1
|
Singh KK, Gupta A, Forstner D, Guettler J, Ahrens MS, Prakasan Sheeja A, Fatima S, Shamkeeva S, Lia M, Dathan-Stumpf A, Hoffmann N, Shahzad K, Stepan H, Gauster M, Isermann B, Kohli S. LMWH prevents thromboinflammation in the placenta via HBEGF-AKT signaling. Blood Adv 2024; 8:4756-4766. [PMID: 38941535 PMCID: PMC11457404 DOI: 10.1182/bloodadvances.2023011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Low molecular weight heparins (LMWH) are used to prevent or treat thromboembolic events during pregnancy. Although studies suggest an overall protective effect of LMWH in preeclampsia (PE), their use in PE remains controversial. LMWH may convey beneficial effects in PE independent of their anticoagulant activity, possibly by inhibiting inflammation. Here, we evaluated whether LMWH inhibit placental thromboinflammation and trophoblast NLRP3 inflammasome activation. Using an established procoagulant extracellular vesicle-induced and platelet-dependent PE-like mouse model, we show that LMWH reduces pregnancy loss and trophoblast inflammasome activation, restores altered trophoblast differentiation, and improves trophoblast proliferation in vivo and in vitro. Moreover, LMWH inhibits platelet-independent trophoblast NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. Mechanistically, LMWH activates via heparin-binding epidermal growth factor (HBEGF) signaling the PI3-kinase-AKT pathway in trophoblasts, thus preventing inflammasome activation. In human PE placental explants, inflammasome activation and PI3-kinase-AKT signaling events were reduced with LMWH treatment compared with those without LMWH treatment. Thus, LMWH inhibits sterile inflammation via the HBEGF signaling pathway in trophoblasts and ameliorates PE-associated complications. These findings suggest that drugs targeting the inflammasome may be evaluated in PE and identify a signaling mechanism through which LMWH ameliorates PE, thus providing a rationale for the use of LMWH in PE.
Collapse
Affiliation(s)
- Kunal Kumar Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Mirjam Susanne Ahrens
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Akshay Prakasan Sheeja
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Massimiliano Lia
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anne Dathan-Stumpf
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Nikola Hoffmann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Rofaeil RR, Mohyeldin RH, Sharata EE, Attya ME, Essawy H, Ibrahim OA, Abdelzaher WY. The protective effect of vinpocetine against Estradiol-benzoate induced cervical hyperkeratosis in female rats via modulation of SIRT1/Nrf2, and NLRP3 inflammasome. Sci Rep 2024; 14:19171. [PMID: 39160173 PMCID: PMC11333625 DOI: 10.1038/s41598-024-69431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
The current study was assigned to determine the putative preventive role of vinpocetine (VIN) in cervical hyperkeratosis (CHK) in female rats. Estradiol Benzoate (EB) was utilized in a dose f (60 μg/100 g, i.m) three times/week for 4 weeks to induce cervical hyperkeratosis. VIN was administered alone in a dose of (10 mg/kg/day, orally) for 4 weeks and in the presence of EB. Levels of malondialdehyde (MDA), total nitrites (NOx), reduced glutathione (GSH), interleukin-18 (IL-18), IL-1β, tumor necrosis factor-alpha (TNF-α) were measured in cervical tissue. The expression of NLRP3/GSDMD/Caspase-1, and SIRT1/Nrf2 was determined using ELISA. Cervical histopathological examination was also done. EB significantly raised MDA, NOx, TNF-α, IL-18, IL-1β, and GSDMD and up-regulated NLRP3/Caspase-1 proteins. However, GSH, SIRT1, and Nrf2 levels were reduced in cervical tissue. VIN significantly alleviates all biochemical and histopathological abnormalities. VIN considerably mitigates EB-induced cervical hyperkeratosis via NLRP3-induced pyroptosis and SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Remon R Rofaeil
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - Hany Essawy
- Department of Obstetrics & Gynecology, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - Osama A Ibrahim
- Department of Obstetrics & Gynecology, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - Walaa Yehia Abdelzaher
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| |
Collapse
|
3
|
