1
|
Pargoo SS, Baniasadi F, Jasemi VSK, Hajiaghalou S, Gharanfoli M, Fathi R. Effect of Moderate Static Magnetic Fields on Mice Oocyte Vitrification: Calcium-Related Genes Expression. Biopreserv Biobank 2024; 22:441-451. [PMID: 38527284 DOI: 10.1089/bio.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The ability to cryopreserve oocytes without ultrastructural injury has been a concern in the development and use of methods to preserve female reproduction. The stability of the cell membrane must be preserved to reduce the damage caused by ice crystals during vitrification. One approach that has been explored is the use of static magnetic fields (SMFs), which are believed to influence cell membrane stability. In this study, the in vitro effects of SMF that range between 20-80 mT on the vitrification of mice germinal vesicle (GV) oocytes were studied. The viability and mitochondrial (Mt) membrane potential of both vitrified and nonvitrified oocytes were assessed using Trypan blue and JC1 staining. The high in vitro maturation (IVM) rate and high Mt membrane potential in metaphase II (MII) oocytes were taken into account to determine the optimal magnetic field intensity, that is, 20 mT. None of the SMF conditions resulted in intact spindles in MII oocytes. The study also explored the expression of store-operated calcium entry (Stim1, Orai1, and Ip3r) and meiosis resumption (Ccnb, Cdk) genes in GV and MII oocytes of both vitrified and control groups. The results show that the expressions of Orai1 and Ccnb genes in Vit-MII-SMF oocytes were considerably increased. However, no significant difference in Stim1 expression was observed between the groups. The Vit-MII-SMF group exhibited a significantly higher Ccnb expression compared to other groups. In vitro fertilization (IVF) was performed to evaluate the 2 pronuclear (2PN) rates. The findings demonstrated that using 20 mT SMF improved 2PN rates compared to the nonvitrified groups. This study provides a deeper understanding of the effects of moderate SMF and vitrification on the expression of calcium channel genes in GV and MII oocytes. The results suggest that applying a 20 mT SMF can help prevent cryoinjury and enhance the characteristics of vitrified-warmed oocytes.
Collapse
Affiliation(s)
- Sara Soleimani Pargoo
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vida Sadat Kazemein Jasemi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Gharanfoli
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Mignen O, Vannier JP, Schneider P, Renaudineau Y, Abdoul-Azize S. Orai1 Ca 2+ channel modulators as therapeutic tools for treating cancer: Emerging evidence! Biochem Pharmacol 2024; 219:115955. [PMID: 38040093 DOI: 10.1016/j.bcp.2023.115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.
Collapse
Affiliation(s)
| | | | | | - Yves Renaudineau
- Laboratory of Immunology, CHU Purpan Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Souleymane Abdoul-Azize
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France; Normandie Univ., UNIROUEN, INSERM, U1234, Rouen 76000, France.
| |
Collapse
|
3
|
Adyeni BS, Carlos U, Tatiana HM, Luisa G, Jessica T, Eduardo C, Miguel B, Fahiel C, Alma L, Edmundo B, Ivan BO. Perfluorohexane sulfonate (PFHxS) disturbs the estrous cycle, ovulation rate, oocyte cell communication and calcium homeostasis in mice. Reprod Biol 2023; 23:100768. [PMID: 37163972 DOI: 10.1016/j.repbio.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Perfluoroalkyl substances are man-made chemicals with ample consumer and industrial applications. They are widely used and are resistant to environmental and metabolic degradation. Several studies have evaluated the effects of Perfluorohexane sulfonate on reproduction. However, there are few reports exploring the cell and molecular mechanisms of its toxicity in the ovary. The aim of this study was to investigate the effects of PFHxS exposure on the estrous cycle, ovulation rate, and the underlying mechanisms of action in female mice in vivo. The animals received a single sub-lethal dose of PFHxS (25.1 mg/kg, 62.5 mg/kg) or vehicle and were stimulated to obtain immature cumulus cell-oocyte complexes (COCs) from the ovaries, or superovulated to develop mature COCs. To evaluate oocyte physiology, Gap-junction intercellular communication (GJIC) was analyzed in immature COCs and calcium homeostasis was evaluated in mature oocytes. PFHxS exposure prolonged the estrous cycle and decreased ovulation rate in female mice. Connexins, Cx43 and Cx37, were downregulated and GJIC was impaired in immature COCs, providing a possible mechanism for the alterations in the estrous cycle and ovulation. No morphological abnormalities were observed in the mature PFHxS-exposed oocytes, but calcium homeostasis was affected. This effect is probably due, at least partially, to deregulation of the endoplasmic reticulum calcium modulator, Stim1. These mechanisms of ovarian injury could explain the reported correlation among PFHxS levels and subfertility in women undergoing fertility treatments.
Collapse
Affiliation(s)
- Barajas Salinas Adyeni
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Urrutia Carlos
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Huerta Maldonado Tatiana
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Gonzalez Luisa
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Tellez Jessica
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casas Eduardo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Betancourt Miguel
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casillas Fahiel
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Lopez Alma
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bonilla Edmundo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bahena Ocampo Ivan
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico.
| |
Collapse
|
4
|
Fang T, Wu ZW, Wang Y, Wang F, Du ZQ, Yang CX. Comparative transcriptome analysis identifies important maternal molecules and associated biological pathways for pig and human mature oocytes. Reprod Domest Anim 2022; 57:643-652. [PMID: 35244301 DOI: 10.1111/rda.14105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
Recent researches reveal that during oocyte maturation, species-specific molecular profile exists, and has important functional roles. However, molecular differences between pig (a larger animal model for human reproduction) and human mature oocytes remain unknown. Here, by comparative transcriptome analyses of single cell RNA-seq data, we aimed to identify the common and unique maternal factors and associated biological processes between in vivo and in vitro matured pig oocytes, and between in vitro matured human and pig oocytes. Annotated protein coding mRNAs were identified in pig in vivo (11147) and in vitro (11997), and human in vitro (14491) MII oocytes, respectively. For in vivo and in vitro derived pig MII oocytes, 10551 annotated maternal mRNAs were common, mainly enriched in signaling pathways such as cell cycle, oocyte meiosis, microtubule cytoskeleton, MAPK, RNA processing/binding. Besides, in vivo (596) and in vitro (1446) pig MII-specific mRNAs and their involved signaling pathways (in vivo: Bmp, calcium-mediated signaling, PI3K-Akt; in vitro: growth factor activity, JAK-STAT, cytokine-cytokine receptor interaction, calcium signaling pathway) were also found. As for in vitro derived human and pig MII oocytes, 10285 annotated mRNAs were common, enriched in a variety of signaling pathways (cell cycle, oocyte meiosis, microtubule, AMPK, RNA splicing, protein serine/threonine kinase activity, etc). In vitro MII-specific mRNAs were found for humans (4206) and pigs (1712), which were also enriched in species-specific signaling pathways (humans: golgi related terms, transcription repressor and hormone activity; pigs: ATP biosynthetic process, G protein-coupled peptide receptor activity, animoacyl-tRNA biosynthesis), respectively. These findings improve our understanding on oocyte maturation, and also the limitations of pig model for human oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Ting Fang
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| | - Yi Wang
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| | - Fang Wang
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, JingZhou, 434025, Hubei, China
| |
Collapse
|
5
|
Yu F, Machaca K. The STIM1 Phosphorylation Saga. Cell Calcium 2022; 103:102551. [DOI: 10.1016/j.ceca.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
|
6
|
Meng L, Hu H, Liu Z, Zhang L, Zhuan Q, Li X, Fu X, Zhu S, Hou Y. The Role of Ca 2 + in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front Cell Dev Biol 2021; 9:746237. [PMID: 34765601 PMCID: PMC8577575 DOI: 10.3389/fcell.2021.746237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.
Collapse
Affiliation(s)
- Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongmei Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Ardestani G, Mehregan A, Fleig A, Horgen FD, Carvacho I, Fissore RA. Divalent cation influx and calcium homeostasis in germinal vesicle mouse oocytes. Cell Calcium 2020; 87:102181. [PMID: 32097818 DOI: 10.1016/j.ceca.2020.102181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Prior to maturation, mouse oocytes are arrested at the germinal vesicle (GV) stage during which they experience constitutive calcium (Ca2+) influx and spontaneous Ca2+ oscillations. The oscillations cease during maturation but Ca2+ influx continues, as the oocytes' internal stores attain maximal content at the culmination of maturation, the metaphase II stage. The identity of the channel(s) that underlie this Ca2+ influx has not been completely determined. GV and matured oocytes are known to express three Ca2+ channels, CaV3.2, TRPV3 and TRPM7, but females null for each of these channels are fertile and their oocytes display minor modifications in Ca2+ homeostasis, suggesting a complex regulation of Ca2+ influx. To define the contribution of these channels at the GV stage, we used different divalent cations, pharmacological inhibitors and genetic models. We found that the three channels are active at this stage. CaV3.2 and TRPM7 channels contributed the majority of Ca2+ influx, as inhibitors and oocytes from homologous knockout (KO) lines showed severely reduced Ca2+ entry. Sr2+ influx was promoted by CaV3.2 channels, as Sr2+ oscillations were negligible in CaV3.2-KO oocytes but robust in control and Trpv3-KO GV oocytes. Mn2+ entry relied on expression of CaV3.2 and TRPM7 channels, but Ni2+ entry depended on the latter. CaV3.2 and TRPV3 channels combined to fill the Ca2+ stores, although CaV3.2 was the most impactful. Studies with pharmacological inhibitors effectively blocked the influx of divalent cations, but displayed off-target effects, and occasionally agonist-like properties. In conclusion, GV oocytes express channels mediating Ca2+ and other divalent cation influx that are pivotal for fertilization and early development. These channels may serve as targets for intervention to improve the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and University of Hawaii Cancer Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI, 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112, Talca, Chile
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Aziz AUR, Geng C, Li W, Yu X, Qin KR, Wang H, Liu B. Doxorubicin Induces ER Calcium Release via Src in Rat Ovarian Follicles. Toxicol Sci 2018; 168:171-178. [DOI: 10.1093/toxsci/kfy284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aziz Ur Rehman Aziz
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Chunyang Geng
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Wang Li
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiaohui Yu
- Department of gynecology, Dalian Institute of Maternal and Child Health Care, Dalian 116024, P. R. China
| | - Kai-Rong Qin
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P. R. China
| | - Bo Liu
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
9
|
Carvacho I, Piesche M, Maier TJ, Machaca K. Ion Channel Function During Oocyte Maturation and Fertilization. Front Cell Dev Biol 2018; 6:63. [PMID: 29998105 PMCID: PMC6028574 DOI: 10.3389/fcell.2018.00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
The proper maturation of both male and female gametes is essential for supporting fertilization and the early embryonic divisions. In the ovary, immature fully-grown oocytes that are arrested in prophase I of meiosis I are not able to support fertilization. Acquiring fertilization competence requires resumption of meiosis which encompasses the remodeling of multiple signaling pathways and the reorganization of cellular organelles. Collectively, this differentiation endows the egg with the ability to activate at fertilization and to promote the egg-to-embryo transition. Oocyte maturation is associated with changes in the electrical properties of the plasma membrane and alterations in the function and distribution of ion channels. Therefore, variations on the pattern of expression, distribution, and function of ion channels and transporters during oocyte maturation are fundamental to reproductive success. Ion channels and transporters are important in regulating membrane potential, but also in the case of calcium (Ca2+), they play a critical role in modulating intracellular signaling pathways. In the context of fertilization, Ca2+ has been shown to be the universal activator of development at fertilization, playing a central role in early events associated with egg activation and the egg-to-embryo transition. These early events include the block of polyspermy, the completion of meiosis and the transition to the embryonic mitotic divisions. In this review, we discuss the role of ion channels during oocyte maturation, fertilization and early embryonic development. We will describe how ion channel studies in Xenopus oocytes, an extensively studied model of oocyte maturation, translate into a greater understanding of the role of ion channels in mammalian oocyte physiology.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Thorsten J. Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital, Frankfurt, Germany
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell-Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
10
|
McIvor E, Coombes S, Thul R. Three-dimensional spatio-temporal modelling of store operated Ca 2+ entry: Insights into ER refilling and the spatial signature of Ca 2+ signals. Cell Calcium 2018; 73:11-24. [PMID: 29880194 DOI: 10.1016/j.ceca.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
Abstract
The spatial organisation of Orai channels and SERCA pumps within ER-PM junctions is important for enhancing the versatility and specificity of sub-cellular Ca2+ signals generated during store operated Ca2+ entry (SOCE). In this paper, we present a novel three dimensional spatio-temporal model describing Ca2+ dynamics in the ER-PM junction and sub-PM ER during SOCE. We investigate the role of Orai channel and SERCA pump location to provide insights into how these components shape the Ca2+ signals generated and affect ER refilling. We find that the organisation of Orai channels within the ER-PM junction controls the amplitude and shape of the Ca2+ profile but does not enhance ER refilling. The model shows that ER refilling is only weakly affected by the location of SERCA2b pumps within the ER-PM junction and that the placement of SERCA2a pumps within the ER-PM junction has much greater control over ER refilling.
Collapse
Affiliation(s)
- Emma McIvor
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Rüdiger Thul
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
11
|
Zhang L, Chao CH, Jaeger LA, Papp AB, Machaty Z. Calcium oscillations in fertilized pig oocytes are associated with repetitive interactions between STIM1 and ORAI1. Biol Reprod 2018; 98:510-519. [PMID: 29365044 PMCID: PMC5905661 DOI: 10.1093/biolre/ioy016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 01/19/2018] [Indexed: 11/15/2022] Open
Abstract
The Ca2+ entry mechanism that sustains the Ca2+ oscillations in fertilized pig oocytes was investigated. Stromal interaction molecule 1 (STIM1) and ORAI1 proteins tagged with various fluorophores were expressed in the oocytes. In some cells, the Ca2+ stores were depleted using cyclopiazonic acid (CPA); others were inseminated. Changes in the oocytes' cytosolic free Ca2+ concentration were monitored, while interaction between the expressed fusion proteins was investigated using fluorescence resonance energy transfer (FRET). Store depletion led to an increase of the FRET signal in oocytes co-expressing mVenus-STIM1 and mTurquoise2-ORAI1, indicating that Ca2+ release was followed by an interaction between these proteins. A similar FRET increase in response to CPA was also detected in oocytes co-expressing mVenus-STIM1 and mTurquoise2-STIM1, which is consistent with STIM1 forming punctae after store depletion. ML-9, an inhibitor that can interfere with STIM1 puncta formation, blocked store-operated Ca2+ entry (SOCE) induced by Ca2+ add-back after a CPA treatment; it also disrupted the Ca2+ oscillations in fertilized oocytes. In addition, oocytes overexpressing mVenus-STIM1 showed high-frequency Ca2+ oscillations when fertilized, arguing for an active role of the protein. High-frequency Ca2+ oscillations were also detected in fertilized oocytes co-expressing mVenus-STIM1 and mTurquoise2-ORAI1, and both of these high-frequency Ca2+ oscillations could be stopped by inhibitors of SOCE. Importantly, in oocytes co-expressing mVenus-STIM1 and mTurquoise2-ORAI1, we were also able to detect cyclic increases of the FRET signal indicating repetitive interactions between STIM1 and ORAI1. The results confirm the notion that in pig oocytes, SOCE is involved in the maintenance of the repetitive Ca2+ transients at fertilization.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | - Laurie A Jaeger
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Agnes Bali Papp
- Department of Animal Sciences, Széchenyi István University, Győr, Hungary
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2017; 68:88-96. [PMID: 29217255 DOI: 10.1016/j.jbior.2017.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Calcium signals arise by multiple mechanisms, including mechanisms of release of intracellular stored Ca2+, and the influx of Ca2+ through channels in the plasma membrane. One mechanism that links these two sources of Ca2+ is store-operated Ca2+ entry, the most commonly encountered version of which involves the extensively studied calcium-release-activated Ca2+ (CRAC) channel. The minimal and essential molecular components of the CRAC channel are the STIM proteins that function as Ca2+ sensors in the endoplasmic reticulum, and the Orai proteins that comprise the pore forming subunits of the CRAC channel. CRAC channels are known to play significant roles in a wide variety of physiological functions. This review discusses the multiple forms of STIM and Orai proteins encountered in mammalian cells, and discusses some specific examples of how these proteins modulate or mediate important physiological processes.
Collapse
Affiliation(s)
- James W Putney
- National Institute of Environmental Health Sciences - NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Store-operated Ca 2+ Entry Facilitates the Lipopolysaccharide-induced Cyclooxygenase-2 Expression in Gastric Cancer Cells. Sci Rep 2017; 7:12813. [PMID: 29038542 PMCID: PMC5643532 DOI: 10.1038/s41598-017-12648-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori has been identified as one of the major causes of chronic gastritis, gastric and duodenal ulcers, and gastric cancer. Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria, and H. pylori LPS might play an exclusively important role in activating inflammatory pathways in monocytes and macrophages. To study the role of LPS in the underlying mechanism of inflammatory responses, we established an in vitro model using the human AGS gastric cancer cell line. We found that LPS mediates inflammation through setting off a cascade of events: activation of the store-operated calcium (SOC) channel, initiation of downstream NF-κB signaling, and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Phosphorylated ERK1/2 promotes the nuclear translocation of NF-κB, and eventually elevates the expression level of COX-2, a major inflammatory gene.
Collapse
|
14
|
Xu YR, Yang WX. Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget 2017; 8:89375-89390. [PMID: 29179526 PMCID: PMC5687696 DOI: 10.18632/oncotarget.19679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Under the guidance and regulation of hormone signaling, large majority of mammalian oocytes go through twice cell cycle arrest-resumption prior to the fertilized egg splits: oocyte maturation and egg activation. Cytosolic free calcium elevations and endoplasmic reticulum calcium store alternations are actively involved in triggering the complex machineries and events during oogenesis. Among these, calcium influx had been implicated in the replenishment of endoplasmic reticulum store during oocyte maturation and calcium oscillation during egg activation. This process also drove successful fertilization and early embryo development. Store-operated Ca2+ entry, acts as the principal force of calcium influx, is composed of STIM1 and Orai1 on the plasma membrane. Besides, transient receptor potential channels also participate in the process of calcium inwards. In this review, we summarize the recent researches on the spatial-temporal distribution of store-operated calcium entry components and transient receptor potential channels. Questions about how these channels play function for calcium influx and what impacts these channels have on oocytes are discussed. At the time of sperm-egg fusion, sperm-specific factor(s) diffuse and enable eggs to mount intracellular calcium oscillations. In this review, we also focus on the basic knowledge and the modes of action of the potential sperm factor phospholipase C zeta, as well as the downstream receptor, type 1 inositol 1,4,5-trisphosphate receptor. From the achievement in the previous several decades, it is easy to find that there are too many doubtful points in the field that need researchers take into consideration and take action in the future.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
|
16
|
Putney JW, Steinckwich-Besançon N, Numaga-Tomita T, Davis FM, Desai PN, D'Agostin DM, Wu S, Bird GS. The functions of store-operated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:900-906. [PMID: 27913208 DOI: 10.1016/j.bbamcr.2016.11.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- James W Putney
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Natacha Steinckwich-Besançon
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Takuro Numaga-Tomita
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Felicity M Davis
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Pooja N Desai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Diane M D'Agostin
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Shilan Wu
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gary S Bird
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Fernandes G, Dasai N, Kozlova N, