1
|
Muhammad T, Edwards SL, Morphis AC, Johnson MV, Oliveira VD, Chamera T, Liu S, Nguyen NGT, Li J. Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1. EMBO J 2024; 43:4892-4921. [PMID: 39284915 PMCID: PMC11535032 DOI: 10.1038/s44318-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 11/06/2024] Open
Abstract
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mary V Johnson
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Vitor De Oliveira
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siyan Liu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Jian Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Yan HC, Li L, Liu JC, Wang YF, Liu XL, Ge W, Dyce PW, Li L, Sun XF, Shen W, Cheng SF. RA promotes proliferation of primordial germ cell-like cells differentiated from porcine skin-derived stem cells. J Cell Physiol 2019; 234:18214-18229. [PMID: 30859584 DOI: 10.1002/jcp.28454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that primordial germ cell-like cells (PGCLCs) can be obtained from human, porcine and mouse skin-derived stem cells (SDSCs). In this paper, we found retinoic acid (RA), the active derivative of vitamin A, accelerated the growth of porcine primordial germ cells (pPGCs) and porcine PGCLCs (pPGCLCs) which were derived from porcine SDSCs (pSDSCs). Moreover, flow cytometry results revealed that the proliferation promoting effect of RA was attenuated by U0126, a specific inhibitor of extracellular signal-regulated kinase (ERK). Western blot analysis showed the protein level of ERK, phosphorylated ERK, cyclin D1 (CCND1), and cyclin-dependent kinase 2 (CDK2) increased after stimulation with RA, and this effect could also be abolished by U0126. Our data revealed that ablation of ERK expression by U0126 should significantly decrease proliferation of pPGCLCS. This reduction was because CCND1 and CDK2 proteins level decrease and subsequently the pPGCLCs were arrested in the G0/G1 phase. In addition, we also confirmed RA indeed promoted the proliferation of pPGCs isolated from porcine fetal genital ridges in vitro. Furthermore, our data indicated that DNA methylation pattern were changed in pPGCLCs and this pattern were more similar to pPGCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Feng Sun
- Reproductive Center, Anqiu Women and Children's Hospital, Weifang, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Gholamitabar Tabari M, Jorsaraei SGA, Ghasemzadeh-Hasankolaei M, Ahmadi AA, Mahdinezhad Gorji N. Evaluation of specific germ cell genes expression in mouse embryonic stem cell-derived germ cell like cells treated with bone morphogenetic protein 4 in vitro. Int J Reprod Biomed 2018; 16:507-518. [PMID: 30288485 PMCID: PMC6163050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 4 (BMP4) is a significant signaling molecule that involves in initiating of differentiation and performs multifunctional effects on embryonic stem cells (ESCs) and embryos. OBJECTIVE The goal of the present study was to evaluate an in vitro differentiation model of mouse embryonic stem cells into germ cells, using BMP4. MATERIALS AND METHODS in this experimental study, we used Oct4-GFP mouse ESCs to form embryoid body (EB) aggregations for two days. Then, single cells from EB were cultured for four days with BMP4. Using MTT assay and gene expression levels for evaluation of Mvh and Riken by real-time RT-PCR of six concentrations, 12.5 ng/ ml BMP4 was determined as an optimized dose. Then, the expression level of Fkbp6, Mov10l1, 4930432K21Rik, Tex13, Mvh, Scp3, Stra8, Oct4 were evaluated. Flow cytometry and immunostaning were used to confirm the findings of the real-time RT-PCR. RESULTS In the +BMP4 group, the genes encoding Riken (p≤0.001) and Mvh (p≤0.001) were found to be increased with significant differences compared with the control group. Mov10l1 (p=0.22), Tex13 (p=0.10), Fkbp6 (p=0.90), Scp3 (p=0.61) and Stra8 (p=0.08) were up-regulated without significance differences compared with control group. Flow cytometry analysis showed that the mean number of Mvh-positive cells in the +BMP4 group was greater when compared with ESCs, -BMP4 and EB groups (p=0.03, p≤0.001, p=0.02, respectively). CONCLUSION Down-regulation of Oct4, expression of germ cells genes and meiosis markers expression raise this hypothesis that ESCs were differentiated by BMP4, and may be introduced into the first meiosis as germ cell-like cells.
