1
|
Zhang Y, He C, He Y, Zhu Z. Follicular Fluid Metabolomics: Tool for Predicting IVF Outcomes of Different Infertility Causes. Reprod Sci 2025; 32:921-934. [PMID: 39090336 PMCID: PMC11978680 DOI: 10.1007/s43032-024-01664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Infertility affects approximately 15% of couples at child-bearing ages and assisted reproductive technologies (ART), especially in vitro fertilization and embryo transfer (IVF-ET), provided infertile patients with an effective solution. The current paradox is that multiple embryo transfer that may leads to severe obstetric and perinatal complications seems to be the most valid measure to secure high success rate in the majority of clinic centers. Therefore, to avoid multiple transfer of embryos, it is urgent to explore biomarkers for IVF prognosis to select high-quality oocytes and embryos. Follicular fluid (FF), a typical biofluid constituted of the plasma effusion and granulosa-cell secretion, provides essential intracellular substances for oocytes maturation and its variation in composition reflects oocyte developmental competence and embryo viability. With the advances in metabolomics methodology, metabolomics, as an accurate and sensitive analyzing method, has been utilized to explore predictors in FF for ART success. Although FF metabolomics has provided a great possibility for screening markers with diagnostic and predictive value, its effectiveness is still doubted by some researchers. This may be resulted from the ignorance of the impact of sterility causes on the FF metabolomic profiles and thus its predictive ability might not be rightly illustrated. Therefore, in this review, we categorically demonstrate the study of FF metabolomics according to specific infertility causes, expecting to reveal the predicting value of metabolomics for IVF outcomes.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chenyan He
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Yuedong He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhongyi Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Chen WJ, Chao YY, Huang WK, Chang WF, Tzeng CR, Chuang CH, Lai PL, Schuyler SC, Li LY, Lu J. Identification of apelin/APJ signaling dysregulation in a human iPSC-derived granulosa cell model of Turner syndrome. Cell Death Discov 2024; 10:468. [PMID: 39543104 PMCID: PMC11564969 DOI: 10.1038/s41420-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/10/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
The interaction between germ cells and somatic cells in the ovaries plays a crucial role in establishing the follicle reserve in mammals. Turner syndrome (TS) predominantly affects females who have a partial or complete loss of one X chromosome. Our understanding of the role that granulosa cells (GCs) play in TS disease progression and pathogenesis remains limited. In this study, we achieved GC differentiation efficiency of up to 80% from iPSCs. When attempting to replicate the differentiation process of embryonic granulosa cells, we observed the downregulation of specific genes-GATA4, FOXL2, AMHR2, CYP19A1, and FSH-in Turner syndrome-derived granulosa cells (TS-GCs). Additionally, we identified dysregulation of the cell cycle in TS-GCs. To uncover the endogenous defects in TS-GCs, we compared global transcriptome patterns between iPSC-derived granulosa cells from healthy individuals and those with Turner syndrome. The apelin/APJ pathway exhibited differential signaling between the healthy and TS groups. Supplementation with apelin ligands and activation of apelin/APJ downstream signaling via Akt/PKB restored cell cycle progression and marker gene expression. We hypothesize that during early embryonic development, failures in apelin/APJ signaling in GCs of Turner syndrome patients lead to abnormalities in ovarian development, ultimately resulting in early oocyte loss and infertility.
Collapse
Affiliation(s)
- Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ya Chao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Fang Chang
- Taipei Fertility Center, Taipei, 110, Taiwan
- Taipei Medical Technology Co., Ltd, Taipei, 110, Taiwan
| | - Chii-Ruey Tzeng
- Taipei Fertility Center, Taipei, 110, Taiwan
- Taipei Medical Technology Co., Ltd, Taipei, 110, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Chi-Hsuan Chuang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Lun Lai
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 97004, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.
- Genomics and System Biology Program, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Ghieh F, Passet B, Poumerol E, Castille J, Calvel P, Vilotte JL, Sellem E, Jouneau L, Mambu-Mambueni H, Garchon HJ, Pailhoux E, Vialard F, Mandon-Pépin B. A partial deletion within the meiosis-specific sporulation domain SPO22 of Tex11 is not associated with infertility in mice. PLoS One 2024; 19:e0309974. [PMID: 39231187 PMCID: PMC11373865 DOI: 10.1371/journal.pone.0309974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Azoospermia (the complete absence of spermatozoa in the semen) is a common cause of male infertility. The etiology of azoospermia is poorly understood. Whole-genome analysis of azoospermic men has identified a number of candidate genes, such as the X-linked testis-expressed 11 (TEX11) gene. Using a comparative genomic hybridization array, an exonic deletion (exons 10-12) of TEX11 had previously been identified in two non-apparent azoospermic patients. However, the putative impact of this genetic alteration on spermatogenesis and the azoospermia phenotype had not been validated functionally. We therefore used a CRISPR/Cas9 system to generate a mouse model (Tex11Ex9-11del/Y) with a partial TEX11 deletion that mimicked the human mutation. Surprisingly, the mutant male Tex11Ex9-11del/Y mice were fertile. The sperm concentration, motility, and morphology were normal. Similarly, the mutant mouse line's testis transcriptome was normal, and the expression of spermatogenesis genes was not altered. These results suggest that the mouse equivalent of the partial deletion observed in two infertile male with azoospermia has no impact on spermatogenesis or fertility in mice, at least of a FVB/N genetic background and until 10 months of age. Mimicking a human mutation does not necessarily lead to the same human phenotype in mice, highlighting significant differences species.
Collapse
Affiliation(s)
- Farah Ghieh
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy-en-Josas, France
| | - Pierre Calvel
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy-en-Josas, France
| | - Eli Sellem
- R&D Department, ALLICE/Eliance, Paris, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | | | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - François Vialard
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy/Saint- Germain-en-Laye, Poissy, France
| | - Béatrice Mandon-Pépin
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
- öcole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
4
|
Chakravarthi VP, Dilower I, Ghosh S, Borosha S, Mohamadi R, Dahiya V, Vo K, Lee EB, Ratri A, Kumar V, Marsh CA, Fields PE, Rumi MAK. ERβ Regulation of Indian Hedgehog Expression in the First Wave of Ovarian Follicles. Cells 2024; 13:644. [PMID: 38607081 PMCID: PMC11011683 DOI: 10.3390/cells13070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Increased activation of ovarian primordial follicles in Erβ knockout (ErβKO) rats becomes evident as early as postnatal day 8.5. To identify the ERβ-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErβKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErβKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErβKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErβKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErβKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErβKO ovaries. In postnatal day 21.5 ErβKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERβ.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vishnu Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Courtney A. Marsh
- Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| |
Collapse
|
5
|
Hsieh TB, Jin JP. Loss of Calponin 2 causes premature ovarian insufficiency in mice. J Ovarian Res 2024; 17:37. [PMID: 38336796 PMCID: PMC10854048 DOI: 10.1186/s13048-024-01346-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a condition defined as women developing menopause before 40 years old. These patients display low ovarian reserve at young age and difficulties to conceive even with assisted reproductive technology. The pathogenesis of ovarian insufficiency is not fully understood. Genetic factors may underlie most of the cases. Actin cytoskeleton plays a pivotal role in ovarian folliculogenesis. Calponin 2 encoded by the Cnn2 gene is an actin associated protein that regulates motility and mechanical signaling related cellular functions. RESULTS The present study compared breeding of age-matched calponin 2 knockout (Cnn2-KO) and wild type (WT) mice and found that Cnn2-KO mothers had significantly smaller litter sizes. Ovaries from 4 weeks old Cnn2-KO mice showed significantly lower numbers of total ovarian follicles than WT control with the presence of multi-oocyte follicles. Cnn2-KO mice also showed age-progressive earlier depletion of ovarian follicles. Cnn2 expression is detected in the cumulus cells of the ovarian follicles of WT mice and colocalizes with actin stress fiber, tropomyosin and myosin II in primary cultures of cumulus cells. CONCLUSIONS The findings demonstrate that the loss of calponin 2 impairs ovarian folliculogenesis with premature depletion of ovarian follicles. The role of calponin 2 in ovarian granulosa cells suggests a molecular target for further investigations on the pathogenesis of POI and for therapeutic development.
Collapse
Affiliation(s)
- Tzu-Bou Hsieh
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jian-Ping Jin
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Murakami K, Hamazaki N, Hamada N, Nagamatsu G, Okamoto I, Ohta H, Nosaka Y, Ishikura Y, Kitajima TS, Semba Y, Kunisaki Y, Arai F, Akashi K, Saitou M, Kato K, Hayashi K. Generation of functional oocytes from male mice in vitro. Nature 2023; 615:900-906. [PMID: 36922585 DOI: 10.1038/s41586-023-05834-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.
Collapse
Affiliation(s)
- Kenta Murakami
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Ishikura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Liu R, Yun Y, Shu W, Wang X, Luo M. Editorial: Reproductive genomics. Front Genet 2022; 13:1002458. [PMID: 36081991 PMCID: PMC9445836 DOI: 10.3389/fgene.2022.1002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Human Histology and Embryology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| | - Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, United States
| | - Wenjie Shu
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Human Histology and Embryology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| |
Collapse
|
8
|
Yamazaki W, Tan SL, Taketo T. Role of the X and Y Chromosomes in the Female Germ Cell Line Development in the Mouse (Mus musculus). Sex Dev 2022:1-10. [PMID: 35235936 DOI: 10.1159/000521151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes. SUMMARY The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development. Key Message: The XX chromosome complement gives the oocyte the highest competence for embryonic development.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada.,OriginElle Fertility Clinic and Women's Health Centre, Montreal, Québec, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
9
|
Yamazaki W, Badescu D, Tan SL, Ragoussis J, Taketo T. Effects of the Sex Chromosome Complement, XX, XO, or XY, on the Transcriptome and Development of Mouse Oocytes During Follicular Growth. Front Genet 2021; 12:792604. [PMID: 34987552 PMCID: PMC8721172 DOI: 10.3389/fgene.2021.792604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The sex chromosome complement, XX or XY, determines sexual differentiation of the gonadal primordium into a testis or an ovary, which in turn directs differentiation of the germ cells into sperm and oocytes, respectively, in eutherian mammals. When the X monosomy or XY sex reversal occurs, XO and XY females exhibit subfertility and infertility in the mouse on the C57BL/6J genetic background, suggesting that functional germ cell differentiation requires the proper sex chromosome complement. Using these mouse models, we asked how the sex chromosome complement affects gene transcription in the oocytes during follicular growth. An oocyte accumulates cytoplasmic components such as mRNAs and proteins during follicular growth to support subsequent meiotic progression, fertilization, and early embryonic development without de novo transcription. However, how gene transcription is regulated during oocyte growth is not well understood. Our results revealed that XY oocytes became abnormal in chromatin configuration, mitochondria distribution, and de novo transcription compared to XX or XO oocytes near the end of growth phase. Therefore, we compared transcriptomes by RNA-sequencing among the XX, XO, and XY oocytes of 50–60 µm in diameter, which were still morphologically comparable. The results showed that the X chromosome dosage limited the X-linked and autosomal gene transcript levels in XO oocytes whereas many genes were transcribed from the Y chromosome and made the transcriptome in XY oocytes closer to that in XX oocytes. We then compared the transcript levels of 3 X-linked, 3 Y-linked and 2 autosomal genes in the XX, XO, and XY oocytes during the entire growth phase as well as at the end of growth phase using quantitative RT-PCR. The results indicated that the transcript levels of most genes increased with oocyte growth while largely maintaining the X chromosome dosage dependence. Near the end of growth phase, however, transcript levels of some X-linked genes did not increase in XY oocytes as much as XX or XO oocytes, rendering their levels much lower than those in XX oocytes. Thus, XY oocytes established a distinct transcriptome at the end of growth phase, which may be associated with abnormal chromatin configuration and mitochondria distribution.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Seang Lin Tan
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- *Correspondence: Teruko Taketo,
| |
Collapse
|