Artimovič P, Badovská Z, Toporcerová S, Špaková I, Smolko L, Sabolová G, Kriváková E, Rabajdová M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024; 13:1081. [PMID: 38994935 PMCID: PMC11240766 DOI: 10.3390/cells13131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Eva Kriváková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| |
Collapse
|
4
|
Zhu J, Chen Y, Chen H, Sun Y, Yan L, Zhu M, Chen L, Wang Q, Zhang J. Comparison of microbial abundance and diversity in uterine and peritoneal fluid in infertile patients with or without endometriosis. BMC Womens Health 2024; 24:148. [PMID: 38424540 PMCID: PMC10903057 DOI: 10.1186/s12905-024-02985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Endometriosis (EM) is a multifactorial disease that affects 10 - 15% of women of reproductive age. Additionally, 30-50% of women with EM suffer from infertility. The mechanism of infertility caused by EM has not yet been consistently explained. In recent years, studies have shown a link between infertility associated with EM and changes in the reproductive tract microbiota. METHODS In this study, we involved 26 EM patients (8 cases of stage I-II and 18 cases of stage III-IV) and 31 control subjects who were tubal obstruction-related infertility (TORI). The samples from peritoneal fluid (PF) and uterine fluid (UF) were collected and sequenced by 16 S rRNA amplicon. RESULTS In the comparison of microbial diversity, we found no significant differences in the microbial diversity of PF and UF between patients with stage I-II EM and those with TORI. However, there was a significant difference in microbial diversity among patients with stage III-IV EM compared to the previous two groups. Lactobacillus decreased in PF of EM compared to the control group, while it increased in UF. In PF, the abundance of Pseudomonas, Enterococcus, Dubosiella and Klebsiella was significantly higher in patients with stage III-IV compared to TORI patients. And in UF, the main differences existed between stage I-II EM compared to the other two groups. The abundance of pontibacter, aquabacterium, Rikenellaceae and so on at the genus level was significantly enriched in the EM patients with stage I-II. In the analysis based on KEGG database, EM may affect the receptivity related pathways of the endometrium by influencing changes in the uterine microbiota. CONCLUSION Our results indicated that as EM progresses, the microorganisms in UF and PF keep changing. These changes in the microbiota, as well as the resulting alternations in gene functional classification, may play an important role in the infertility associated with EM.
Collapse
Affiliation(s)
- Jue Zhu
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China
| | - Yichen Chen
- Department of Basic Research Laboratory, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Huan Chen
- Department of Medicine, Ningbo University, Zhejiang, China
| | - Yuhui Sun
- Department of Basic Research Laboratory, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Lifeng Yan
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China
| | - Miaohua Zhu
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China
| | - Liang Chen
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China
| | - Qiming Wang
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China
| | - Jing Zhang
- Department of Gynecology, Ningbo Women and Children's Hospital, #339 Liuting Road, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Balci CN, Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: A comprehensive review. J Reprod Immunol 2024; 161:104173. [PMID: 38043434 DOI: 10.1016/j.jri.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The balance of the inflammatory response is indispensable during pregnancy. Inflammasomes are the cytosolic supramolecular protein complexes activated by pattern recognition receptors. These receptors recognize the pathogen and damage/danger-associated molecular patterns. NLRP3 inflammasome complex consists mainly of NLRP3 (leucine-rich repeat-containing and pyrin domain-containing protein 3), a cytosolic sensor molecule, ASC (apoptosis-associated speck-like protein containing a CARD) protein and a cysteine protease pro-caspase-1 as an effector molecule. This complex has a role in producing inflammatory cytokines, interleukin 1 beta and interleukin 18, and inflammasome-dependent programmed cell death pathway pyroptosis. In this review, we focused on and summarised the NLRP3 inflammasome and its roles in normal and pathological pregnancies. The NLRP3 inflammasome pathway influences endometrial receptivity and embryo invasion by inducing epithelial-mesenchymal transition. Abnormal inflammasome activation in the endometrium may adversely affect endometrial receptivity. In addition, NLRP3 inflammasome pathway overactivation may mediate the abnormal inflammatory response at the maternal-fetal interface and be associated with pregnancy complications, such as recurrent implantation failure, pregnancy loss, pre-term birth and pre-eclampsia. Therefore, targeting the NLRP3 inflammasome pathway could develop a new therapeutic approach to prevent the aforementioned pregnancy pathologies.