Collapse
|
4
|
Dissanayake D, Patel H, Wijesinghe PS. Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells. Clin Exp Reprod Med 2018; 45:75-81. [PMID: 29984207 PMCID: PMC6030615 DOI: 10.5653/cerm.2018.45.2.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 12/04/2022] Open
Abstract
Objective Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at 36℃ for 3 more weeks. Results The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.
Collapse
Affiliation(s)
- Dmab Dissanayake
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - H Patel
- StemCure Pvt. Ltd., Ahmedabad, India
| | - P S Wijesinghe
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| |
Collapse
|
5
|
Asgari HR, Akbari M, Yazdekhasti H, Rajabi Z, Navid S, Aliakbari F, Abbasi N, Aval FS, Shams A, Abbasi M. Comparison of Human Amniotic, Chorionic, and Umbilical Cord Multipotent Mesenchymal Stem Cells Regarding Their Capacity for Differentiation Toward Female Germ Cells. Cell Reprogram 2017; 19:44-53. [PMID: 28112985 DOI: 10.1089/cell.2016.0035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placenta harbors a plentiful source of various cells with stem cells or stem-like cell properties, which can be used in therapeutic procedures and research. Mesenchymal stem cells (MSCs) have attracted much attention due to their specific differentiation potential and tolerogenic properties. MSCs have been isolated from different parts of placenta; however, in this study, we isolated MSCs from amnion and chorion membrane, as well as umbilical cord (Wharton's jelly [WJ]) and compared their capacity regarding differentiation toward female germ cells under influence of 10 ng/mL BMP4. All placenta samples were collected from delivering mothers by normal cesarean section and cells were isolated by different methods. Results showed that all isolated cells were mostly positive for the MSC markers CD73, CD166, and CD105, and minimally reacted with CD34 and CD45 (hematopoietic markers). After differentiation induction using third passage cultured cells, immunocytochemistry staining showed that cells were positive for germline cell-related genes Ssea4, Oct4, and Ddx4, and oocyte-related gene Gdf9. RT-qPCR results indicated that human chorion MSCs (hCMSCs) had a greater potential to be differentiated into female germline cells. Moreover, the results of this study indicate that human umbilical cord MSCs originated from either male or female umbilical cord have the same differentiation potential into female germline cells. We recommend that for presumptive application of MSCs for infertility treatment and research, hUMSCs are best candidates due to their higher differentiation potential, ease of proliferation and expansion, and low immunogenicity.
Collapse
Affiliation(s)
- Hamid Reza Asgari
- 1 Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Akbari
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Shadan Navid
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Fereshte Aliakbari
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Niloufar Abbasi
- 3 Emergency Department of Vali-e-Asr Hospital, Brojen, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Freidon Sargolzaei Aval
- 4 Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - Alireza Shams
- 5 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
6
|
Ghaem Maghami R, Mirzapour T, Bayrami A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia 2017; 50. [DOI: 10.1111/and.12887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- R. Ghaem Maghami
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| | - T. Mirzapour
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| | - A. Bayrami
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| |
Collapse
|
7
|
Navid S, Rastegar T, Baazm M, Alizadeh R, Talebi A, Gholami K, Khosravi-Farsani S, Koruji M, Abbasi M. In vitroeffects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst Biol Reprod Med 2017; 63:370-381. [DOI: 10.1080/19396368.2017.1358774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Talebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, Wang Z. DNA methylation in spermatogenesis and male infertility. Exp Ther Med 2016; 12:1973-1979. [PMID: 27698683 DOI: 10.3892/etm.2016.3569] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Infertility is a significant problem for human reproduction, with males and females equally affected. However, the molecular mechanisms underlying male infertility remain unclear. Spermatogenesis is a highly complex process involving mitotic cell division, meiosis cell division and spermiogenesis; during this period, unique and extensive chromatin and epigenetic modifications occur to bring about specific epigenetic profiles in spermatozoa. It has recently been suggested that the dysregulation of epigenetic modifications, in particular the methylation of sperm genomic DNA, may serve an important role in the development of numerous diseases. The present study is a comprehensive review on the topic of male infertility, aiming to elucidate the association between sperm genomic DNA methylation and poor semen quality in male infertility. In addition, the current status of the genetic and epigenetic determinants of spermatogenesis in humans is discussed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China; Division of Clinical Microbiology The Center Hospital of Linfen, Linfen, Shanxi 041000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Meiqin Yan
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Yan Shen
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Zhenqiang Wang
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
9
|
Xu Y, Hong Y, Xu M, Ma K, Fu X, Zhang M, Wang G. Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 5:106-16. [PMID: 26574554 PMCID: PMC4704873 DOI: 10.5966/sctm.2015-0081] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022] Open
Abstract
