1
|
Banerjee A, Chauhan V, Anamika, Tripathy M, Rai U. Asprosin-mediated regulation of ovarian functions in mice: An age-dependent study. Peptides 2024; 181:171293. [PMID: 39244091 DOI: 10.1016/j.peptides.2024.171293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Asprosin is a recently discovered adipokine reported to be involved in the modulation of mammalian gonadal functions. Preliminary investigations suggest its role in regulation of ovarian functions in rodents as well as bovids. In addition, increased levels of the adipokine during human ovarian pathophysiologies implicate it in disease progression and severity. The present study evidenced high expression of asprosin in ovaries of juvenile, pubertal and adult mice while expression was significantly low in ageing ovaries. Further, asprosin stimulated expression of markers for ovarian folliculogenesis (Scf, c-Kit, Gdf9, Bmp6, Fshr, Lhr) and steroidogenesis (3β-Hsd) in adult mice. In addition to exploring concentration-dependent effect of asprosin, the study implicates asprosin as an age-dependent modulator of ovarian functions as treatment of ovaries with asprosin led to upregulation of Fshr, c-Kit, Bmp6, and Gdf9 in both adult and juvenile ovaries, Lhr only in adults while that of Scf only in juvenile ovaries. The current study is first to report an age-dependent expression and role of asprosin in murine ovaries.
Collapse
Affiliation(s)
| | | | - Anamika
- Ramjas College, University of Delhi, Delhi 110007, India
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, 110007, India.
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir 180006, India.
| |
Collapse
|
2
|
Kanatsu-Shinohara M, Morimoto H, Liu T, Tamura M, Shinohara T. Sendai virus-mediated RNA delivery restores fertility to congenital and chemotherapy-induced infertile female mice. PNAS NEXUS 2024; 3:pgae375. [PMID: 39262851 PMCID: PMC11388103 DOI: 10.1093/pnasnexus/pgae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Luan Y, So W, Dong R, Abazarikia A, Kim SY. KIT in oocytes: a key factor for oocyte survival and reproductive lifespan. EBioMedicine 2024; 106:105263. [PMID: 39067135 PMCID: PMC11338130 DOI: 10.1016/j.ebiom.2024.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The KITL-KIT interaction is known as an important initiator in oocyte activation through the downstream pathway of PI3K-AKT-FOXO3 signalling. Previous studies utilising germ cell-specific Kit mutant knockin and kinase domain knockout models with Vasa-Cre suggested the crucial role of KIT in oocyte activation at the primordial follicle stage. METHODS We utilised mice with complete postnatal deletion of KIT expression in oocytes via Gdf9-iCre and conducted analyses on ovarian follicle development, specific markers, hormone assays, and fertility outcomes. FINDINGS Our findings reveal contrasting phenotypes compared to previous mouse models with prenatal deletion of Kit. Specifically, postnatal deletion of Kit exhibit no defects in germ cell nest breakdown, follicle activation, and folliculogenesis during development. Remarkably, upon reaching full maturity, mice with postnatal deletion of Kit experience a complete loss of ovarian reserve, growing follicles, and ovarian function. Furthermore, mice display smaller ovarian size and weight, delayed folliculogenesis, and phenotypes indicative of primary ovarian insufficiency (POI), including elevated serum levels of FSH, reduced AMH, and absence of ovarian follicles, ultimately resulting in infertility. Additionally, the ovaries exhibit randomly distributed expression of granulosa and theca cell markers such as Inhibin α, ACVR2B, and LHR. Notably, there is the uncontrolled expression of p-SMAD3 and Ki67 throughout the ovarian sections, along with the widespread presence of luteinised stroma cells and cleaved Caspase-3-positive dying cells. INTERPRETATION These genetic studies underscore the indispensable role of KIT in oocytes for maintaining the survival of ovarian follicles and ensuring the reproductive lifespan. FUNDING This work was supported by National Institutes of Health grant R01HD096042 and startup funds from UNMC (S.Y.K.).
Collapse
Affiliation(s)
- Yi Luan
- Olson Centre for Women's Health, Department of Obstetrics and Gynaecology, College of Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Wonmi So
- Olson Centre for Women's Health, Department of Obstetrics and Gynaecology, College of Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Rosemary Dong
- Olson Centre for Women's Health, Department of Obstetrics and Gynaecology, College of Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Amirhossein Abazarikia
- Olson Centre for Women's Health, Department of Obstetrics and Gynaecology, College of Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - So-Youn Kim
- Olson Centre for Women's Health, Department of Obstetrics and Gynaecology, College of Medicine, University of Nebraska Medical Centre, Omaha, NE, USA; Fred and Pamela Buffett Cancer Centre, University of Nebraska Medical Centre, Omaha, NE, USA.
| |
Collapse
|
4
|
Helgadottir H, Matikas A, Fernebro J, Frödin JE, Ekman S, Rodriguez-Wallberg KA. Fertility and reproductive concerns related to the new generation of cancer drugs and the clinical implication for young individuals undergoing treatments for solid tumors. Eur J Cancer 2024; 202:114010. [PMID: 38520926 DOI: 10.1016/j.ejca.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The treatment landscape of solid tumors has changed markedly in the last years. Molecularly targeted treatments and immunotherapies have been implemented and have, in many cancers, lowered the risk of relapse and prolonged survival. Patients with tumors harboring specific targetable molecular alterations or mutations are often of a younger age, and hence future fertility and family building can be important concerns in this group. However, there are great uncertainties regarding the effect of the new drugs on reproductive functions, including fertility, pregnancy and lactation and how young patients with cancers, both women and men should be advised. The goal with this review is to gather the current knowledge regarding oncofertility and the different novel therapies, including immune checkpoint inhibitors, antibody-drug conjugates, small molecules and monoclonal antibody targeted therapies. The specific circumstances and reproductive concerns in different patient groups where novel treatments have been broadly introduced are also discussed, including those with melanoma, lung, breast, colorectal and gynecological cancers. It is clear, that more awareness is needed regarding potential drug toxicity on reproductive tissues, and it is of essence that individuals are informed based on current expertise and on available fertility preservation methods.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Skin Cancer Centrum, Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Alexios Matikas
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gynecological Cancer, Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Erik Frödin
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gastrointestinal Oncology, Department of Upper abdomen, Karolinska University Hospital, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Reproductive Medicine, Division of Gynecology and Reproduction Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Dotania K, Tripathy M, Rai U. Ovarian nesfatin-1 in Hemidactylus flaviviridis: Reproductive phase-dependent expression, role and hormonal regulation. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111556. [PMID: 38016591 DOI: 10.1016/j.cbpa.2023.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Nesfatin-1 has recently emerged as a modulator of ovarian functions in mammals. Studies in non-mammalian vertebrates, though limited and majorly restricted to fishes, have evidenced a role of this peptide in the regulation of ovarian steroidogenesis and oocyte maturation. Interestingly, nesfatin-1 remains completely unexplored in reptiles. Therefore, the present study aimed to identify nesfatin-1 and elucidate its role and regulation in the ovary of Hemidactylus flaviviridis. Ovarian expression of nucb2/nesfatin-1 was highest during late recrudescence and breeding while it was lowest during regression. Follicular stage-dependent expression analysis showed significantly high expression of nucb2/nesfatin-1 in previtellogenic follicles. Further, in vitro treatment of recrudescent wall lizard ovaries with nesfatin-1 resulted in increased expression of anti-apoptotic gene, bcl-2, along with a concomitant decline in the pro-apoptotic gene, caspase-3. In addition, proliferation/differentiation markers like scf, c-kit, pcna, and bmp-15 were stimulated in ovaries incubated with the peptide. Ovarian steroidogenesis was also positively influenced by nesfatin-1 as treatment with the peptide resulted in heightened star expression as well as increased estradiol and progesterone production. Also, all concentrations of nesfatin-1 stimulated glucose uptake and metabolism in wall lizard ovary. Our observations provide the first evidence of ovarian functions of nesfatin-1 in a reptile. Further, ovarian nucb2/nesfatin-1 was differentially regulated by gonadotropin and sex steroids wherein its expression was stimulated by dihydrotestosterone (DHT) and 17β-estradiol (E2) but inhibited by follicle-stimulating hormone (FSH). In summary, this is the first report of the presence, reproductive stage-dependent expression, role, and regulation of ovarian nucb2/nesfatin-1 in H. flaviviridis.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir, 180006, India.
| |
Collapse
|
6
|
Seong SY, Kang MK, Kang H, Lee HJ, Kang YR, Lee CG, Sohn DH, Han SJ. Low dose rate radiation impairs early follicles in young mice. Reprod Biol 2023; 23:100817. [PMID: 37890397 DOI: 10.1016/j.repbio.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Low-dose radiation is generally considered less harmful than high-dose radiation. However, its impact on ovaries remains debated. Since previous reports predominantly employed low-dose radiation delivered at a high dose rate on the ovary, the effect of low-dose radiation at a low dose rate on the ovary remains unknown. We investigated the effect of low-dose ionizing radiation delivered at a low dose rate on murine ovaries. Three- and ten-week-old mice were exposed to 0.1 and 0.5 Gy of radiation at a rate of 6 mGy/h and monitored after 3 and 30 days. While neither body weight nor ovarian area showed significant changes, ovarian cells were damaged, showing apoptosis and a decrease in cell proliferation after exposure to 0.1 and 0.5 Gy radiation. Follicle numbers decreased over time in both age groups proportionally to the radiation dose. Younger mice were more susceptible to radiation damage, as evidenced by decreased follicles in 3-week-old mice after 30 days of 0.1 Gy exposure, while 10-week-old mice showed reduced follicles only following 0.5 Gy exposure. Primordial or primary follicles were the most vulnerable to radiation. These findings suggest that even low-dose radiation, delivered at a low dose rate, can adversely affect ovarian function, particularly in the early follicles of younger mice.
