an idea known as mother's curse. Earlier work on this hypothesis has mainly used small Drosophila panels, in which naturally sourced mitochondrial genomes were coupled to an isogenic nuclear background. The lack of nuclear genetic variation in these designs has precluded robust generalization. Here, we test the predictions of mother's curse using a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. Following a predictive framework, we tested the mother's curse hypothesis by screening our panel for wing size. This trait is tightly correlated with overall body size and is sexually dimorphic in Drosophila. Moreover, growth is heavily reliant on metabolism and mitochondrial function, making wing size an ideal trait for the study of the impact of mitochondrial variation. We detect high levels of mitonuclear epistasis, and more importantly, we report that mitochondrial genetic variance is larger in male than female Drosophila for eight out of the nine nuclear genetic backgrounds used. These results demonstrate that the maternal inheritance of mitochondrial DNA does indeed modulate male life history traits in a more generalisable way than previously demonstrated.
Collapse
Affiliation(s)
- Lorcan Carnegie
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment University College London London WC1E 6BT United Kingdom
| |
Collapse
|
9
|
Mossman JA, Mabeza RMS, Blake E, Mehta N, Rand DM. Age of Both Parents Influences Reproduction and Egg Dumping Behavior in Drosophila melanogaster. J Hered 2020; 110:300-309. [PMID: 30753690 PMCID: PMC6503451 DOI: 10.1093/jhered/esz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Trans-generational maternal effects have been shown to influence a broad range of offspring phenotypes. However, very little is known about paternal trans-generational effects. Here, we tested the trans-generational effects of maternal and paternal age, and their interaction, on daughter and son reproductive fitness in Drosophila melanogaster. We found significant effects of parent ages on offspring reproductive fitness during a 10 day postfertilization period. In daughters, older (45 days old) mothers conferred lower reproductive fitness compared with younger mothers (3 days old). In sons, father’s age significantly affected reproductive fitness. The effects of 2 old parents were additive in both sexes and reproductive fitness was lowest when the focal individual had 2 old parents. Interestingly, daughter fertility was sensitive to father’s age but son fertility was insensitive to mother’s age, suggesting a sexual asymmetry in trans-generational effects. We found the egg-laying dynamics in daughters dramatically shaped this relationship. Daughters with 2 old parents demonstrated an extreme egg dumping behavior on day 1 and laid >2.35× the number of eggs than the other 3 age class treatments. Our study reveals significant trans-generational maternal and paternal age effects on fertility and an association with a novel egg laying behavioral phenotype in Drosophila.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Russyan Mark S Mabeza
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Emma Blake
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Neha Mehta
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
10
|
Camus MF, O'Leary M, Reuter M, Lane N. Impact of mitonuclear interactions on life-history responses to diet. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190416. [PMID: 31787037 DOI: 10.1098/rstb.2019.0416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are central to both energy metabolism and biosynthesis. Mitochondrial function could therefore influence resource allocation. Critically, mitochondrial function depends on interactions between proteins encoded by the mitochondrial and nuclear genomes. Severe incompatibilities between these genomes can have pervasive effects on both fitness and longevity. How milder deficits in mitochondrial function affect life-history trade-offs is less well understood. Here, we analyse how mitonuclear interactions affect the trade-off between fecundity and longevity in Drosophila melanogaster. We consider a panel of 10 different mitochondrial DNA haplotypes against two contrasting nuclear backgrounds (w1118 (WE) and Zim53 (ZIM)) in response to high-protein versus standard diet. We report strikingly different responses between the two nuclear backgrounds. WE females have higher fecundity and decreased longevity on high protein. ZIM females have much greater fecundity and shorter lifespan than WE flies on standard diet. High protein doubled their fecundity with no effect on longevity. Mitochondrial haplotype reflected nuclear life-history trade-offs, with a negative correlation between longevity and fecundity in WE flies and no correlation in ZIM flies. Mitonuclear interactions had substantial effects but did not reflect genetic distance between mitochondrial haplotypes. We conclude that mitonuclear interactions can have significant impact on life-history trade-offs, but their effects are not predictable by relatedness. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael O'Leary