The role of keratinocyte growth factor (KGF) in human umbilical cord-derived mesenchymal stem cell (hUC-MSC) differentiation remains unknown. Building on previous work, the authors found KGF expression in sweat gland-like cells (SGCs) and determined that recombinant human KGF could induce hUC-MSC differentiation into SGCs. These differentiated SGCs were applied to a mouse burn model and sweat glands were regenerated. These cells may have potential therapeutic application for regeneration of destroyed sweat glands and injured skin. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have higher proliferation potency and lower immune resistance than human bone marrow MSCs and can differentiate into various functional cells. Many regulatory factors, including keratinocyte growth factor (KGF), are involved in the development of skin and cutaneous appendages. Although KGF is important in wound healing, the role of KGF in hUC-MSC differentiation remains unknown. In our previous work, we found the mixing medium (nine parts of basic sweat-gland [SG] medium plus one part of conditioned heat-shock SG medium) could induce hUC-MSC differentiation to sweat gland-like cells (SGCs). In this study, we further improved the inducing medium and determined the effects of KGF in hUC-MSC differentiation. We found KGF expression in the SGCs and that recombinant human KGF could induce hUC-MSC differentiation into SGCs, suggesting KGF plays a pivotal role in promoting hUC-MSC differentiation to SGCs. Furthermore, the SGCs differentiated from hUC-MSCs were applied to severely burned skin of the paw of an in vivo severe combined immunodeficiency mouse burn model. Burned paws treated with SGCs could regenerate functional sparse SGs 21 days after treatment; the untreated control paws could not. Collectively, these results demonstrated that KGF is a critical growth factor for SGC differentiation from hUC-MSCs and the differentiated SGCs from hUC-MSCs may have a potential therapeutic application for regeneration of destroyed SGs and injured skin. Significance There is growing evidence demonstrating a potential therapeutic application of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in injured skin. In the current study, conditioned media and chemically defined media with recombinant human keratinocyte growth factor (KGF) could induce hUC-MSC differentiation into sweat gland-like cells (SGCs). Moreover, the differentiated SGCs from hUC-MSCs could regenerate functional sparse sweat glands in a mouse burn model, which provides further insight into the mechanisms of the role of KGF and a potential therapeutic application of differentiated SGCs for regeneration of destroyed sweat glands and injured skin.
Collapse
Affiliation(s)
- Yongan Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Yucai Hong
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mengyan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Kui Ma
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Guirong Wang
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
10
|
Baazm M, Abolhassani F, Abbasi M, Habibi Roudkenar M, Amidi F, Beyer C. An improved protocol for isolation and culturing of mouse spermatogonial stem cells. Cell Reprogram 2013; 15:329-36. [PMID: 23808877 DOI: 10.1089/cell.2013.0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) represent a unique testicular cell type that has the capacity for proliferating, differentiating, and transmitting genetic information. This particular cell type is a strong focus of stem cell research, with isolation and maintenance of SSCs as an important issue. Therefore, we attempted to optimize SSCs handling and to analyze different media and feeder layers, such as adult and embryonic Sertoli cells. The expression patterns of SSC-specific proteins (α6 and β1 integrins, Stra8, and DAZL) and restoration of spermatogenesis were chosen as parameters to demonstrate the efficacy of the protocol. SSCs were isolated from testes of 3- to 6-day-old mice using a magnetic activated cell-sorting system and Thy-1 antibody. After enrichment, SSCs were cultured for 7 days with different media and feeder layers. Then, SSCs were transplanted to recipient mice. Culturing on adult and embryonic Sertoli cells and in the presence of different growth factors [glial cell line-derived neurotrophic factor (GDNF), GDNF family receptor α1 (GFR-α1), and basic fibroblast growth factor (bFGF) resulted in an undifferentiated SSC phenotype with typical stem cell characteristics observed in vivo. The established co-culture model could help to improve the recovery and quality of stem cell preparation of mammalian testis.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Role of Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mice in vitro. ZYGOTE 2013; 22:513-20. [DOI: 10.1017/s0967199412000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryIn a previous study, we have identified a set of conserved spermatogenic genes whose expression is restricted to testis and ovary and that are developmentally regulated. One of these genes, the transcription factor Mael, has been reported to play an essential role in mouse spermatogenesis. Nevertheless, the role of Mael in mouse oogenesis has not been defined. In order to analyse the role of Mael in mouse oogenesis, the expression of this gene was blocked during early oogenesis in mouse in vitro using RNAi technology. In addition, the role of Mael during differentiation of embryonic stem cells (ESC) into germ cells in vitro was analysed. Results show that downregulation of Mael by a specific short interfering RNA disrupted fetal oocyte growth and differentiation in fetal ovary explants in culture and the expression of several germ-cell markers in ESC during their differentiation. These results suggest that there is an important role for Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mouse in vitro.