Collapse
Affiliation(s)
- Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Hyunju Kang
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Seoul 01812, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seung Jin Han
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
7
|
Czukiewska SM, Fan X, Mulder AA, Van Der Helm T, Hillenius S, Van Der Meeren L, Matorras R, Eguizabal C, Lei L, Koning RI, Chuva De Sousa Lopes SM. Cell-cell interactions during the formation of primordial follicles in humans. Life Sci Alliance 2023; 6:e202301926. [PMID: 37643865 PMCID: PMC10465921 DOI: 10.26508/lsa.202301926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Gametogenesis is a complex and sex-specific multistep process during which the gonadal somatic niche plays an essential regulatory role. One of the most crucial steps during human female gametogenesis is the formation of primordial follicles, the functional unit of the ovary that constitutes the pool of follicles available at birth during the entire reproductive life. However, the relation between human fetal germ cells (hFGCs) and gonadal somatic cells during the formation of the primordial follicles remains largely unexplored. We have discovered that hFGCs can form multinucleated syncytia, some connected via interconnecting intercellular bridges, and that not all nuclei in hFGC-syncytia were synchronous regarding meiotic stage. As hFGCs progressed in development, pre-granulosa cells formed protrusions that seemed to progressively constrict individual hFGCs, perhaps contributing to separate them from the multinucleated syncytia. Our findings highlighted the cell-cell interaction and molecular dynamics between hFGCs and (pre)granulosa cells during the formation of primordial follicles in humans. Knowledge on how the pool of primordial follicle is formed is important to understand human infertility.
Collapse
Affiliation(s)
- Sylwia M Czukiewska
- https://ror.org/05xvt9f17 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Xueying Fan
- https://ror.org/05xvt9f17 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Adriaan A Mulder
- https://ror.org/05xvt9f17 Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Talia Van Der Helm
- https://ror.org/05xvt9f17 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Sanne Hillenius
- https://ror.org/05xvt9f17 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Lotte Van Der Meeren
- https://ror.org/05xvt9f17 Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain
- Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain
- Department of Obstetrics and Gynecology, Basque Country University, Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Roman I Koning
- https://ror.org/05xvt9f17 Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Susana M Chuva De Sousa Lopes
- https://ror.org/05xvt9f17 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- https://ror.org/00xmkp704 Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Ganji M, Bakhshi S, Shoari A, Ahangari Cohan R. Discovery of potential FGFR3 inhibitors via QSAR, pharmacophore modeling, virtual screening and molecular docking studies against bladder cancer. J Transl Med 2023; 21:111. [PMID: 36765337 PMCID: PMC9913026 DOI: 10.1186/s12967-023-03955-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 3 is known as a favorable aim in vast range of cancers, particularly in bladder cancer treatment. Pharmacophore and QSAR modeling approaches are broadly utilized for developing novel compounds for the determination of inhibitory activity versus the biological target. In this study, these methods employed to identify FGFR3 potential inhibitors. METHODS To find the potential compounds for bladder cancer targeting, ZINC and NCI databases were screened. Pharmacophore and QSAR modeling of FGFR3 inhibitors were utilized for dataset screening. Then, with regard to several factors such as Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties and Lipinski's Rule of Five, the recognized compounds were filtered. In further step, utilizing the flexible docking technique, the obtained compounds interactions with FGFR3 were analyzed. RESULTS The best five compounds, namely ZINC09045651, ZINC08433190, ZINC00702764, ZINC00710252 and ZINC00668789 were selected for Molecular Dynamics (MD) studies. Off-targeting of screened compounds was also investigated through CDD search and molecular docking. MD outcomes confirmed docking investigations and revealed that five selected compounds could make steady interactions with the FGFR3 and might have effective inhibitory potencies on FGFR3. CONCLUSION These compounds can be considered as candidates for bladder cancer therapy with improved therapeutic properties and less adverse effects.
Collapse
Affiliation(s)
- Mahmoud Ganji
- grid.412266.50000 0001 1781 3962Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- grid.411705.60000 0001 0166 0922Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoari
- grid.420169.80000 0000 9562 2611Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316543551, Iran.
| |
Collapse
|
10
|
Yu X, Wang N, Wang X, Ren H, Zhang Y, Zhang Y, Qiu Y, Wang H, Wang G, Pei X, Chen P, Ren Y, Ha C, Wang L, Wang H. Oocyte Arrested at Metaphase II Stage were Derived from Human Pluripotent Stem Cells in vitro. Stem Cell Rev Rep 2023; 19:1067-1081. [PMID: 36735215 DOI: 10.1007/s12015-023-10511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Initiation of meiosis is the most difficult aspect of inducing competent oocytes differentiation from human stem cells in vitro. Human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) were cultured with follicle fluid, cytokines and small molecule to induced oocyte-like cells (OLCs) formation through a three-step induction procedure. Expression of surface markers and differentiation potential of germ cells were analyzed in vitro by flow cytometry, gene expression, immunocytochemistry, western blotting and RNA Sequencing. To induce the differentiation of hiPSCs into OLCs, cells were firstly cultured with a primordial germ cell medium for 10 days. The cells exhibited similar morphological features to primordial germ cells (PGCs), high expressing of germ cell markers and primordial follicle development associated genes. The induced PGCs were then cultured with the primordial follicle-like cell medium for 5 days to form the induced follicle-like structures (iFLs), which retained both primordial oocytes-like cells and granulosa-like cells. In the third step, the detached iFLs were harvested and transferred to the OLC-medium for additional 10 days. The cultured cells developed cumulus-oocyte-complexes (COCs) structures and OLCs with different sizes (50-150 μm diameter) and a zona pellucida. The in vitro matured OLCs had polar bodies and were arrested at metaphase II (MII) stage. Some OLCs were self-activated and spontaneously developed into multiple-cell structures similar to preimplantation embryos, indicating that OLCs were parthenogenetically activated though in vitro fertilization potential of OLCs are yet to be proved. in vitro maturation of OLCs derived from hiPSCs provides a new means to study human germ cell formation and oogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China.
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiang Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hehe Ren
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yanping Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yingxin Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yikai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hongyan Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Guoping Wang
- Yinchuan Maternal and Child Health Care Hospital, 75004, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Ping Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Yahui Ren
- College of Life Science and Engineering, Henan University of Urban Construction, 467000, Pingdingshan, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Li Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Wang Y, Zhang J, Liang J, Jia L, Niu S, Cheng K, Yang C, Lu Z, Mu L, Yang X, Zhang Y, Zhang H. In vivo promotion of primordial follicle activation by stem cell factor treatment in mice with premature ovarian insufficiency and advanced age. Mol Hum Reprod 2022; 29:6881085. [PMID: 36477300 DOI: 10.1093/molehr/gaac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.
Collapse
Affiliation(s)
- Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiawei Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Beijing, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaixin Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chen Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zining Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuebing Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Bai X, Wang S. Signaling pathway intervention in premature ovarian failure. Front Med (Lausanne) 2022; 9:999440. [PMID: 36507521 PMCID: PMC9733706 DOI: 10.3389/fmed.2022.999440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Premature ovarian failure (POF) is a multifactorial disease that refers to the occurrence of secondary amenorrhea, estrogen decrease, and gonadotropin increase in women under the age of 40. The prevalence of POF is increasing year by year, and the existing instances can be categorized as primary or secondary cases. This disease has adverse effects on both the physiology and psychology of women. Hormone replacement therapy is the recommended treatment for POF, and a multidisciplinary strategy is required to enhance the quality of life of patients. According to recent studies, the primary mechanism of POF is the depletion of ovarian reserve function as a result of increased primordial follicular activation or primordial follicular insufficiency. Therefore, understanding the processes of primordial follicle activation and associated pathways and exploring effective interventions are important for the treatment of POF.