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Rand DM, Mossman JA. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190188. [PMID: 31787039 PMCID: PMC6939372 DOI: 10.1098/rstb.2019.0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in Drosophila, and from those of other systems, that mitonuclear interactions—either conflicting or cooperative—are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| |
Collapse
|
12
|
Nagarajan-Radha V, Aitkenhead I, Clancy DJ, Chown SL, Dowling DK. Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190178. [PMID: 31787038 DOI: 10.1098/rstb.2019.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait-metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David J Clancy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
14
|
Dong W, Dobler R, Dowling DK, Moussian B. The cuticle inward barrier in Drosophila melanogaster is shaped by mitochondrial and nuclear genotypes and a sex-specific effect of diet. PeerJ 2019; 7:e7802. [PMID: 31592352 PMCID: PMC6779114 DOI: 10.7717/peerj.7802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023] Open
Abstract
An important role of the insect cuticle is to prevent wetting (i.e., permeation of water) and also to prevent penetration of potentially harmful substances. This barrier function mainly depends on the hydrophobic cuticle surface composed of lipids including cuticular hydrocarbons (CHCs). We investigated to what extent the cuticle inward barrier function depends on the genotype, comprising mitochondrial and nuclear genes in the fruit fly Drosophila melanogaster, and investigated the contribution of interactions between mitochondrial and nuclear genotypes (mito-nuclear interactions) on this function. In addition, we assessed the effects of nutrition and sex on the cuticle barrier function. Based on a dye penetration assay, we find that cuticle barrier function varies across three fly lines that were captured from geographically separated regions in three continents. Testing different combinations of mito-nuclear genotypes, we show that the inward barrier efficiency is modulated by the nuclear and mitochondrial genomes independently. We also find an interaction between diet and sex. Our findings provide new insights into the regulation of cuticle inward barrier function in nature.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Ralph Dobler
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
- Université Côte d’Azur, CNRS—Inserm, iBV, Parc Valrose, Nice, France
| |
Collapse
|
15
|
Mossman JA, Biancani LM, Rand DM. Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks. BMC Genomics 2019; 20:691. [PMID: 31477008 PMCID: PMC6719383 DOI: 10.1186/s12864-019-6061-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial, and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans (2x haplotypes). RESULTS We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated with mtDNA-sensitive genes. CONCLUSIONS There are predictive conditions for nuclear genes that are influenced by mtDNA variation.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA.
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA
- Present Address: Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
16
|
Mitochondrial genetics regulate nuclear gene expression through metabolites. Proc Natl Acad Sci U S A 2019; 116:15763-15765. [PMID: 31308238 PMCID: PMC6689900 DOI: 10.1073/pnas.1909996116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
17
|
Sujkowski A, Spierer AN, Rajagopalan T, Bazzell B, Safdar M, Imsirovic D, Arking R, Rand DM, Wessells R. Mito-nuclear interactions modify Drosophila exercise performance. Mitochondrion 2019; 47:188-205. [PMID: 30408593 PMCID: PMC7035791 DOI: 10.1016/j.mito.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 02/08/2023]
Abstract
Endurance exercise has received increasing attention as a broadly preventative measure against age-related disease and dysfunction. Improvement of mitochondrial quality by enhancement of mitochondrial turnover is thought to be among the important molecular mechanisms underpinning the benefits of exercise. Interactions between the mitochondrial and nuclear genomes are important components of the genetic basis for variation in longevity, fitness and the incidence of disease. Here, we examine the effects of replacing the mitochondrial genome (mtDNA) of several Drosophila strains with mtDNA from other strains, or from closely related species, on exercise performance. We find that mitochondria from flies selected for longevity increase the performance of flies from a parental strain. We also find evidence that mitochondria from other strains or species alter exercise performance, with examples of both beneficial and deleterious effects. These findings suggest that both the mitochondrial and nuclear genomes, as well as interactions between the two, contribute significantly to exercise capacity.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Thiviya Rajagopalan