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
6
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Kim SM, Jeon Y, Jang JY, Lee H. NR1D1 deficiency in the tumor microenvironment promotes lung tumor development by activating the NLRP3 inflammasome. Cell Death Discov 2023; 9:278. [PMID: 37524704 PMCID: PMC10390518 DOI: 10.1038/s41420-023-01554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
Nuclear receptor Rev-erbα (NR1D1) is a major negative regulator of the circadian clock. Numerous studies have investigated the role of circadian clock-related factors in the tumorigenesis of multiple cancer types, but little is known about the role of NR1D1 in cancer development. In this study, we identified the role of NR1D1 in lung tumorigenesis using genetically engineered mouse models of Nr1d1. Although NR1D1 overexpression or knockdown had little effect on the proliferation of NSCLC cells in vitro, NR1D1 deficiency in the tumor microenvironment increased lung cancer development compared with the control in the orthotopic model. NR1D1-deficient mice showed increased NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activation, and conditioned medium (CM) from NR1D1-deficient macrophages increased the proliferation and epithelial-mesenchymal transition (EMT) of lung cancer cells. Treatment with MCC950, a specific inhibitor of NLRP3 inflammasome, blocked tumorigenesis in NR1D1-deficient mice in an orthotopic lung cancer model. In addition, MCC950 treatment blocked the increased proliferation and EMT of cancer cells induced by CM from NR1D1-deficient macrophages in vitro. Our results showed that NR1D1 in the tumor microenvironment functions as a tumor suppressor by negatively regulating the NLRP3 inflammasome, suggesting that the NLRP3 inflammasome blockade via NR1D1 activation could be a therapeutic strategy to overcome lung cancer.
Collapse
Affiliation(s)
- Sun Mi Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
| | - Yoon Jeon
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Ji Yun Jang
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
- College of Pharmacy, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
8
|
Zolfaroli I, Monzó Miralles A, Hidalgo-Mora JJ, Marcos Puig B, Rubio Rubio JM. Impact of Endometrial Receptivity Analysis on Pregnancy Outcomes In Patients Undergoing Embryo Transfer: A Systematic Review and Meta-Analysis. J Assist Reprod Genet 2023; 40:985-994. [PMID: 37043134 PMCID: PMC10239419 DOI: 10.1007/s10815-023-02791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
To analyze the influence of endometrial receptivity analysis (ERA) on embryo transfer (ET) results in patients undergoing in vitro fertilization (IVF) treatment. PubMed, Embase, Cochrane Central Register of Controlled Trials, and BioMed Central databases were searched from inception up to December 2022 for studies comparing pregnancy outcomes in patients undergoing personalized embryo transfer (pET) by ERA versus standard ET. Data were pooled by meta-analysis using a random effects model. We identified twelve studies, including 14,224 patients. No differences were observed between patients undergoing ERA test and those not undergoing ERA test prior to ET in terms of live birth (OR 1.00, 95% CI 0.63-1.58, I2 = 92.7%), clinical pregnancy (OR 1.20, 95% CI 0.90-1.61, I2 = 86.5%), biochemical pregnancy (OR 0.83, 95% CI 0.46-1.49, I2 = 87%), positive pregnancy test (OR 0.99, 95% CI 0.80-1.22, I2 = 0%), miscarriage (OR 0.91, 95% CI 0.62-1.34, I2 = 67.1%), and implantation rate (OR 1.18, 95% CI 0.44-3.14, I2 = 93.2%). pET with ERA is not associated with any significant differences in pregnancy outcomes as compared to standard ET protocols. Therefore, the utility of ERA in patients undergoing IVF should be revisited.