Collapse
|
13
|
Rosario R, Cui W, Anderson RA. Potential ovarian toxicity and infertility risk following targeted anti-cancer therapies. REPRODUCTION AND FERTILITY 2022; 3:R147-R162. [PMID: 35928672 PMCID: PMC9346327 DOI: 10.1530/raf-22-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike traditional chemotherapy agents which are generally cytotoxic to all cells, targeted anti-cancer therapies are designed to specifically target proliferation mechanisms in cancer cells but spare normal cells, resulting in high potency and reduced toxicity. There has therefore been a rapid increase in their development and use in clinical settings, including in curative-intent treatment regimens. However, the targets of some of these drugs including kinases, epigenetic regulatory proteins, DNA damage repair enzymes and proteasomes, have fundamental roles in governing normal ovarian physiology. Inhibiting their action could have significant consequences for ovarian function, with potentially long-lasting adverse effects which persist after cessation of treatment, but there is limited evidence of their effects on reproductive function. In this review, we will use literature that examines these pathways to infer the potential toxicity of targeted anti-cancer drugs on the ovary. Lay summary Compared to traditional chemotherapy agents, anti-cancer therapies are thought to be highly effective at targeting cancer cells but sparing normal cells, resulting in reduced drug side effects. However, many of processes within the cells that these drugs affect are also important for the ovary to work normally, so suppressing them in this way could have long-lasting implications for female fertility. This review examines the potential toxicity of anti-cancer therapies on the ovary.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wanyuan Cui
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Kim SJ, Kim TE, Jee BC. Impact of imatinib administration on the mouse ovarian follicle count and levels of intra-ovarian proteins related to follicular quality. Clin Exp Reprod Med 2022; 49:93-100. [PMID: 35698771 PMCID: PMC9184883 DOI: 10.5653/cerm.2022.05218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/12/2022] Open
Abstract
Objective The impact of imatinib, a tyrosine kinase inhibitor, on ovarian follicles and several proteins related to follicular function and apoptosis was investigated in mice. Methods Saline, cyclophosphamide (Cp; 50 or 75 mg/kg), or imatinib (7.5 or 15 mg/kg) was injected once intraperitoneally into female B6D2F1 mice (18 mice in each group). In multiple ovarian sections, the number of various types of follicles and the proportion of good-quality (G1) follicles were counted. The levels of six proteins (anti-Müllerian hormone [AMH], BCL-xL, BAX, acid sphingomyelinase [A-SMase], caspase-3, and α-smooth muscle actin [α-SMA]) within the whole ovaries were quantified using Western blots. Results Compared to the saline group, a significant reduction of the primordial follicle count was observed in the group treated with imatinib 7.5 and 15 mg/kg, as well as in the group treated with Cp 75 mg/kg. Administration of Cp significantly decreased the proportion of G1 primordial follicles, but administration of imatinib did not. No differences in the AMH, anti-apoptotic BCLX-L, pro-apoptotic BAX, and A-SMase levels in the ovarian tissues were observed among the five groups. However, caspase-3 and α-SMA levels were significantly higher in the imatinib and Cp groups than in the saline group. Conclusion The administration of imatinib to mice significantly reduced the primordial follicle count and increased the protein levels of caspase-3 and α-SMA. Our findings suggest that imatinib potentially exerts ovarian toxicity via apoptotic processes, similarly to Cp.
Collapse
Affiliation(s)
- Se Jeong Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Ilsan Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Eun Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Corresponding author: Byung Chul Jee Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea Tel: +82-31-787-7254 Fax: +82-31-787-4054 E-mail:
| |
Collapse
|
15
|
Bussies PL, Richards EG, Rotz SJ, Falcone T. Targeted cancer treatment and fertility: effect of immunotherapy and small molecule inhibitors on female reproduction. Reprod Biomed Online 2021; 44:81-92. [PMID: 34674940 DOI: 10.1016/j.rbmo.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Targeted cancer therapy is rapidly evolving the landscape of personalized health care. Novel approaches to selectively impeding tumour growth carry significant potential to improve survival outcomes, particularly for reproductive-aged patients harbouring treatment refractory disease. Current agents fall within two classes: immunotherapy and small molecule inhibitors. These are collectively divided into the following subclasses: monoclonal antibodies; immunomodulators; adoptive cell therapy; treatment vaccines; kinase inhibitors; proteasome inhibitors; metalloproteinase and heat shock protein inhibitors; and promoters of apoptosis. The short- and long-term effects of these treatments on the female reproductive system are not well understood. As a result, clinicians are rendered unable to appropriately counsel women on downstream effects to their fertility. Data-driven consensus recommendations are desperately needed. This review aims to characterize the effect of targeted cancer therapy on the female hypothalamic-pituitary-ovary axis, direct ovarian function and conception.
Collapse
Affiliation(s)
- Parker L Bussies
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA
| | - Elliott G Richards
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA
| | - Seth J Rotz
- Cleveland Clinic Foundation, Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Cleveland OH, USA
| | - Tommaso Falcone
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA.
| |
Collapse
|
16
|
PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int J Mol Sci 2021; 22:ijms22189838. [PMID: 34575999 PMCID: PMC8467417 DOI: 10.3390/ijms22189838] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Several studies indicate that the PI3K/PTEN/AKT signaling pathways are critical regulators of ovarian function including the formation of the germ cell precursors, termed primordial germ cells, and the follicular pool maintenance. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/AKT pathways during primordial germ cell development and the dynamics of the ovarian primordial follicle reserve and how dysregulation of these signaling pathways may contribute to the development of some types of germ cell tumors and ovarian dysfunctions.
Collapse
|
17
|
Tocci A. The safety of VASA pos presumptive adult ovarian stem cells. Reprod Biomed Online 2021; 43:587-597. [PMID: 34474974 DOI: 10.1016/j.rbmo.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023]
Abstract
Isolation and characterization of presumptive human adult ovarian stem cells (OSC) has broken the long standing dogma of the absence of postnatal neo-oogenesis. Human adult OSC have been immunosorted by antibodies reacting against the RNA helicase VASA and have been reported to engraft into appropriate stem cell niches to promote neo-oogenesis. Analysis of published research, however, questions some of the findings on isolation, characterization, in-vitro self-renewal and clinical safety of the presumptive human adult OSC. In the present study, human VASApos embryo-fetal primordial germ cells and presumptive adult OSC are shown to share several pluripotency and early germ cell markers not ascertained in the initial characterization of adult OSC. A new hypothesis is made that the restoration of fertility claimed to result from presumptive human adult OSC may be attributed instead to VASApos embryo-fetal primordial germ cell remnants in the adult ovary, or alternatively to earlier VASAneg germ cells generated by in-vitro de-differentiation of the presumptive OSC. The suggested hypotheses have extensive implications for the practice and safety of adult OSC in the development of new treatments aimed at rescuing the ovarian reserve.
Collapse
Affiliation(s)
- Angelo Tocci
- Gruppo Donnamed, Reproductive Medicine Unit Via Cassia 1110 00189, Rome, Italy.
| |
Collapse
|
18
|
Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chin Med J (Engl) 2021; 133:1711-1718. [PMID: 32530882 PMCID: PMC7401757 DOI: 10.1097/cm9.0000000000000850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian follicles are composed of oocytes, granulosa cells, and theca cells. Theca cells form in the secondary follicles, maintaining follicular structural integrity and secreting steroid hormones. Two main sources of theca cells exist: Wilms tumor 1 positive (Wt1+) cells native to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. Normal folliculogenesis is a process where oocytes, granulosa cells, and theca cells constantly interact with and support each other through autocrine and paracrine mechanisms. The proliferation and differentiation of theca cells are regulated by oocyte-derived factors, including growth development factor 9 and bone morphogenetic protein 15, and granulosa cell-derived factors, including desert hedgehog, Indian hedgehog, kit ligand, insulin-like growth factor 1, as well as hormones such as insulin and growth hormones. Current research on the origin of theca cells is limited. Identifying the origin of theca cells will help us to systematically elaborate the mechanisms of follicular formation and development.
Collapse
|
19
|
Yamochi T, Hashimoto S, Morimoto Y. Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination. J Assist Reprod Genet 2021; 38:2591-2599. [PMID: 33970370 DOI: 10.1007/s10815-021-02212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To enhance the in vitro growth of porcine oocytes, we studied the effect of mural granulosa cells (MGCs) on the viability of oocytes attached to granulosa cells (oocyte-granulosa cell complexes, OGCs) that were obtained from early antral follicles. METHODS AND RESULTS When OGCs were cultured with MGCs for 12 days, there were significant improvement (P < 0.05) in the robustness of gap junctional communication between the oocyte and the granulosa cells (82% vs. 59%), the survival rate of oocytes (57% vs. 39%), and the diameter of survived oocytes (118 μm vs. 112 μm). The rate of oocyte release of OGCs cultured with MGCs on the 12th day (1.9%) was significantly lower than that of OGCs cultured without MGCs (26%). Complete meiotic arrest was maintained in the group with MGCs (100%), while partial resumption of spontaneous meiosis was noticed in the absence of MGCs (10-19%). Furthermore, the presence of MGCs increased the oocyte maturation rate after maturation culture in both 12- and 14-day culture groups (P < 0.05, 85-88%) compared to OGCs cultured without MGCs (48-60%). MGCs also significantly improved the blastocyst formation rate (day 7) after ICSI (P < 0.05). CONCLUSIONS The data of this study thus shows that the presence of MGCs during in vitro oocyte growth plays a crucial role in supporting the developmental competence of growing porcine oocytes attached to the granulosa cells via enhancement of their viability.