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Brian Bazzell
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Maryam Safdar
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Dinko Imsirovic
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Robert Wessells
- Department of Physiology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
18
|
Loss of the HIF pathway in a widely distributed intertidal crustacean, the copepod Tigriopus californicus. Proc Natl Acad Sci U S A 2019; 116:12913-12918. [PMID: 31182611 PMCID: PMC6600937 DOI: 10.1073/pnas.1819874116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxygen availability is essential for development, growth, and viability of aerobic organisms. The genes in the hypoxia-inducible factor (HIF) pathway are considered master regulators of oxygen sensitivity and distribution inside cells, and they are hence highly conserved across animal groups. These genes are frequent targets of natural selection in organisms living in low-oxygen environments, such as high-altitude humans and birds. Here, we show that the abundant tidepool copepod Tigriopus californicus can withstand prolonged exposure to extreme oxygen deprivation, despite having secondarily lost key HIF-pathway members. Our results suggest the existence of alternative mechanisms of response to hypoxic stress in animals, and we show that genes involved in cuticle reorganization and ion transport may play a major role. Hypoxia is a major physiological constraint for which multicellular eukaryotes have evolved robust cellular mechanisms capable of addressing dynamic changes in O2 availability. In animals, oxygen sensing and regulation is primarily performed by the hypoxia-inducible factor (HIF) pathway, and the key components of this pathway are thought to be highly conserved across metazoans. Marine intertidal habitats are dynamic environments, and their inhabitants are known to tolerate wide fluctuations in salinity, temperature, pH, and oxygen. In this study, we show that an abundant intertidal crustacean, the copepod Tigriopus californicus, has lost major genetic components of the HIF pathway, but still shows robust survivorship and transcriptional response to hypoxia. Mining of protein domains across the genome, followed by phylogenetic analyses of gene families, did not identify two key regulatory elements of the metazoan hypoxia response, namely the transcription factor HIF-α and its oxygen-sensing prolyl hydroxylase repressor, EGLN. Despite this loss, phenotypic assays revealed that this species is tolerant to extremely low levels of available O2 for at least 24 h at both larval and adult stages. RNA-sequencing (seq) of copepods exposed to nearly anoxic conditions showed differential expression of over 400 genes, with evidence for induction of glycolytic metabolism without a depression of oxidative phosphorylation. Moreover, genes involved in chitin metabolism and cuticle reorganization show categorically a consistent pattern of change during anoxia, highlighting this pathway as a potential solution to low oxygen availability in this small animal with no respiratory structures or pigment.
Collapse
|
19
|
Abstract
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Camus MF, Dowling DK. Mitochondrial genetic effects on reproductive success: signatures of positive intrasexual, but negative intersexual pleiotropy. Proc Biol Sci 2019; 285:rspb.2018.0187. [PMID: 29794041 DOI: 10.1098/rspb.2018.0187] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Theory predicts that maternal inheritance of mitochondria will facilitate the accumulation of mtDNA mutations that are male biased, or even sexually antagonistic, in effect. While there are many reported cases of mtDNA mutations conferring cytoplasmic male sterility in plants, historically it was assumed such mutations would not persist in the streamlined mitochondrial genomes of bilaterian metazoans. Intriguingly, recent cases of mitochondrial variants exerting male biases in effect have come to light in bilaterians. These cases aside, it remains unknown whether the mitochondrial genetic variation affecting phenotypic expression, and in particular reproductive performance, in bilaterians is routinely composed of sex-biased or sex-specific variation. If selection consistently favours mtDNA variants that augment female fitness, but at cost to males, this could shape patterns of pleiotropy and lead to negative intersexual correlations across mtDNA haplotypes. Here, we show that genetic variation across naturally occurring mitochondrial haplotypes affects components of reproductive success in both sexes, in the fruit fly Drosophila melanogaster We find that intrasexual correlations across mitochondrial haplotypes, for components of reproductive success, are generally positive, while intersexual correlations are negative. These results accord with theoretical predictions, suggesting that maternal inheritance has led to the fixation of numerous mutations of sexually antagonistic effect.
