1
|
Biddanda A, Bandyopadhyay E, de la Fuente Castro C, Witonsky D, Urban Aragon JA, Pasupuleti N, Moots HM, Fonseca R, Freilich S, Stanisavic J, Willis T, Menon A, Mustak MS, Kodira CD, Naren AP, Sikdar M, Rai N, Raghavan M. Distinct positions of genetic and oral histories: Perspectives from India. HGG ADVANCES 2024; 5:100305. [PMID: 38720459 PMCID: PMC11153255 DOI: 10.1016/j.xhgg.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Over the past decade, genomic data have contributed to several insights on global human population histories. These studies have been met both with interest and critically, particularly by populations with oral histories that are records of their past and often reference their origins. While several studies have reported concordance between oral and genetic histories, there is potential for tension that may stem from genetic histories being prioritized or used to confirm community-based knowledge and ethnography, especially if they differ. To investigate the interplay between oral and genetic histories, we focused on the southwestern region of India and analyzed whole-genome sequence data from 156 individuals identifying as Bunt, Kodava, Nair, and Kapla. We supplemented limited anthropological records on these populations with oral history accounts from community members and historical literature, focusing on references to non-local origins such as the ancient Scythians in the case of Bunt, Kodava, and Nair, members of Alexander the Great's army for the Kodava, and an African-related source for Kapla. We found these populations to be genetically most similar to other Indian populations, with the Kapla more similar to South Indian tribal populations that maximize a genetic ancestry related to Ancient Ancestral South Indians. We did not find evidence of additional genetic sources in the study populations than those known to have contributed to many other present-day South Asian populations. Our results demonstrate that oral and genetic histories may not always provide consistent accounts of population origins and motivate further community-engaged, multi-disciplinary investigations of non-local origin stories in these communities.
Collapse
Affiliation(s)
- Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Esha Bandyopadhyay
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Constanza de la Fuente Castro
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Witonsky
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | - Nagarjuna Pasupuleti
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka 574199, India
| | - Hannah M Moots
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Institute for the Study of Ancient Cultures Museum, University of Chicago, Chicago, IL, USA
| | - Renée Fonseca
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Suzanne Freilich
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| | - Jovan Stanisavic
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tabitha Willis
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Anoushka Menon
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka 574199, India
| | | | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Cystic Fibrosis Research Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mithun Sikdar
- Anthropological Survey of India, Mysore, Karnataka 570026, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Uttar Pradesh, Lucknow, Uttar Pradesh 226007, India.
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Markiewicz E, Idowu OC. Evaluation of Personalized Skincare Through in-silico Gene Interactive Networks and Cellular Responses to UVR and Oxidative Stress. Clin Cosmet Investig Dermatol 2022; 15:2221-2243. [PMID: 36284733 PMCID: PMC9588296 DOI: 10.2147/ccid.s383790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Purpose Personalized approaches in dermatology are designed to match the specific requirements based on the individual genetic makeup. One major factor accounting for the differences in skin phenotypes is single nucleotide polymorphism (SNP) within several genes with diverse roles that extend beyond skin tone and pigmentation. Therefore, the cellular sensitivities to the environmental stress and damage linked to extrinsic aging could also underlie the individual characteristics of the skin and dictate the unique skin care requirements. This study aimed to identify the likely biomarkers and molecular signatures expressed in skin cells of different ethnic backgrounds, which could aid further the design of personalized skin products based on specific demands. Methods Using data mining and in-silico modeling, the association of SNP-affected genes with three major skin types of European, Asian and African origin was analyzed and compared within the structure-function gene interaction networks. Cultured dermal fibroblasts were subsequently subjected to ultraviolet radiation and oxidative stress and analyzed for DNA damage and senescent markers. The protective applications of two cosmetic ingredients, Resveratrol and Quercetin, were validated in both cellular and in-silico models. Results Each skin type was characterized by the presence of SNPs in the genes controlling facultative and constitutive pigmentation, which could also underlie the major differences in responses to photodamage, such as oxidative stress, inflammation, and barrier homeostasis. Skin-type-specific dermal fibroblasts cultured in-vitro demonstrated distinctive sensitivities to ultraviolet radiation and oxidative stress, which could be modulated further by the bioactive compounds with the predicted capacities to interact with some of the genes in the in-silico models. Conclusion Evaluation of the SNP-affected gene networks and likely sensitivities of skin cells, defined as low threshold levels to extrinsic stress factors, can provide a valuable tool for the design and formulation of personalized skin products that match more accurately diverse ethnic backgrounds.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| | - Olusola C Idowu
- Hexis Lab, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK,Correspondence: Olusola C Idowu, HexisLab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK, Tel +44 1394 825487, Email
| |
Collapse
|
4
|
Cross-continental admixture in the Kho population from northwest Pakistan. Eur J Hum Genet 2022; 30:740-746. [PMID: 35217804 DOI: 10.1038/s41431-022-01057-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
Northern Pakistan is home to many diverse ethnicities and languages. The region acted as a prime corridor for ancient invasions and population migrations between Western Eurasia and South Asia. Kho, one of the major ethnic groups living in this region, resides in the remote and isolated mountainous region in the Chitral Valley of the Hindu Kush Mountain range. They are culturally and linguistically distinct from the rest of the Pakistani population groups and their genetic ancestry is still unknown. In this study, we generated genome-wide genotype data of ~1 M loci (Illumina WeGene array) for 116 unrelated Kho individuals and carried out comprehensive analyses in the context of worldwide extant and ancient anatomically modern human populations across Eurasia. The results inferred that the Kho can trace a large proportion of their ancestry to the population who migrated south from the Southern Siberian steppes during the second millennium BCE ~110 generations ago. An additional wave of gene flow from a population carrying East Asian ancestry was also identified in the Kho that occurred ~60 generations ago and may possibly be linked to the expansion of the Tibetan Empire during 7th to 9th centuries CE (current era) in the northwestern regions of the Indian sub-continent. We identified several candidate regions suggestive of positive selection in the Kho, that included genes mainly involved in pigmentation, immune responses, muscular development, DNA repair, and tumor suppression.
Collapse
|
5
|
Cuadros-Espinoza S, Laval G, Quintana-Murci L, Patin E. The genomic signatures of natural selection in admixed human populations. Am J Hum Genet 2022; 109:710-726. [PMID: 35259336 DOI: 10.1016/j.ajhg.2022.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.
Collapse
|
6
|
Deng L, Pan Y, Wang Y, Chen H, Yuan K, Chen S, Lu D, Lu Y, Mokhtar SS, Rahman TA, Hoh BP, Xu S. Genetic Connections and Convergent Evolution of Tropical Indigenous Peoples in Asia. Mol Biol Evol 2022; 39:msab361. [PMID: 34940850 PMCID: PMC8826522 DOI: 10.1093/molbev/msab361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.
Collapse
Affiliation(s)
- Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinan Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sihan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Siti Shuhada Mokhtar
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Thuhairah Abdul Rahman
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Boon-Peng Hoh
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Faculty of Medicine and Health Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Contrasting maternal and paternal genetic histories among five ethnic groups from Khyber Pakhtunkhwa, Pakistan. Sci Rep 2022; 12:1027. [PMID: 35046511 PMCID: PMC8770644 DOI: 10.1038/s41598-022-05076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Northwest Pakistan has served as a point of entry to South Asia for different populations since ancient times. However, relatively little is known about the population genetic history of the people residing within this region. To better understand human dispersal in the region within the broader history of the subcontinent, we analyzed mtDNA diversity in 659 and Y-chromosome diversity in 678 individuals, respectively, from five ethnic groups (Gujars, Jadoons, Syeds, Tanolis and Yousafzais), from Swabi and Buner Districts, Khyber Pakhtunkhwa Province, Pakistan. The mtDNAs of all individuals were subject to control region sequencing and SNP genotyping, while Y-chromosomes were analyzed using 54 SNPs and 19 STR loci. The majority of the mtDNAs belonged to West Eurasian haplogroups, with the rest belonging to either South or East Asian lineages. Four of the five Pakistani populations (Gujars, Jadoons, Syeds, Yousafzais) possessed strong maternal genetic affinities with other Pakistani and Central Asian populations, whereas one (Tanolis) did not. Four haplogroups (R1a, R1b, O3, L) among the 11 Y-chromosome lineages observed among these five ethnic groups contributed substantially to their paternal genetic makeup. Gujars, Syeds and Yousafzais showed strong paternal genetic affinities with other Pakistani and Central Asian populations, whereas Jadoons and Tanolis had close affinities with Turkmen populations from Central Asia and ethnic groups from northeast India. We evaluate these genetic data in the context of historical and archeological evidence to test different hypotheses concerning their origins and biological relationships.