Collapse
Affiliation(s)
- Takayuki Yamochi
- Reproductive Science Laboratory, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan.,IVF Namba Clinic, Osaka, 550-0015, Japan
| | - Shu Hashimoto
- Reproductive Science Laboratory, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan. .,IVF Namba Clinic, Osaka, 550-0015, Japan.
| | | |
Collapse
|
20
|
Lee HJ, Park MJ, Joo BS, Joo JK, Kim YH, Yang SW, Kim CW, Kim KH. Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure. Reprod Biol Endocrinol 2021; 19:59. [PMID: 33888135 PMCID: PMC8061220 DOI: 10.1186/s12958-021-00736-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have shown that coenzyme Q10 (CoQ10) can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility due to ovarian aging. However, few studies have examined the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs and recovers ovarian function in a 4-vinylcyclohexene diepoxide (VCD)-induced mouse model of ovarian failure. METHODS Forty female C57BL/6 mice aged 6 weeks were randomly divided into four groups (n = 10/group): a control group administered saline orally, a CoQ10 group administered 150 mg/kg/day of CoQ10 orally in 1 mL of saline daily for 14 days, a VCD group administered 160 mg/kg/day of VCD i.p. in 2.5 mL of saline/kg for 5 days, and a VCD + CoQ10 group administered VCD i.p. for 5 days injection and CoQ10 (150 mg/kg/day) orally for 14 days. After treatment, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure counts and the expressions of Oct-4 and MVH were also evaluated after culturing OSE for 3 weeks. In a second experiment, 32 female mice were administered CoQ10 as described above, induced to superovulate using PMSG and hCG, and mated. Numbers of zygotes and embryo development rate were examined. RESULTS Postcultured OSE showed significant increases in the numbers of oocyte-like structure and that the expression of Oct-4 and MVH were higher in the VCD + CoQ10 group than in the VCD group (p < 0.05). Numbers of surviving follicles from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.01). Serum AMH level and ovarian expressions of Bmp-15, Gdf-9 and c-Kit were also significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.05). In contrast, serum ROS level was significantly lower in the VCD + CoQ10 group than in the VCD group (p < 0.05). CONCLUSION This study shows that CoQ10 stimulates the differentiation of OSE-derived OSCs and confirms that CoQ10 can reduce ROS levels and improve ovarian function and oocyte quality in mice with VCD-induced ovarian failure.
Collapse
Affiliation(s)
- Hyun Joo Lee
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jong Kil Joo
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| | - Yeon Hee Kim
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Sun Woo Yang
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Chang-Woon Kim
- grid.264381.a0000 0001 2181 989XDepartment of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwoon, Kyungsang Nam-Do Republic of Korea
| | - Ki Hyung Kim
- grid.262229.f0000 0001 0719 8572Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- grid.412588.20000 0000 8611 7824Biomedical Research Institute, Pusan National University Hospital, Busan, 49241 Republic of Korea
| |
Collapse
|
21
|
Tanaka K, Hayashi Y, Takehara A, Ito-Matsuoka Y, Tachibana M, Yaegashi N, Matsui Y. Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes†. Biol Reprod 2021; 105:64-75. [PMID: 33824958 DOI: 10.1093/biolre/ioab064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal ovarian germ cells show characteristic energy metabolism status, such as enhanced mitochondrial metabolism as well as glycolysis, but their roles in early folliculogenesis are unclear. We show here that inhibition of pyruvate uptake to mitochondria by UK5099 in organ cultures of fetal mouse ovaries resulted in repressed early folliculogenesis without affecting energy production, survival of oocytes, or meiosis. In addition, the abnormal folliculogenesis by UK5099 was partially rescued by α-ketoglutarate and succinate, intermediate metabolites in the TCA cycle, suggesting the importance of those metabolites. The expression of TGFβ-related genes Gdf9 and Bmp15 in ovarian germ cells, which are crucial for folliculogenesis, was downregulated by UK5099, and the addition of recombinant GDF9 partially rescued the abnormal folliculogenesis induced by UK5099. We also found that early folliculogenesis was similarly repressed, as in the culture, in the ovaries of a germ cell-specific knockout of Mpc2, which encodes a mitochondria pyruvate carrier that is targeted by UK5099. These results suggest that insufficient Gdf9 expression induced by abnormal pyruvate metabolism in oocytes results in early follicular dysgenesis, which is a possible cause of defective folliculogenesis in humans.
Collapse
Affiliation(s)
- Keiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Ogawa T, Ogi M, Hirata S. A case of ovarian stimulation for fertility preservation in a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after treatment with dasatinib. J Obstet Gynaecol Res 2021; 47:1182-1185. [PMID: 33469980 DOI: 10.1111/jog.14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/25/2020] [Accepted: 12/25/2020] [Indexed: 11/30/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are effective for treating Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). However, the use of TKIs may decrease the number of collected oocytes during fertility preservation procedures. We report the case of a 19-year-old patient with Ph+ALL for whom 21 oocytes were frozen after controlled ovarian stimulation was initiated 2 days after the completion of 28 days of remission induction therapy with dasatinib. After collecting the oocytes, consolidation therapy was initiated immediately, and a hematopoietic stem cell transplant from her younger brother was scheduled. It is believed that a 2-day withdrawal period is sufficient for fertility preservation or that the effect of dasatinib on the number of oocytes obtained is minimal.
Collapse
Affiliation(s)
- Tatsuyuki Ogawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Maki Ogi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
23
|
Lorenzi E, Simonelli M, Persico P, Dipasquale A, Santoro A. Risks of molecular targeted therapies to fertility and safety during pregnancy: a review of current knowledge and future needs. Expert Opin Drug Saf 2021; 20:503-521. [PMID: 33600273 DOI: 10.1080/14740338.2021.1893299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION As the population of young cancer survivors is increasing and a trend toward postponing pregnancy later in life is reported, more efforts are focused toward understanding treatment-induced sequelae, in particular, the effects of cancer and/or treatment on fertility. AREA COVERED Whereas the fertility risk of cytotoxic agents for both men and women is well recognized, the impact of molecular-targeted therapy (MTT) on fertility parameters, their teratogenic potential and pregnancy outcome/management in case of an accidental exposure are not established. We update available clinical data on the impact of new MTTs on fertility in both sexes, their potential teratogenic effects and the outcome of pregnancy during accidental exposure. Agents are categorized by class and the potential relevance of their target signaling pathways to gonadal maturation. EXPERT OPINION The majority of MTTs have worrying preclinical data discouraging their use during pregnancy and reinforcing the idea that they can induce impairment in gonadal function. However, it does not mean that all MTTs result in permanent infertility and that they should be completely avoided during pregnancy. The current review provides a critical evaluation on the most commonly used MTTs, offering a possible guide for clinicians.
Collapse
Affiliation(s)
- Elena Lorenzi
- Department of Oncology, IRCCS Humanitas Cancer Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Matteo Simonelli
- Department of Oncology, IRCCS Humanitas Cancer Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Pasquale Persico
- Department of Oncology, IRCCS Humanitas Cancer Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Angelo Dipasquale
- Department of Oncology, IRCCS Humanitas Cancer Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Armando Santoro
- Department of Oncology, IRCCS Humanitas Cancer Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| |
Collapse
|
24
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
25
|
Mahmoudi P, Rashidi A, Rostamzadeh J, Razmkabir M. A novel variant in the promoter region of miR-9 gene strongly affects litter size in Markhoz goats. Theriogenology 2020; 158:50-57. [PMID: 32932184 DOI: 10.1016/j.theriogenology.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to identify and evaluate the effects of single nucleotide polymorphisms (SNPs) within miR-9 and miR-27a genes and their promoters, as well as 3'UTR regions of KITLG and IGF1 genes on litter size in Markhoz goats. PCR-SSCP analysis revealed different band patterns and sequencing results confirmed four SNPs including a C/A, a A/G, a C/T and a A/G substitution located in the promoter region of miR-9 gene, 48 bp upstream of miR-9 seed region within the 3'UTR of KITLG gene, 37 bp downstream of miR-27a gene and 39 bp upstream of miR-9 seed region within the 3'UTR of IGF1 gene, respectively. The results of the least-square analyses indicated that AA genotype of miR-9 gene strongly and positively affects litter size in Markhoz goats (P < 0.01). Furthermore, the results of the logistic regression analyses confirmed that the A allele of miR-9 gene has a tremendous impact on litter size in Markhoz goats (P < 0.01). Scanning the promoter region of miR-9 gene showed that changing C allele to A may prevent HES1, HES2, NRF1 and TCFL5 transcription factors (TFs) from binding to the promoter, which can reduce the expression of miR-9 gene. Principle component analysis (PCA) showed that approximately 60% of the variation of the data set was explained by two of four SNPs. Also, the biplot from the PCA showed a strong association between litter size and C/A polymorphism of miR-9 promoter. Linkage disequilibrium analysis revealed a very slight linkage among investigated loci.