Collapse
Affiliation(s)
- M Florencia Camus
- School of Biological Sciences, Monash University, Victoria 3800, Australia .,Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
21
|
Mossman JA, Ge JY, Navarro F, Rand DM. Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in Drosophila. G3 (BETHESDA, MD.) 2019; 9:1175-1188. [PMID: 30745378 PMCID: PMC6469417 DOI: 10.1534/g3.119.400067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA (mtDNA) has been one of the most extensively studied molecules in ecological, evolutionary and clinical genetics. In its early application in evolutionary genetics, mtDNA was assumed to be a selectively neutral marker conferring negligible fitness consequences for its host. However, this dogma has been overturned in recent years due to now extensive evidence for non-neutral evolutionary dynamics. Since mtDNA proteins physically interact with nuclear proteins to provide the mitochondrial machinery for aerobic ATP production, among other cell functions, co-variation of the respective genes is predicted to affect organismal fitness. To test this hypothesis we used an mtDNA-nuclear DNA introgression model in Drosophila melanogaster to test the fitness of genotypes in perturbation-reperturbation population cages and in a non-competitive assay for female fecundity. Genotypes consisted of both conspecific and heterospecific mtDNA-nDNA constructs, with either D. melanogaster or D. simulans mtDNAs on two alternative D. melanogaster nuclear backgrounds, to investigate mitonuclear genetic interactions (G x G effects). We found considerable variation between nuclear genetic backgrounds on the selection of mtDNA haplotypes. In addition, there was variation in the selection on mtDNAs pre- and post- reperturbation, demonstrating overall poor repeatability of selection. There was a strong influence of nuclear background on non-competitive fecundity across all the mtDNA species types. In only one of the four cage types did we see a significant fecundity effect between genotypes that could help explain the respective change in genotype frequency over generational time. We discuss these results in the context of G x G interactions and the possible influence of stochastic environments on mtDNA-nDNA selection.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
- Department of Medical Oncology
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Freddy Navarro
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - David M Rand
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
22
|
Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol 2019; 3:213-222. [PMID: 30643241 PMCID: PMC6925600 DOI: 10.1038/s41559-018-0766-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
To function properly, mitochondria utilize products of 37 mitochondrial and >1,000 nuclear genes, which should be compatible with each other. Discordance between mitochondrial and nuclear genetic ancestry could contribute to phenotypic variation in admixed populations. Here, we explored potential mitonuclear incompatibility in six admixed human populations from the Americas: African Americans, African Caribbeans, Colombians, Mexicans, Peruvians and Puerto Ricans. By comparing nuclear versus mitochondrial ancestry in these populations, we first show that mitochondrial DNA (mtDNA) copy number decreases with increasing discordance between nuclear and mtDNA ancestry. The direction of this effect is consistent across mtDNA haplogroups of different geographic origins. This observation indicates suboptimal regulation of mtDNA replication when its components are encoded by nuclear and mtDNA genes with different ancestry. Second, while most populations analysed exhibit no such trend, in African Americans and Puerto Ricans, we find a significant enrichment of ancestry at nuclear-encoded mitochondrial genes towards the source populations contributing the most prevalent mtDNA haplogroups (African and Native American, respectively). This possibly reflects compensatory effects of selection in recovering mitonuclear interactions optimized in the source populations. Our results provide evidence of mitonuclear interactions in human admixed populations and we discuss their implications for human health and disease.
Collapse
|
23
|
Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life 2018; 70:1275-1288. [PMID: 30394643 PMCID: PMC6268205 DOI: 10.1002/iub.1954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Lei Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Connallon T, Camus MF, Morrow EH, Dowling DK. Coadaptation of mitochondrial and nuclear genes, and the cost of mother's curse. Proc Biol Sci 2018; 285:20172257. [PMID: 29343598 PMCID: PMC5805934 DOI: 10.1098/rspb.2017.2257] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Strict maternal inheritance renders the mitochondrial genome susceptible to accumulating mutations that harm males, but are otherwise benign or beneficial for females. This 'mother's curse' effect can degrade male survival and fertility if unopposed by counteracting evolutionary processes. Coadaptation between nuclear and mitochondrial genomes-with nuclear genes evolving to compensate for male-harming mitochondrial substitutions-may ultimately resolve mother's curse. However, males are still expected to incur a transient fitness cost during mito-nuclear coevolution, and it remains unclear how severe such costs should be. We present a population genetic analysis of mito-nuclear coadaptation to resolve mother's curse effects, and show that the magnitude of the 'male mitochondrial load'-the negative impact of mitochondrial substitutions on male fitness components-may be large, even when genetic variation for compensatory evolution is abundant. We also find that the male load is surprisingly sensitive to population size: male fitness costs of mito-nuclear coevolution are particularly pronounced in both small and large populations, and minimized in populations of intermediate size. Our results reveal complex interactions between demography and genetic constraints during the resolution of mother's curse, suggesting potentially widespread species differences in susceptibility to mother's curse effects.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - M Florencia Camus
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
- Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Edward H Morrow
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|