Collapse
|
12
|
Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction. BIOMED RESEARCH INTERNATIONAL 2012; 2013:608728. [PMID: 23509752 PMCID: PMC3591174 DOI: 10.1155/2013/608728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/08/2012] [Indexed: 01/19/2023]
Abstract
Generation of germ cells from pluripotent stem cells in vitro could have great application for treating infertility and provides an excellent model for uncovering molecular mechanisms controlling gametogenesis. In this study, we explored the differentiation potential of mouse induced pluripotent stem (iPS) cells towards male germ cells. Embryoid body formation and retinoic acid/testosterone induction were applied to promote differentiation of mouse iPS cells into male germ cells in vitro. Quantitative RT-PCR and immunoflourescence were performed to characterize the iPS cell differentiation process, and notably there were different temporal expression profiles of male germ cell-associated genes. The expression of proteins, including MVH, CDH1, and SCP3, was remarkably increased. mRNA expression of Stra8, Odf2, Act, and Prm1 was upregulated in iPS cells by retinoic acid or testosterone induction, whereas Oct-4 transcription was reduced in these cells compared to the controls. Hormones were also measured in the EB medium. DNA content analysis by flow cytometry revealed that iPS cells could differentiate into haploid cells through retinoic acid or testosterone treatment. Collectively, our results suggest that mouse iPS cells possess the potency to differentiate into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction.
Collapse
|
13
|
Retinoic acid promotes proliferation of chicken primordial germ cells via activation of PI3K/Akt-mediated NF-κB signalling cascade. Cell Biol Int 2012; 36:705-12. [PMID: 22548360 DOI: 10.1042/cbi20110542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As embryonic progenitors for the gametes, PGCs (primordial germ cells) proliferate and develop under strict regulation of numerous intrinsic and external factors. As the most active natural metabolite of vitamin A, all-trans RA (retinoic acid) plays pivotal roles in regulating development of various cells. The proliferating action of RA on PGCs was investigated along with the intracellular PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B; also known as Akt)-mediated NF-κB (nuclear factor κB) signalling cascade. The results show that RA significantly promoted PGC proliferation in a dose- and time-dependent manner, confirmed by BrdU (bromodeoxyuridine) incorporation and cell cycle analysis. However, this promoting effect was attenuated by sequential inhibitors of LY294002 for PI3K, KP372-1 for Akt and SN50 for NF-κB respectively. Western blot analysis showed increased Akt phosphorylation (Ser473) of PGCs after stimulation with RA, but this was abolished by LY294002 or KP372-1. Treatment with RA increased expression of NF-κB and decreased IκBα (inhibitory κBα) expression, which were inhibited by SN50. Blockade of PI3K or Akt activity inhibited NF-κB translocation from the cytoplasm to the nucleus. Finally, mRNA expression of cell cycle regulating genes [cyclin D1 and E, CDK6 (cyclin-dependent kinase 6) and CDK2] was up-regulated in the RA-treated cells. This stimulation was also markedly retarded by combined treatment with LY294002, KP372-1 and SN50. These results suggest that RA activates the PI3K/Akt and NF-κB signalling cascade to promote proliferation of the cultured chicken PGCs.