Collapse
Affiliation(s)
- Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| | - Jalal Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| |
Collapse
|
26
|
Rios SJ, Martínez-Montesinos L, Aroca C, Teruel-Montoya R, Ferrer-Marín F. Successful ovarian stimulation and pregnancy in an infertile woman with chronic myeloid leukemia. J Assist Reprod Genet 2020; 37:2473-2476. [PMID: 32766925 DOI: 10.1007/s10815-020-01907-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKI) treatment has transformed chronic myeloid leukemia (CML) from a fatal neoplasm to a chronic disease with normal life expectancies. Indeed, half of CML patients are able to discontinue TKI without relapse. However, it seems clearly demonstrated that exposure to TKI may result in fetal malformations. Regarding its effects on fertility, preclinical studies and clinical case reports provide inconclusive evidence. Furthermore, due to the risk of CML relapse after TKI discontinuation, the optimal time to stop TKI represents a real dilemma. CASE REPORT We describe a 23-year-old woman who, after more than 6 years with imatinib and 1 year in deep molecular response [(DMR), MR ≥ 4], interrupted treatment to become pregnant. After 2 failed artificial insemination cycles, she underwent one process of controlled ovarian stimulation, achieving 2 blastocyst-embryos. In the meantime, BCR-ABL1IS levels increased despite interferon-alpha therapy, she lost the mayor molecular response (MMR), and the 2 embryos had to be cryopreserved. A stable second MR ≥ 4.0 was again obtained with nilotinib, and after stopping it, the 2 blastocyst-embryo transfers were unsuccessfully performed. Under DMR, a second ovarian stimulation and in vitro fertilization (IVF) was performed and 1 blastocyst embryo was transferred. This time, she became pregnant and a healthy baby was born. After more than 3 years of follow-up, she remains in treatment-free remission (TFR). CONCLUSION Compared with imatinib, nilotinib achieves earlier and deeper MR that allows safe and timely pregnancies in infertile CML women through IVF process, while patients remain in TFR after delivery.
Collapse
Affiliation(s)
- Silvina J Rios
- Hematology and Medical Oncology Unit, Hospital Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, UCAM, C/Ronda de Garay, 30003, Murcia, SN, Spain
| | - Lorena Martínez-Montesinos
- Hematology and Medical Oncology Unit, Hospital Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, UCAM, C/Ronda de Garay, 30003, Murcia, SN, Spain
| | - Cristina Aroca
- Hematology and Medical Oncology Unit, Hospital Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, UCAM, C/Ronda de Garay, 30003, Murcia, SN, Spain
| | - Raul Teruel-Montoya
- Hematology and Medical Oncology Unit, Hospital Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, UCAM, C/Ronda de Garay, 30003, Murcia, SN, Spain.,CIBERER (U/765), Murcia, Spain.,Grado de Medicina, UCAM, Murcia, Spain
| | - Francisca Ferrer-Marín
- Hematology and Medical Oncology Unit, Hospital Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, UCAM, C/Ronda de Garay, 30003, Murcia, SN, Spain. .,CIBERER (U/765), Murcia, Spain. .,Grado de Medicina, UCAM, Murcia, Spain.
| |
Collapse
|
27
|
Regulation of Folliculogenesis by Growth Factors in Piglet Ovary Exposed Prenatally to β-Hydroxy-β-Methylbutyrate (HMB). ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Β-hydroxy-β-methylbutyrate (HMB) is one of the leucine metabolites with protein anabolic effects which makes it very popular among athletes. Previously, it was shown that HMB administered during the prenatal period reduced the pool of primordial follicles and increased the proportion of developing follicles in newborn piglets. This work is a further step to understand these morphological alterations. Therefore, the aim of this study was to examine the effect of prenatal HMB treatment on the expression of the Kit ligand, BMP-4, bFGF, and the IGF-1/IGF-1R system which are the main growth factors controlling follicular development. Excised ovaries from 12 newborn piglets, originated from the control (n=6) and HMB-treated (n=6) sows were used for immunohistochemical and western-blot analysis. The tested proteins were localized within egg nests and ovarian follicles. Furthermore, the western-blot assay indicated higher BMP-4, Kit ligand, and IGF-1R expression, while the level of bFGF and IGF-1 proteins decreased after HMB dietary treatment. These findings show that HMB included into sow diet can modulate the expression of growth factors and thereby alter ovarian morphology in offspring. Therefore, this study opens a discussion about the benefits and risks of the diet supplemented with HMB and its potential application in medicine and animal husbandry, and further research is necessary in this area.
Collapse
|
28
|
Nguyen XP, Nakamura T, Osuka S, Bayasula B, Nakanishi N, Kasahara Y, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Effect of the neuropeptide phoenixin and its receptor GPR173 during folliculogenesis. Reproduction 2020; 158:25-34. [PMID: 30933929 DOI: 10.1530/rep-19-0025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 01/31/2023]
Abstract
Folliculogenesis is a complex process, defined by the growth and development of follicles from the primordial population. Granulosa cells (GCs) play a vital role in every stage of follicular growth through proliferation, acquisition of gonadotropic responsiveness, steroidogenesis and production of autocrine/paracrine factors. A recently discovered hypothalamic neuropeptide phoenixin is involved in the regulation of the reproductive system. Phoenixin acts through its receptor, G protein-coupled receptor 173 (GPR173), to activate the cAMP/PKA pathway leading to the phosphorylation of CREB (pCREB). Here, we demonstrated the expression patterns of phoenixin and GPR173 in human ovary and explored its role in folliculogenesis. Phoenixin and GPR173 were both expressed in the human ovarian follicle, with increased expression in GCs as the follicle grows. Phoenixin treatment at 100 nM for 24 h induced the proliferation of human non-luteinized granulosa cell line, HGrC1 and significantly increased the expression levels of CYP19A1, FSHR, LHR and KITL, but decreased NPPC expression levels. These effects were suppressed by GPR173 siRNA. The expression level of CREB1, pCREB and estradiol (E2) production in the culture medium was significantly enhanced by phoenixin treatment in a concentration-dependent manner. Phoenixin also significantly increased the follicular area in a murine ovarian tissue culture model, leading to an increased number of ovulated oocytes with a higher level of maturation. Taken together, our data demonstrate that phoenixin is an intraovarian factor that promotes follicular growth through its receptor GPR173 by accelerating proliferation of GCs, inducing E2 production and increasing the expression of genes related to follicle development.
Collapse
Affiliation(s)
- Xuan Phuoc Nguyen
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Bayasula Bayasula
- Bell Research Center for Reproductive Health and Cancer; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shotaro Hayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Salem W, Ho JR, Woo I, Ingles SA, Chung K, Paulson RJ, McGinnis LK. Long-term imatinib diminishes ovarian reserve and impacts embryo quality. J Assist Reprod Genet 2020; 37:1459-1466. [PMID: 32372302 PMCID: PMC7311628 DOI: 10.1007/s10815-020-01778-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Tyrosine kinase inhibitors (TKIs) such as imatinib are commonly used chemotherapeutics, but the effects of long-term treatments on reproductive outlook for cancer survivors are unknown. The purpose of this study was to examine the effects of long-term imatinib treatments on follicle development and embryo quality. Since prospective studies are not possible in healthy humans, we have incorporated a commonly used mouse model. METHODS Adult female mice were treated with daily IP injections of imatinib for 4-6 weeks. Liquid chromatography-mass spectrometry was used to measure imatinib in serum and ovarian tissues. At the end of treatments, females were superovulated and mated to yield fertilized embryos. Oocytes and embryos were collected from oviducts, assessed for development by microscopy, and fertilized embryos were cultured in vitro. Blastocysts were fixed and stained for differential cell counts. RESULTS Long-term imatinib treatments caused a shift in follicle development, with imatinib-treated females having fewer primordial follicles, but an increase in primary and secondary follicles (P < 0.05). There was no effect on ovulation or fertilization rates. However, blastocysts from imatinib-treated females had fewer total cells (P < 0.05) and a significant shift from inner cell mass to increased trophectoderm cells. CONCLUSION This pilot study indicates that long-term TKI treatments may have significant impact on ovarian reserve and embryo developmental capacity. More studies are needed in other model systems to determine the long-term impact of TKIs in patients. Knowing the potential effects of chemotherapeutics on reproductive outlook is critical for quality of life and more research is needed.
Collapse
Affiliation(s)
- Wael Salem
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA
| | - Jacqueline R Ho
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA
| | - Irene Woo
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA
| | - Sue A Ingles
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karine Chung
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA
| | - Richard J Paulson
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA
| | - Lynda K McGinnis
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Park MJ, Ahn JW, Kim KH, Bang J, Kim SC, Jeong JY, Choi YE, Kim CW, Joo BS. Prediction of ovarian aging using ovarian expression of BMP15, GDF9, and C-KIT. Exp Biol Med (Maywood) 2020; 245:711-719. [PMID: 32223330 DOI: 10.1177/1535370220915826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Ovarian aging is becoming a more important issue in terms of fertility preservation and infertility treatment. Serum anti-Mullerian hormone (AMH) level and antral follicle count (AFC) are being practically used as markers of ovarian aging as well as ovarian reserve in human. However, these factors have some drawbacks in assessing ovarian aging and reserve. Therefore, the identification of ovarian expressions of BMP15, GDF9, and C-KIT according to female could be applied as a potent predictor of ovarian aging. This work provides new information on the development of diagnosis and treatment strategy of age-related fertility decline and premature ovarian insufficiency.
Collapse
Affiliation(s)
- Min Jung Park
- Korea Institute for Public Sperm Bank, Busan 49241, Korea
| | - Jun-Woo Ahn
- Department of Obstetrics and Gynecology, College of Medicine, Ulsan University Hospital, Ulsan 44033, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Korea
| | - Junghee Bang
- Department of Cardiothoracic Surgery, Dong-A University Hospital, Busan 602-812, Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Korea
| | - Jae Yi Jeong
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Ye Eun Choi
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Chang-Woon Kim
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Bo Sun Joo
- Korea Institute for Public Sperm Bank, Busan 49241, Korea.,Department of Cardiothoracic Surgery, Dong-A University Hospital, Busan 602-812, Korea
| |
Collapse
|
31
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
32
|
Association of Polymorphisms in Candidate Genes with the Litter Size in Two Sheep Breeds. Animals (Basel) 2019; 9:ani9110958. [PMID: 31726757 PMCID: PMC6912326 DOI: 10.3390/ani9110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Hu sheep and Small-tailed Han sheep are the most widely raised and most famous maternal sheep breeds in China, which are known for precocious puberty, perennial oestrus and high fecundity (1-6 lambs each parity). Therefore, it is crucial to increase litter size of these two breeds for intensive sheep industry. The objective of this study was to identify potential genetic markers linked with sheep litter size located at ten genes. This study collected blood sample of 537 Hu sheep and 420 Small-tailed Han sheep with litter size of first parity. The average litter sizes in Hu sheep and Small-tailed Han sheep were 2.21 and 1.93. DNA-pooling sequencing method was used for detecting the potential single nucleotide polymorphisms (SNPs) in ten genes related to follicle development and female reproduction. SNPscan® was used for individually genotyping. As a result, a total of 78 putative SNPs in nine out of ten candidate genes (except NOG) were identified. In total, 50 SNPs were successfully genotyped in Hu sheep and Small-tailed Han sheep. After quality control, a total of 42 SNPs in Hu sheep and 44 SNPs in Small-tailed Han sheep were finally used for further analysis. Association analysis revealed that nine SNPs within six genes (KIT: g.70199073A>G, KITLG: g.124520653G>C, ADAMTS1: g.127753565T>C, ADAMTS1: g.127754640G>T, NCOA1: g.31928165C>T, NCOA1: g.32140565G>A, LIFR: g.35862868C>T, LIFR: g.35862947G>T and NGF: g.91795933T>C) were significantly associated with litter size in Hu sheep or Small-tailed Han sheep. A combined haplotypes analysis of the two loci (LIFR: g.35862868C>T and LIFR: g.35862947G>T) revealed that H2H3 (CTTT) combined haplotypes had the largest litter size than the rest combined haplotypes and more than those with either mutation alone in Small-tailed Han sheep. Taken together, our study suggests that nine significant SNPs in six genes can be served as useful genetic markers for MAS in sheep.
Collapse
|
33
|
Madabhavi I, Sarkar M, Modi M, Kadakol N. Pregnancy Outcomes in Chronic Myeloid Leukemia: A Single Center Experience. J Glob Oncol 2019; 5:1-11. [PMID: 31584851 PMCID: PMC6825245 DOI: 10.1200/jgo.18.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of the current work was to report the effect of imatinib on pregnancy in patients with chronic myeloid leukemia (CML). METHODS Data were collected between January 1998 and December 2014. One hundred four patients met inclusion criteria, and we report the results of 104 pregnancies-conceived by the participant or partner-while being on imatinib therapy for CML. RESULTS Fifty-eight patients were male and 46 were female. Eighty-three patients, 20 patients, and one patient were had CML in the chronic phase, accelerated phase, or blast phase, respectively. Of 46 female patients, 21 underwent abortion (spontaneous, n = 36.9; elective termination, n = 8.6%). In the case of full-term pregnancy in the female partners of male patients with CML, all outcomes were uneventful. Of 46 female patients, 25 had full-term pregnancy outcomes. During the pre-imatinib era (total n = 6), patients were treated with hydroxyurea, interferon-alpha, and therapeutic leukapheresis. A total 10 of 19 pregnant patients continued on imatinib until their delivery and experienced the following outcomes: normal full-term deliveries (n = 7), preterm delivery (n = 1), omphalocele (n = 1), and craniosynostosis (n = 1). Of those who discontinued imatinib after counseling (n = 9), eight patients had full-term normal delivery, of which two patients required leukapheresis and one patient expired. All patients who continued on imatinib while pregnant were in complete cytogenetic response and major molecular response (MMR) before pregnancy, during pregnancy, and postpregnancy. Of nine patients who discontinued imatinib, two lost MMR during the third trimester and all of these patients were in complete cytogenetic response and MMR before pregnancy. CONCLUSION It is clear that there is no standard of care for the best treatment of CML in the case of pregnancy. Interferon and/or leukapheresis will be included as treatment options. Patients can have normal pregnancies even with the administration of imatinib at the risk of congenital anomalies, intervention for which can be done after birth.
Collapse
Affiliation(s)
| | | | - Mitul Modi
- Gujarat Cancer and Research Institute, Ahmedabad, India
| | | |
Collapse
|
34
|
Clarke H. Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. Results Probl Cell Differ 2019; 63:17-41. [PMID: 28779312 DOI: 10.1007/978-3-319-60855-6_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.
Collapse
Affiliation(s)
- Hugh Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Room E.M0.2218, Glen Research Building, 100 Boul Decarie, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
35
|
Akahori T, Woods DC, Tilly JL. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119848007. [PMID: 31191070 PMCID: PMC6540489 DOI: 10.1177/1179558119848007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells-referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute "artificial" ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.
Collapse
Affiliation(s)
- Taichi Akahori
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA.,On leave from the Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
36
|
Imatinib treatments have long-term impact on placentation and embryo survival. Sci Rep 2019; 9:2535. [PMID: 30796277 PMCID: PMC6385245 DOI: 10.1038/s41598-019-39134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Imatinib is an oral chemotherapeutic used primarily to treat chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). The potential effects of cancer treatments on a patient’s future fertility are a major concern affecting the quality of life for cancer survivors. The effects of imatinib on future fertility are unknown. It is teratogenic. Therefore, patients are advised to stop treatment before pregnancy. Unfortunately, CML and GIST have high rates of recurrence in the absence of the drug, therefore halting imatinib during pregnancy endangers the mother. Possible long-term (post-treatment) effects of imatinib on reproduction have not been studied. We have used a mouse model to examine the effects of imatinib on the placenta and implantation after long-term imatinib exposure. We found significant changes in epigenetic markers of key imprinted genes in the placenta. There was a significant decrease in the labyrinth zone and vasculature of the placenta, which could impact fetal growth later in pregnancy. These effects on placental growth occurred even when imatinib was stopped prior to pregnancy. These results indicate potential long-term effects of imatinib on pregnancy and implantation. A prolonged wash-out period prior to pregnancy or extra monitoring for possible placental insufficiency may be advisable.
Collapse
|
37
|
Atrabi MJ, Akbarinejad V, Khanbabaee R, Dalman A, Amorim CA, Najar-Asl M, Valojerdi MR, Fathi R. Formation and activation induction of primordial follicles using granulosa and cumulus cells conditioned media. J Cell Physiol 2018; 234:10148-10156. [PMID: 30417361 DOI: 10.1002/jcp.27681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Fertility preservation of prepubertal girls subjected to invasive cancer therapy necessitates defining protocols for activation of isolated primordial follicles. Granulosa (GCs) and cumulus cells (CCs) play pivotal role in oocyte development. Although GCs and CCs share some similarities, they differ in growth factors production. The current study was conducted to evaluate the effects of GCs, CCs and their conditioned media on mice primordial follicles activation. One-day-old mice ovaries were subjected to 6-day culture with base medium (BM), GC conditioned medium (GCCM), GC coculture (GCCC), CC conditioned medium (CCCM) or CC coculture (CCCC). Follicular growth and primordial to primary follicle transition was observed during 6-day culture, and follicular activation rate tended to be greater in GCCM than other groups (0.05 <P < 0.10). On Day 6, the expression of phosphatase and tensin homolog (PTEN) in GCCM group was lower than that in BM group (P = 0.020), the expression of phosphoinositide-3-kinase was higher in CCCC group than BM, GCCM and CCCM groups (P < 0.05), and the expression of connexin 37 was greater in the CCCM group as compared with BM, GCCC, and CCCC groups (P < 0.01). In conclusion, the current study showed that condition medium of GCs could enhance in vitro activation of primordial follicles, probably through downregulation of PTEN.
Collapse
Affiliation(s)
- Mohammad Jafari Atrabi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramazan Khanbabaee
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Mustafa Najar-Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
38
|
Laldinsangi C, Senthilkumaran B. Expression profiling of c-kit and its impact after esiRNA silencing during gonadal development in catfish. Gen Comp Endocrinol 2018; 266:38-51. [PMID: 29625123 DOI: 10.1016/j.ygcen.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Receptor, c-Kit is a member of a family of growth factor receptors that have tyrosine kinase activity, and are involved in the transduction of growth regulatory signals across plasma membrane by activation of its ligand, kitl/scf. The present study analyzed mRNA and protein expression profiles of c-kit in the gonads of catfish, Clarias gariepinus, using real time PCR, in situ hybridization and immunohistochemistry. Tissue distribution analysis revealed higher expression mainly in the catfish gonads. Ontogeny studies showed minimal expression during early developmental stages and highest during 50-75 days post hatch, and the dimorphic expression in gonads decreased gradually till adulthood, which might suggest an important role for this gene around later stages of sex differentiation and gonadal development. Expression of c-kit was analyzed at various phases of gonadal cycle in both male and female, which showed minimal expression during the resting phase, and higher expression during the pre-spawning phase in male compared to females. In vitro and in vivo induction using human chorionic gonadotropin elevated the expression of c-kit indicating the regulatory influence of hypothalamo-hypophyseal axis. In vivo transient gene silencing using c-kit-esiRNA in adult catfish during gonadal recrudescence showed a decrease in c-kit expression, which affected the expression levels of germ cell meiotic marker sycp3, as well as several factors and steroidogenic enzyme genes that are involved in germ cell development. Decrease in the levels of 11-ketotestosterone and testosterone in serum were also observed after esiRNA silencing. The findings suggests that c-kit has an important role in the process of germ cell proliferation, development and maturation during gonadal development and recrudescence in catfish.
