1
|
Ye LX, Zhang JX, Hou XJ, Qiu MQ, Wang WF, Zhang JX, Hu CG, Zhang JZ. A MADS-Box Gene CiMADS43 Is Involved in Citrus Flowering and Leaf Development through Interaction with CiAGL9. Int J Mol Sci 2021; 22:ijms22105205. [PMID: 34069068 PMCID: PMC8156179 DOI: 10.3390/ijms22105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein–protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.
Collapse
|
2
|
Characteristics of banana B genome MADS-box family demonstrate their roles in fruit development, ripening, and stress. Sci Rep 2020; 10:20840. [PMID: 33257717 PMCID: PMC7705751 DOI: 10.1038/s41598-020-77870-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022] Open
Abstract
MADS-box genes are critical regulators of growth and development in flowering plants. Sequencing of the Musa balbisiana (B) genome has provided a platform for the systematic analysis of the MADS-box gene family in the important banana ancestor Musa balbisiana. Seventy-seven MADS-box genes, including 18 type I and 59 type II, were strictly identified from the banana (Pisang Klutuk Wulung, PKW, 2n = 2x = 22) B genome. These genes have been preferentially placed on the banana B genome. Evolutionary analysis suggested that M. balbisiana MCM1-AGAMOUS-DEFICIENS-SRF (MbMADS) might be organized into the MIKCc, MIKC*, Mα, Mβ, and Mγ groups according to the phylogeny. MIKCc was then further categorized into 10 subfamilies according to conserved motif and gene structure analyses. The well-defined MADS-box genes highlight gene birth and death in banana. MbMADSes originated from the same ancestor as MaMADSes. Transcriptome analysis in cultivated banana (ABB) revealed that MbMADSes were conserved and differentially expressed in several organs, in various fruit developing and ripening stages, and in stress treatments, indicating the participation of these genes in fruit development, ripening, and stress responses. Of note, SEP/AGL2 and AG, as well as other several type II MADS-box genes, including the STMADS11 and TM3/SOC1 subfamilies, indicated elevated expression throughout banana fruit development, ripening, and stress treatments, indicating their new parts in controlling fruit development and ripening. According to the co-expression network analysis, MbMADS75 interacted with bZIP and seven other transcription factors to perform its function. This systematic analysis reveals fruit development, ripening, and stress candidate MbMADSes genes for additional functional studies in plants, improving our understanding of the transcriptional regulation of MbMADSes genes and providing a base for genetic modification of MADS-mediated fruit development, ripening, and stress.
Collapse
|
3
|
Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, Mummenhoff K, Koch MA. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 2020; 11:3795. [PMID: 32732942 PMCID: PMC7393125 DOI: 10.1038/s41467-020-17605-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Collapse
Affiliation(s)
- Nora Walden
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Dmitry A German
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- South-Siberian Botanical Garden, Altai State University, Lenina Ave. 61, 656049, Barnaul, Russia
| | - Eva M Wolf
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Markus Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Philippe Rigault
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- GYDLE, 1135 Grande Allée Ouest, Québec, QC, G1S 1E7, Canada
| | - Xiao-Chen Huang
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- School of Life Sciences, Nanchang University, 330031, Nanchang, China
| | - Christiane Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Andreas Franzke
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Barbara Neuffer
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Klaus Mummenhoff
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Abstract
Plant microRNAs do not only perform important roles in development; they also have a fascinating evolutionary dynamics. Their genes appear to originate at quite a high rate during evolution, but most of them evolve initially in an almost neutral way and hence also get lost quite rapidly. Despite the high birth and death rate, a few miRNA-encoding genes got involved in the control of important target genes and thus have been conserved during evolution. This happened obviously at all times and taxonomic levels during land plant evolution. Consequently, the genomes of extant plant species contain a mix of miRNA-encoding genes of different ages, ranging from very young, often even species-specific loci to genes that had already been established in the stem group of extant land plants more than 400 million years ago. It could well be that the evolutionary dynamics of miRNA-encoding genes contributed substantially to the evolution of developmental plasticity in plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute-Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute-Genetics, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|