Collapse
|
8
|
Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. Human population genomics approach in food metabolism. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Ongaro L, Mondal M, Flores R, Marnetto D, Molinaro L, Alarcón-Riquelme ME, Moreno-Estrada A, Mabunda N, Ventura M, Tambets K, Hellenthal G, Capelli C, Kivisild T, Metspalu M, Pagani L, Montinaro F. Continental-scale genomic analysis suggests shared post-admixture adaptation in the Americas. Hum Mol Genet 2021; 30:2123-2134. [PMID: 34196708 PMCID: PMC8561420 DOI: 10.1093/hmg/ddab177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Mayukh Mondal
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, GENYO. Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica, Av de la Ilustración 114, Parque Tecnológico de la Salud (PTS), 18016, Granada, Spain
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Nedio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Província de Maputo, Maputo, 1120, Mozambique
| | - Mario Ventura
- Department of Biology-Genetics, University of Bari, Bari, 70126, Italy
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, UK.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Herestraat 49 - box 602, B-3000, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia.,Department of Biology, University of Padua, Padua, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, Tartu, Riia 23b, 51010, Estonia.,Department of Biology-Genetics, University of Bari, Bari, 70126, Italy
| |
Collapse
|
10
|
Wu J, Liu Y, Zhao Y. Systematic Review on Local Ancestor Inference From a Mathematical and Algorithmic Perspective. Front Genet 2021; 12:639877. [PMID: 34108987 PMCID: PMC8181461 DOI: 10.3389/fgene.2021.639877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
Genotypic data provide deep insights into the population history and medical genetics. The local ancestry inference (LAI) (also termed local ancestry deconvolution) method uses the hidden Markov model (HMM) to solve the mathematical problem of ancestry reconstruction based on genomic data. HMM is combined with other statistical models and machine learning techniques for particular genetic tasks in a series of computer tools. In this article, we surveyed the mathematical structure, application characteristics, historical development, and benchmark analysis of the LAI method in detail, which will help researchers better understand and further develop LAI methods. Firstly, we extensively explore the mathematical structure of each model and its characteristic applications. Next, we use bibliometrics to show detailed model application fields and list articles to elaborate on the historical development. LAI publications had experienced a peak period during 2006-2016 and had kept on moving in the following years. The efficiency, accuracy, and stability of the existing models were evaluated by the benchmark. We find that phased data had higher accuracy in comparison with unphased data. We summarize these models with their distinct advantages and disadvantages. The Loter model uses dynamic programming to obtain a globally optimal solution with its parameter-free advantage. Aligned bases can be used directly in the Seqmix model if the genotype is hard to call. This research may help model developers to realize current challenges, develop more advanced models, and enable scholars to select appropriate models according to given populations and datasets.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yangxiu Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Yelmen B, Marnetto D, Molinaro L, Flores R, Mondal M, Pagani L. Improving Selection Detection with Population Branch Statistic on Admixed Populations. Genome Biol Evol 2021; 13:6151747. [PMID: 33638983 PMCID: PMC8046333 DOI: 10.1093/gbe/evab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Detecting natural selection signals in admixed populations can be problematic since the source of the signal typically dates back prior to the admixture event. On one hand, it is now possible to study various source populations before a particular admixture thanks to the developments in ancient DNA (aDNA) in the last decade. However, aDNA availability is limited to certain geographical regions and the sample sizes and quality of the data might not be sufficient for selection analysis in many cases. In this study, we explore possible ways to improve detection of pre-admixture signals in admixed populations using a local ancestry inference approach. We used masked haplotypes for population branch statistic (PBS) and full haplotypes constructed following our approach from Yelmen et al. (2019) for cross-population extended haplotype homozygosity (XP-EHH), utilizing forward simulations to test the power of our analysis. The PBS results on simulated data showed that using masked haplotypes obtained from ancestry deconvolution instead of the admixed population might improve detection quality. On the other hand, XP-EHH results using the admixed population were better compared with the local ancestry method. We additionally report correlation for XP-EHH scores between source and admixed populations, suggesting that haplotype-based approaches must be used cautiously for recently admixed populations. Additionally, we performed PBS on real South Asian populations masked with local ancestry deconvolution and report here the first possible selection signals on the autochthonous South Asian component of contemporary South Asian populations.
Collapse
Affiliation(s)
- Burak Yelmen
- Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Ludovica Molinaro
- Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | | | - Luca Pagani
- Institute of Genomics, University of Tartu, Estonia.,Department of Biology, University of Padova, Italy
| |
Collapse
|
12
|
Molinaro L, Marnetto D, Mondal M, Ongaro L, Yelmen B, Lawson DJ, Montinaro F, Pagani L. A Chromosome-Painting-Based Pipeline to Infer Local Ancestry under Limited Source Availability. Genome Biol Evol 2021; 13:6135079. [PMID: 33585906 PMCID: PMC8085126 DOI: 10.1093/gbe/evab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 01/09/2023] Open
Abstract
Contemporary individuals are the combination of genetic fragments inherited from ancestors belonging to multiple populations, as the result of migration and admixture. Isolating and characterizing these layers are crucial to the understanding of the genetic history of a given population. Ancestry deconvolution approaches make use of a large amount of source individuals, therefore constraining the performance of Local Ancestry Inferences when only few genomes are available from a given population. Here we present WINC, a local ancestry framework derived from the combination of ChromoPainter and NNLS approaches, as a method to retrieve local genetic assignments when only a few reference individuals are available. The framework is aided by a score assignment based on source differentiation to maximize the amount of sequences retrieved and is capable of retrieving accurate ancestry assignments when only two individuals for source populations are used.
Collapse
Affiliation(s)
- Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia
| | - Mayukh Mondal
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Burak Yelmen
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Daniel John Lawson
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia.,Department of Biology, University of Padova, Italy
| |
Collapse
|
13
|
Bianco E, Laval G, Font-Porterias N, García-Fernández C, Dobon B, Sabido-Vera R, Sukarova Stefanovska E, Kučinskas V, Makukh H, Pamjav H, Quintana-Murci L, Netea MG, Bertranpetit J, Calafell F, Comas D. Recent Common Origin, Reduced Population Size, and Marked Admixture Have Shaped European Roma Genomes. Mol Biol Evol 2020; 37:3175-3187. [PMID: 32589725 DOI: 10.1093/molbev/msaa156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.
Collapse
Affiliation(s)
- Erica Bianco
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, UMR 2000, CNRS, Institut Pasteur, Paris, France
| | - Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Carla García-Fernández
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Begoña Dobon
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Sabido-Vera
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Emilija Sukarova Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Science and Arts, Skopje, Macedonia
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Halyna Makukh
- Institute of Hereditary Pathology of the Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - Horolma Pamjav
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, UMR 2000, CNRS, Institut Pasteur, Paris, France.,Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jaume Bertranpetit
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Kaarthikeyan G, Jayakumar ND, Anand B. Association analysis of miR‐499 rs3746444 gene polymorphism with periodontitis. Int J Immunogenet 2020. [DOI: 10.1111/iji.12508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
West Asian sources of the Eurasian component in Ethiopians: a reassessment. Sci Rep 2019; 9:18811. [PMID: 31827175 PMCID: PMC6906521 DOI: 10.1038/s41598-019-55344-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023] Open
Abstract
The presence of genomic signatures of Eurasian origin in contemporary Ethiopians has been reported by several authors and estimated to have arrived in the area from 3000 years ago. Several studies reported plausible source populations for such a signature, using haplotype based methods on modern data or single-site methods on modern or ancient data. These studies did not reach a consensus and suggested an Anatolian or Sardinia-like proxy, broadly Levantine or Neolithic Levantine as possible sources. We demonstrate, however, that the deeply divergent, autochthonous African component which accounts for ~50% of most contemporary Ethiopian genomes, affects the overall allele frequency spectrum to an extent that makes it hard to control for it and, at once, to discern between subtly different, yet important, Eurasian sources (such as Anatolian or Levant Neolithic ones). Here we re-assess pattern of allele sharing between the Eurasian component of Ethiopians (here called “NAF” for Non African) and ancient and modern proxies. Our results unveil a genomic legacy that may connect the Eurasian genetic component of contemporary Ethiopians with Sea People and with population movements that affected the Mediterranean area and the Levant after the fall of the Minoan civilization.
Collapse
|
17
|
Hanel A, Carlberg C. Vitamin D and evolution: Pharmacologic implications. Biochem Pharmacol 2019; 173:113595. [PMID: 31377232 DOI: 10.1016/j.bcp.2019.07.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023]
Abstract
Vitamin D3 is produced non-enzymatically when the cholesterol precursor 7-dehydrocholesterol is exposed to UV-B, i.e., evolutionary the first function of the molecule was that of an UV-B radiation scavenging end product. Vitamin D endocrinology started when some 550 million years ago first species developed a vitamin D receptor (VDR) that binds with high affinity the vitamin D metabolite 1α,25-dihydroxyvitamin D3. VDR evolved from a subfamily of nuclear receptors sensing the levels of cholesterol derivatives, such as bile acids, and controlling metabolic genes supporting cellular processes, such as innate and adaptive immunity. During vertebrate evolution, the skeletal and adaptive immune system showed in part interesting synchronous development although adaptive immunity is evolutionary older. There are bidirectional osteoimmune interactions between the immune system and bone metabolism, the regulation of both is under control of vitamin D. This diversity of physiological functions explains the pleiotropy of vitamin D signaling and opens the potential for various pharmacological applications of vitamin D as well as of its natural and synthetic derivatives. The overall impact of vitamin D on human health is demonstrated by the fact that the need for its efficient synthesis served in European hunter and gatherers as an evolutionary driver for increased 7-dehydrocholesterol levels, while light skin was established far later via populations from Anatolia and the northern Caucasus entering Europe 9000 and 5000 years ago, respectively. The later population settled preferentially in northern Europe and we hypothesize that that the introduction of high vitamin D responsiveness was an essential trait for surviving dark winters without suffering from the detrimental consequences of vitamin D deficiency.
Collapse
Affiliation(s)
- Andrea Hanel
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
18
|
Digging Ancient Signals Out of Modern Human Genomes. Mol Biol Evol 2019; 36:1846. [DOI: 10.1093/molbev/msz095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|