Collapse
Affiliation(s)
- C Laldinsangi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
39
|
Salomon AK, Leon K, Campbell MM, Young KA. Folliculogenic factors in photoregressed ovaries: Differences in mRNA expression in early compared to late follicle development. Gen Comp Endocrinol 2018; 260:90-99. [PMID: 29317212 PMCID: PMC5856633 DOI: 10.1016/j.ygcen.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 11/26/2022]
Abstract
The early stages of ovarian folliculogenesis generally progress independent of gonadotropins, whereas later stages require signaling initiated by FSH. In Siberian hamsters, cycles of folliculogenesis are mediated by changes in photoperiod which depress the hypothalamic pituitary gonadal axis. Reduced gonadotropins lead to decreases in mature follicle development and ovulation; however, early stages of folliculogenesis have not been explored in regressed ovaries. We hypothesized that intraovarian factors that contribute predominantly to later stages of folliculogenesis would react to changes in photoperiod, whereas factors contributing to earlier stages would not change. To probe if the early stages of folliculogenesis continue in the photoinhibited ovary while late stages decline, we measured the mRNA abundance of factors that interact with FSH signaling (Fshr, Igf1, Cox2) and factors that can function independently of FSH (c-Kit, Kitl, Foxo3, Figla, Nobox, Sohlh1, Lhx8). While plasma FSH, antral follicles, and corpora lutea numbers declined with exposure to inhibitory photoperiod, the numbers of primordial, primary, and secondary follicles did not change. Expression of factors that interact with FSH signaling changed with changes in photoperiod; however, expression of factors that do not interact with FSH were not significantly altered. These results suggest that the photoinhibited ovary is not completely quiescent, as factors important for follicle selection and early follicle growth are still expressed in regressed ovaries. Instead, the lack of gonadotropin support that characterizes the non-breeding season appears to inhibit only final stages of folliculogenesis in Siberian hamsters.
Collapse
Affiliation(s)
- Alexander K Salomon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| | - Kathleen Leon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Melissa M Campbell
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
40
|
Bhanuprakash V, Chhotaray S, Pruthviraj DR, Rawat C, Karthikeyan A, Panigrahi M. Copy number variation in livestock: A mini review. Vet World 2018; 11:535-541. [PMID: 29805222 PMCID: PMC5960796 DOI: 10.14202/vetworld.2018.535-541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/31/2018] [Indexed: 01/22/2023] Open
Abstract
Copy number variation (CNV) is a phenomenon in which sections of the genome, ranging from one kilo base pair (Kb) to several million base pairs (Mb), are repeated and the number of repeats vary between the individuals in a population. It is an important source of genetic variation in an individual which is now being utilized rather than single nucleotide polymorphisms (SNPs), as it covers the more genomic region. CNVs alter the gene expression and change the phenotype of an individual due to deletion and duplication of genes in the copy number variation regions (CNVRs). Earlier, researchers extensively utilized SNPs as the main source of genetic variation. But now, the focus is on identification of CNVs associated with complex traits. With the recent advances and reduction in the cost of sequencing, arrays are developed for genotyping which cover the maximum number of SNPs at a time that can be used for detection of CNVRs and underlying quantitative trait loci (QTL) for the complex traits to accelerate genetic improvement. CNV studies are also being carried out to understand the evolutionary mechanism in the domestication of livestock and their adaptation to the different environmental conditions. The main aim of the study is to review the available data on CNV and its role in genetic variation among the livestock.
Collapse
Affiliation(s)
- V Bhanuprakash
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - D R Pruthviraj
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Chandrakanta Rawat
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - A Karthikeyan
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| |
Collapse
|
41
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
42
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
43
|
Zhu B, Pardeshi L, Chen Y, Ge W. Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish. Front Endocrinol (Lausanne) 2018; 9:593. [PMID: 30364302 PMCID: PMC6193065 DOI: 10.3389/fendo.2018.00593] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
In teleosts, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles from the pool of primary growth (PG) follicles (follicle activation) in the ovary during sexual maturation. To understand the mechanisms underlying follicle activation and therefore puberty onset, we undertook this transcriptomic study to investigate gene expression profiles in the event. Our analysis revealed a total of 2,027 up-regulated and 859 down-regulated genes during the PG-PV transition. Gene Ontology (GO) analysis showed that in addition to basic cellular functions such as gene transcription, cell differentiation, and cell migration, other biological processes such as steroidogenesis, cell signaling and angiogenesis were also enriched in up-regulated genes; by comparison, some processes were down-regulated including piRNA metabolism, gene silencing and proteolysis. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified a variety of signaling pathways that might play pivotal roles in PG-PV transition, including MAPK, TGF-β, Hedgehog, FoxO, VEGF, Jak-STAT, and phosphatidylinositol signaling pathways. Other pathways of particular interest included endocytosis and glycosaminoglycan biosynthesis. We also analyzed expression changes of genes expressed in different compartments viz. oocytes and follicle cells. Interestingly, most oocyte-specific genes remained unchanged in expression during follicle activation whereas a great number of genes specifically expressed in the follicle cells showed significant changes in expression. Overall, this study reported a comprehensive analysis for genes, biological processes and pathways involved in follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
- *Correspondence: Wei Ge ;
| |
Collapse
|
44
|
Gazdaru S, Perey L, Rosselet A, Mathevet P, Chalandon Y, Vulliemoz N. Successful Ovarian Stimulation for Fertility Preservation in a Patient with Chronic Myeloid Leukemia: Switch from Nilotinib to Interferon-α. Oncologist 2017; 23:719-721. [PMID: 29212733 DOI: 10.1634/theoncologist.2017-0381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
The development of tyrosine-kinase inhibitors (TKIs) has improved survival of patients with chronic myeloid leukemia (CML). Some patients may become resistant to TKIs and require hematopoietic stem cell transplant (HSCT) that is highly gonadotoxic. Fertility preservation with ovarian stimulation might be indicated but is challenging if patients need to remain on TKIs until HSCT because TKIs may compromise follicular development and response to ovarian stimulation. We report the case of a patient with CML resistant to TKI and planned for an HSCT, in which treatment by TKI was replaced by interferon-α before and during ovarian stimulation for fertility preservation. Successful ovarian stimulation was performed, allowing cryopreservation of nine zygotes. Hematopoietic stem cell transplantation was performed, and at present, 3 years later, the patient presents a sustained major molecular response.
Collapse
Affiliation(s)
- Smaranda Gazdaru
- Reproductive Medicine Unit, Department Woman Mother Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucien Perey
- Oncology Unit, Ensemble Hospitalier de la Côte, Morges, Switzerland
| | - Anne Rosselet
- Hematology Unit, Etablissements Hospitaliers du Nord Vaudois, Yverdon-les-Bains, Switzerland
| | - Patrice Mathevet
- Service of Gynaecology, Department Woman Mother Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Yves Chalandon
- Department of Oncology, Hematology Division, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Vulliemoz
- Reproductive Medicine Unit, Department Woman Mother Child, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
45
|
Cheraghi E, Soleimani Mehranjani M, Shariatzadeh SMA, Nasr Esfahani MH, Alani B. N-Acetylcysteine Compared to Metformin, Improves The Expression Profile of Growth Differentiation Factor-9 and Receptor Tyrosine Kinase c-Kit in The Oocytes of Patients with Polycystic Ovarian Syndrome. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:270-278. [PMID: 29043702 PMCID: PMC5641458 DOI: 10.22074/ijfs.2018.5142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/18/2017] [Indexed: 01/06/2023]
Abstract
Background Paracrine disruption of growth factors in women with polycystic ovarian syndrome (PCOS) results in production of low quality oocyte, especially following ovulation induction. The aim of this study was to investigate the effects of metformin (MET), N-acetylcysteine (NAC) and their combination on the hormonal levels and expression profile of GDF-9, BMP-15 and c-kit, as hallmarks of oocyte quality, in PCOS patients. MATERIALS AND METHODS This prospective randomized, double-blind, placebo controlled trial aims to study the effects of MET, NAC and their combination (MET+NAC) on expression of GDF-9, BMP-15 and c-kit mRNA in oocytes [10 at the germinal vesicle (GV) stage, 10 at the MI stage, and 10 at the MII stage from per group] derived following ovulation induction in PCOS. Treatment was carried out for six weeks, starting on the third day of previous cycle until oocyte aspiration. The expression of GDF9, BMP15 and c-kit were determined by quantitative real time polymerase chain reaction (RT-qPCR) and western blot analysis. Data were analyzed with one-way ANOVA. RESULTS The follicular fluid (FF) level of c-kit protein significantly decreased in the NAC group compared to the other groups. Significant correlations were observed between the FF soluble c-kit protein with FF volume, androstenedione and estradiol. The GDF-9 expression in unfertilized mature oocytes were significantly higher in the NAC group compared to the other groups (P<0.001). Similar difference was not observed between the MET, NAC+MET and control groups. The c-kit expression in unfertilized mature oocytes were significantly lower in the NAC group compared to the other groups (P<0.001). Similar difference was not observed between the MET, NAC+MET and control groups (Registration number: IRCT201204159476N1). CONCLUSION We concluded that NAC can improve the quality of oocytes in PCOS.
