1
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Ma F, Zheng C. Single-cell phylotranscriptomics of developmental and cell type evolution. Trends Genet 2024; 40:495-510. [PMID: 38490933 DOI: 10.1016/j.tig.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Miglioli A, Tredez M, Boosten M, Sant C, Carvalho JE, Dru P, Canesi L, Schubert M, Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: a novel model for developmental studies in mollusks. Development 2024; 151:dev202256. [PMID: 38270401 DOI: 10.1242/dev.202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Marion Tredez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Manon Boosten
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Camille Sant
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Laura Canesi
- Università degli Studi di Genova, Dipartimento di Scienze della Terra dell Ambiente e della Vita (DISTAV), Genova 16132, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| |
Collapse
|
5
|
Piovani L, Marlétaz F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief Funct Genomics 2023; 22:517-524. [PMID: 37609674 PMCID: PMC10658179 DOI: 10.1093/bfgp/elad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| |
Collapse
|
6
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
7
|
Piovani L, Leite DJ, Yañez Guerra LA, Simpson F, Musser JM, Salvador-Martínez I, Marlétaz F, Jékely G, Telford MJ. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. SCIENCE ADVANCES 2023; 9:eadg6034. [PMID: 37531419 PMCID: PMC10396302 DOI: 10.1126/sciadv.adg6034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Pelagic larval stages are widespread across animals, yet it is unclear whether larvae were present in the last common ancestor of animals or whether they evolved multiple times due to common selective pressures. Many marine larvae are at least superficially similar; they are small, swim through the beating of bands of cilia, and sense the environment with an apical organ. To understand these similarities, we have generated single-cell atlases for marine larvae from two animal phyla and have compared their cell types. We found clear similarities among ciliary band cells and between neurons of the apical organ in the two larvae pointing to possible homology of these structures, suggesting a single origin of larvae within Spiralia. We also find several clade-specific innovations in each larva, including distinct myocytes and shell gland cells in the oyster larva. Oyster shell gland cells express many recently evolved genes that have made previous gene age estimates for the origin of trochophore larvae too young.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel J. Leite
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | | | - Fraser Simpson
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Jacob M. Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Irepan Salvador-Martínez
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Maximilian J. Telford
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
9
|
Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M, Mortimer K, Luscombe NM, Hejnol A, Marlétaz F, Martín-Durán JM. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 2023; 615:105-110. [PMID: 36697830 PMCID: PMC9977687 DOI: 10.1038/s41586-022-05636-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.
Collapse
Affiliation(s)
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kate Mortimer
- Department of Natural Sciences, Amgueddfa Cymru-Museum Wales, Cardiff, UK
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Piccinini G, Milani L. Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics. EvoDevo 2023; 14:2. [PMID: 36717890 PMCID: PMC9885605 DOI: 10.1186/s13227-022-00207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic. RESULTS Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences. CONCLUSIONS Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.
Collapse
Affiliation(s)
- Giovanni Piccinini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
12
|
Chan ME, Bhamidipati PS, Goldsby HJ, Hintze A, Hofmann HA, Young RL. Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biol Evol 2021; 13:6319027. [PMID: 34247223 PMCID: PMC8358226 DOI: 10.1093/gbe/evab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Despite life's diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the "phylotypic" stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
Collapse
Affiliation(s)
- Megan E Chan
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Pranav S Bhamidipati
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Heather J Goldsby
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA.,Institute for Cellular and Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Texas, USA
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
13
|
Levit GS, Hoßfeld U, Naumann B, Lukas P, Olsson L. The biogenetic law and the Gastraea theory: From Ernst Haeckel's discoveries to contemporary views. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:13-27. [PMID: 33724681 DOI: 10.1002/jez.b.23039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
More than 150 years ago, in 1866, Ernst Haeckel published a book in two volumes called Generelle Morphologie der Organismen (General Morphology of Organisms) in the first volume of which he formulated his biogenetic law, famously stating that ontogeny recapitulates phylogeny. Here, we describe Haeckel's original idea as first formulated in the Generelle Morphologie der Organismen and later further developed in other publications until the present situation in which molecular data are used to test the "hourglass model," which can be seen as a modern version of the biogenetic law. We also tell the story about his discovery, while traveling in Norway, of an unknown organism, Magosphaera planula, that was important in that it helped to precipitate his ideas into what was to become the Gastraea theory. We also follow further development and reformulations of the Gastraea theory by other scientists, notably the Russian school. Elias Metchnikoff developed the Phagocytella hypothesis for the origin of metazoans based on studies of a colonial flagellate. Alexey Zakhvatin focused on deducing the ancestral life cycle and the cell types of the last common ancestor of all metazoans, and Kirill V. Mikhailov recently pursued this line of research further.
Collapse
Affiliation(s)
- Georgy S Levit
- AG Biologiedidaktik, Friedrich-Schiller-Universität Bienenhaus, Jena, Germany
| | - Uwe Hoßfeld
- AG Biologiedidaktik, Friedrich-Schiller-Universität Bienenhaus, Jena, Germany
| | - Benjamin Naumann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Paul Lukas
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| |
Collapse
|