Collapse
Affiliation(s)
- Irene Zolfaroli
- Department of Human Reproduction, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - Ana Monzó Miralles
- Department of Human Reproduction, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain.
| | - Juan José Hidalgo-Mora
- Department of Human Reproduction, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - Beatriz Marcos Puig
- Department of Human Reproduction, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - José María Rubio Rubio
- Department of Human Reproduction, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| |
Collapse
|
9
|
Zhao Z, Li Y, Cao J, Fang H, Zhang L, Yang L. Early Pregnancy Modulates Expression of the Nod-like Receptor Family in Lymph Nodes of Ewes. Animals (Basel) 2022; 12:ani12233285. [PMID: 36496806 PMCID: PMC9738492 DOI: 10.3390/ani12233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
NOD receptors (NLRs) mediate adaptive immune responses and immune tolerance. Nevertheless, it is not clear if gestation modulates the NLR signaling pathway in lymph nodes of ewes. In this study, lymph nodes of ewes were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation (n = 6 for each group). RT-qPCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the NLR family, including NOD1, NOD2, CIITA, NAIP, NLRP1, NLRP3 and NLRP7. The data showed that early gestation enhanced expression of NOD1, CIITA, NLRP1, NLRP3 and NLRP7 mRNA, as well as proteins at day 16 of gestation, and the expression levels of NOD2, CIITA, NLRP1 and NLRP7 were higher at days 13 and 25 of gestation than day 16 of the estrous cycle. However, NOD1 expression was lower on days 13 and 25 of gestation compared to day 16 of the estrous cycle, and early gestation suppressed NAIP expression. In summary, early pregnancy modulated expression of the NLR family in ovine lymph nodes, which participates in immune regulation, and this modulation may be necessary for pregnancy establishment in ewes.
Collapse
|
10
|
Petroff MG, Nguyen SL, Ahn SH. Fetal‐placental
antigens and the maternal immune system: Reproductive immunology comes of age. Immunol Rev 2022; 308:25-39. [PMID: 35643905 PMCID: PMC9328203 DOI: 10.1111/imr.13090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today. Breakthroughs in transplantation, immunology, and reproduction eventually culminated with Medawar’s discovery of acquired immunological tolerance, which helped to explain the transplantation success and failure. Medawar’s musings also keenly pointed out that the fetus apparently breaks these newly discovered rules, and with this, the field of reproductive immunology was launched. As a result of having stemmed from transplantation immunology, scientist still analogizes the fetus to a successful allograft. Although we now know of the fundamental differences between the two, this analogy remains a useful tool to understand how the fetus thrives despite its immunological disparity with the mother. Here, we review the history of reproductive immunology, and how major and minor histocompatibility antigens, blood group antigens, and tissue‐specific “self” antigens from the fetus and transplanted organs parallel and differ.