Collapse
Affiliation(s)
- Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | | | | | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Isfahan, Iran
| | - Behrang Alani
- Department of Applied Cell Science, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Lim JJ, Lima PDA, Salehi R, Lee DR, Tsang BK. Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Sci Rep 2017; 7:10272. [PMID: 28860512 PMCID: PMC5578986 DOI: 10.1038/s41598-017-09880-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023] Open
Abstract
Although chronic hyperandrogenism suppresses antral follicular development, a phenomenon often observed in polycystic ovarian syndrome (PCOS), whether and how deregulation of androgen receptor (AR) signaling is involved, is not well understood. In the present study, we examined the role of ring finger protein 6 (RNF6) in AR ubiquitination and the possible dysregulation in the expression and actions of growth differentiation factor 9 (GDF9) and kit-ligand (Kitlg) in a chronic androgenized PCOS rat model. 5α-dihydrotestosterone (DHT) treatment in vivo inhibited antral follicle growth, a response mediated through increased RNF6 content, suppressed K63- but increased K48-linked AR ubiquitination as well as the mRNA expression and content of soluble KIT-L (sKitlg) and content of GDF9. These androgenic responses were attenuated by gonadotropin treatment in vivo. Growth of antral follicles from DHT-treated rats in vitro was significantly slower when compared to those of control but was significantly enhanced by exogenous GDF9, suggesting the DHT-induced antral follicular growth arrest is in part the results of GDF9 suppression. Our findings indicate how hyperandrogenism modulates RNF6 content and subsequently AR ubiquitination, resulting in antral follicle growth arrest in a chronically androgenized PCOS rat model.
Collapse
Affiliation(s)
- Jung Jin Lim
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 133-791, Korea
| | - Patricia D A Lima
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Reza Salehi
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, 135-913, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, 135-081, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada.
| |
Collapse
|
47
|
Cadoret V, Frapsauce C, Jarrier P, Maillard V, Bonnet A, Locatelli Y, Royère D, Monniaux D, Guérif F, Monget P. Molecular evidence that follicle development is accelerated in vitro compared to in vivo. Reproduction 2017; 153:493-508. [DOI: 10.1530/rep-16-0627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
In this study, we systematically compared the morphological, functional and molecular characteristics of granulosa cells and oocytes obtained by a three-dimensional in vitro model of ovine ovarian follicular growth with those of follicles recovered in vivo. Preantral follicles of 200 µm diameter were recovered and cultured up to 950 µm over a 20-day period. Compared with in vivo follicles, the in vitro culture conditions maintained follicle survival, with no difference in the rate of atresia. However, the in vitro conditions induced a slight decrease in oocyte growth rate, delayed antrum formation and increased granulosa cell proliferation rate, accompanied by an increase and decrease in CCND2 and CDKN1A mRNA expression respectively. These changes were associated with advanced granulosa cell differentiation in early antral follicles larger than 400 µm diameter, regardless of the presence or absence of FSH, as indicated by an increase in estradiol secretion, together with decreased AMH secretion and expression, as well as increased expression of GJA1, CYP19A1, ESR1, ESR2, FSHR, INHA, INHBA, INHBB and FST. There was a decrease in the expression of oocyte-specific molecular markers GJA4, KIT, ZP3, WEE2 and BMP15 in vitro compared to that in vivo. Moreover, a higher percentage of the oocytes recovered from cultured follicles 550 to 950 µm in diameter was able to reach the metaphase II meiosis stage. Overall, this in vitro model of ovarian follicle development is characterized by accelerated follicular maturation, associated with improved developmental competence of the oocyte, compared to follicles recovered in vivo.
Collapse
|
48
|
Rosario R, Childs AJ, Anderson RA. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline. Stem Cell Res 2017; 21:193-201. [PMID: 28434825 PMCID: PMC5446320 DOI: 10.1016/j.scr.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool. RNA-binding proteins (RBPs) are key regulators of gene expression during oogenesis. RBPs LIN28, DAZL, BOLL and FMRP display stage-specific expression in fetal oocytes. LIN28 and DAZL may regulate self-renewal and progression into meiosis respectively. BOLL and FMRP may be involved in the later stages of prophase I and oocyte growth. RBPs may have critical roles in establishing the ovarian reserve during fetal life.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
49
|
Lim JJ, Han CY, Lee DR, Tsang BK. Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology 2017; 158:993-1004. [PMID: 28324045 DOI: 10.1210/en.2016-1866] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
The destiny of the ovarian follicle (growth or atresia) is tightly regulated by the actions and interactions of endocrine, paracrine, and autocrine factors. Although androgens are known to be important in the regulation of folliculogenesis, whether they facilitate or suppress follicular growth has been controversial, and the mechanisms involved are not fully understood. Moreover, the role and regulation of androgen receptor (AR) in mediating androgen signaling during follicular development is not clear. Here, we report that the active androgen dihydrotestosterone upregulates the expression of AR and its E3 ligase ring finger protein 6 (RNF6), increasing site-specific AR polyubiquitination and AR transcriptional activity for soluble Kit ligand (sKit-L) expression in preantral follicle growth. RNF6 silencing suppressed dihydrotestosterone-induced AR ubiquitination (lysine residue 63) and proliferation and suppressed apoptosis in preantral granulosa cells, with these responses being overcome by the presence of exogenous sKit-L. Taken together, our findings support the notion that RNF6 plays an important role in androgen-induced, follicle-stage-dependent follicle growth and that it acts by facilitating AR-mediated granulosa cell sKit-L expression and proliferation. Our findings offer insights into the regulatory mechanism of androgen action in ovarian follicular growth.
Collapse
Affiliation(s)
- Jung Jin Lim
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
50
|
Srividya D, Praveen Chakravarthi V, Kona S, Siva Kumar A, Brahmaiah KV, Rao VH. Expression of kit ligand and insulin-like growth factor binding protein 3 during in vivo or in vitro development of ovarian follicles in sheep. Reprod Domest Anim 2017; 52:661-671. [PMID: 28370770 DOI: 10.1111/rda.12965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023]
Abstract
Expression of Kit ligand (KL) and insulin-like growth factor binding protein (IGFBP3) genes was studied at different in vivo and corresponding in vitro stages of development of the ovarian follicles in sheep. The expression of both KL and IGFBP3 was significantly higher in the primordial follicles relative to any other stage of development. Compared to the other stages, the KL expression in the cumulus cells from in vivo grown large antral follicles and that of IGFBP3 in COCs' isolated from large antral follicles matured in vitro for 24 hr were significantly higher. In the oocytes from in vivo grown ovarian follicles, the expression of KL was the same at all the stages of development. Insulin-like growth factor binding protein 3 expression was also the same in the oocytes at all the stages of the development except for a significantly lower expression in those from antral follicles. The expression of KL in the cumulus cells decreased significantly in the in vitro grown early antral follicles but did not change further as the development progressed. The expression of IGFBP3 in the cumulus cells from in vitro grown ovarian follicles appeared to increase as the development progressed although the increase was not significant between any two consecutive stages of development. In the oocytes in in vitro grown ovarian follicles, the expression levels of KL and IGFBP3 genes did not change with development. It is concluded that (i) KL and IGFBP3 genes follow specific patterns of expression during ovarian folliculogenesis and (ii) in vitro culture of preantral follicles compromises the development potential through alterations in the stage-specific patterns of expression of these and other developmentally important genes.
Collapse
Affiliation(s)
- D Srividya
- Department of Animal Reproduction and Gynecology, College of Veterinary Science, S.V. Veterinary University, Tirupati, India
| | - V Praveen Chakravarthi
- Embryo Biotechnology Laboratory, Department of Physiology, College of Veterinary Science, S.V.Veterinary University, Tirupati, India
| | - Ssr Kona
- Embryo Biotechnology Laboratory, Department of Physiology, College of Veterinary Science, S.V.Veterinary University, Tirupati, India
| | - Avn Siva Kumar
- Embryo Biotechnology Laboratory, Department of Physiology, College of Veterinary Science, S.V.Veterinary University, Tirupati, India
| | - K V Brahmaiah
- Department of Animal Reproduction and Gynecology, College of Veterinary Science, S.V. Veterinary University, Tirupati, India
| | - V H Rao
- Embryo Biotechnology Laboratory, Department of Physiology, College of Veterinary Science, S.V.Veterinary University, Tirupati, India
| |
Collapse
|