Collapse
|
14
|
Childs AJ, Anderson RA. Experimental approaches to the study of human primordial germ cells. Methods Mol Biol 2012; 825:199-210. [PMID: 22144246 DOI: 10.1007/978-1-61779-436-0_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The survival, proliferation, and differentiation of primordial germ cells in the mammalian embryo is regulated by a complex cocktail of growth factors and interactions with surrounding somatic cells, which together form a microenvironment known as the germ cell niche. Extensive insight into the signalling pathways that regulate PGC behaviour has been provided by the study of these cells in rodent models, however little is known about the factors that regulate these processes in human PGCs. In this review, we outline experimental approaches to the culture and manipulation of the first trimester human fetal ovary, and discuss immunohistochemical and stereological approaches to detect changes in human PGC numbers and proliferation in response to treatment with exogenous growth factors.
Collapse
Affiliation(s)
- Andrew J Childs
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
15
|
Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z. Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity. J Tissue Eng Regen Med 2011; 6:645-54. [PMID: 21916019 DOI: 10.1002/term.468] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 03/23/2011] [Accepted: 07/05/2011] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sha Huang
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital/General Hospital of PLA; Trauma Centre of Postgraduate Medical College; Beijing; People's Republic of China
| | - Kui Ma
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital/General Hospital of PLA; Trauma Centre of Postgraduate Medical College; Beijing; People's Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital/General Hospital of PLA; Trauma Centre of Postgraduate Medical College; Beijing; People's Republic of China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science; Trauma Centre of Postgraduate Medical School, Chinese PLA General Hospital; Beijing; People's Republic of China
| | - Zhiyong Sheng
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital/General Hospital of PLA; Trauma Centre of Postgraduate Medical College; Beijing; People's Republic of China
| |
Collapse
|
16
|
Hua J, Zhu H, Pan S, Liu C, Sun J, Ma X, Dong W, Liu W, Li W. Pluripotent Male Germline Stem Cells from Goat Fetal Testis and Their Survival in Mouse Testis. Cell Reprogram 2011; 13:133-44. [PMID: 21473690 DOI: 10.1089/cell.2010.0047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shaohui Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chao Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Junwei Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaoling Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wuzi Dong
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Weishuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yang Ling, Shaanxi Province, People's Republic of China
| | - Wei Li
- North Branch Bio-Technology Co., Ltd. of Jiangsu Province, Taizhou, Jiangsu People's Republic of China
| |
Collapse
|
17
|
Zhou GB, Meng QG, Li N. In vitro derivation of germ cells from embryonic stem cells in mammals. Mol Reprod Dev 2010; 77:586-94. [DOI: 10.1002/mrd.21187] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 2010; 109:747-54. [PMID: 20052672 DOI: 10.1002/jcb.22453] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly-derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all-trans retinoic acid, testosterone and testicular-cell-conditioned medium prepared from newborn male mouse testes. HUMSCs formed "tadpole-like" cells after induction with different reagents and showed both mRNA and protein expression of germ-cell-specific markers Oct4 (POUF5), Ckit, CD49(f) (alpha6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kocer A, Reichmann J, Best D, Adams IR. Germ cell sex determination in mammals. Mol Hum Reprod 2009; 15:205-13. [PMID: 19218284 PMCID: PMC2657314 DOI: 10.1093/molehr/gap008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 12/14/2022] Open
Abstract
One of the major decisions that germ cells make during their development is whether to differentiate into oocytes or sperm. In mice, the germ cells' decision to develop as male or female depends on sex-determining signalling molecules in the embryonic gonadal environment rather than the sex chromosome constitution of the germ cells themselves. In response to these sex-determining cues, germ cells in female embryos initiate oogenesis and enter meiosis, whereas germ cells in male embryos initiate spermatogenesis and inhibit meiosis until after birth. However, it is not clear whether the signalling molecules that mediate germ cell sex determination act in the developing testis or the developing ovary, or what these signalling molecules might be. Here, we review the evidence for the existence of meiosis-inducing and meiosis-preventing substances in the developing gonad, and more recent studies aimed at identifying these molecules in mice. In addition, we discuss the possibility that some of the reported effects of these factors on germ cell development may be indirect consequences of impairing sexual differentiation of gonadal somatic cells or germ cell survival. Understanding the molecular mechanisms of germ cell sex determination may provide candidate genes for susceptibility to germ cell tumours and infertility in humans.
Collapse
Affiliation(s)
| | | | | | - Ian R. Adams
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|