Collapse
Affiliation(s)
- Margaret G. Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Departments of Microbiology and Molecular Genetics, College of Veterinary Medicine and College of Human Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Sean L. Nguyen
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| |
Collapse
|
11
|
Li C, Pan B, Wang X, Liu X, Qin J, Gao T, Sun H, Pan Y, Wang S. Upregulated LINC01088 facilitates malignant phenotypes and immune escape of colorectal cancer by regulating microRNAs/G3BP1/PD-L1 axis. J Cancer Res Clin Oncol 2022; 148:1965-1982. [PMID: 35357586 DOI: 10.1007/s00432-022-03981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Long intergenic non-coding RNA LINC01088 is a newly discovered long non-coding RNA (lncRNA). Its biological function in colorectal cancer (CRC) remains unknown. METHODS Here, 36 paired CRC and para-cancerous tissues were collected. In vitro, fluorescence in situ hybridization (FISH) assay, qPCR, western blotting analysis and cellular functional experiments, RNA immunoprecipitation (RIP) assay and dual-luciferase reporter system analysis were performed. In vivo, xenograft tumor mouse models were generated. Besides, patient-derived intestinal organoid (PDO) was generated ex vivo. RESULTS We found that LINC01088 was significantly upregulated in colorectal cancer tissues and CRC cell lines compared to adjacent normal tissues and colonic epithelial cells. High LINC01088 levels were correlated with adverse outcomes in patients with CRC. LINC01088 was mainly located in the cytoplasm. LINC01088 knockdown suppressed the proliferation, migration, invasion, and immune escape of colorectal cancer cells. Mechanistically, LINC01088 bound directly to miR-548b-5p and miR-548c-5p that were significantly upregulated Ras GTPase-activating protein-binding proteins 1 (G3BP1) and programmed death ligand 1 (PD-L1) expression, altering CRC cell phenotypes. In mouse xenograft models, LINC01088 knockdown restrained CRC tumor growth and lung metastasis. Furthermore, G3BP1 overexpression reversed LINC01088-knockdown-mediated inhibitory effects on tumor growth. Notably, LINC01088 knockdown downregulated PD-L1 expression, while G3BP1 overexpression restored PD-L1 expression in xenograft tumors. Besides, LINC01088 knockdown repressed CRC organoid growth ex vivo. CONCLUSION Overall, these findings suggested that LINC01088 directly targeted miR-548b-5p and miR-548c-5p, promoting G3BP1 and PD-L1 expression, which facilitated colorectal cancer progression and immune escape.
Collapse
Affiliation(s)
- Chenmeng Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xuhong Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Tianyi Gao
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China. .,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China. .,General Clinical Research Center, Nanjing First Hospital of Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China. .,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
12
|
Tiwari A, Ashary N, Singh N, Sharma S, Modi D. Modulation of E-Cadherin and N-Cadherin by ovarian steroids and embryonic stimuli. Tissue Cell 2021; 73:101670. [PMID: 34710830 DOI: 10.1016/j.tice.2021.101670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Endometrium is a dynamic tissue that undergoes extensive remodelling to attain a receptive state which is further modulated in presence of an embryo for successful initiation of pregnancy. Cadherins are the proteins of the junctional complex of which E-cadherin (E-Cad) is crucial for maintaining epithelial cell state and integrity of the epithelial barrier; gain of N-cadherin (N-Cad) in epithelial cells leads to epithelial to mesenchymal transition (EMT). In the present study, we investigated the expression of E-Cad and N-Cad in the mouse endometrial luminal epithelium and its modulation by estrogen, progesterone, and embryonic stimuli. We observed that E-Cad is diffusely expressed in the luminal epithelium of mouse endometrium during the estrus stage and upon estrogen treatment. It is apico-laterally and basolaterally sorted at the diestrus stage and in response to the combined treatment of estrogen and progesterone. In 3D spheroids of human endometrial epithelial cells, combined treatment with estrogen and progesterone led to lateral sorting of E-Cad without any effects on its mRNA levels. at the time of embryo implantation, there is loss of E-Cad along with the gain of N-Cad and SNAIL expression suggestive of EMT in the luminal epithelium. This EMT is possibly driven by embryonic stimuli as treatment with estrogen and progesterone did not lead to the gain of N-Cad expression in the mouse endometrium in vivo or in human endometrial epithelial cells in vitro. In conclusion, the present study demonstrates that steroid hormones directly affect E-Cad sorting in the endometrial epithelium which undergo EMT in response to embryonic stimuli.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Shipra Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|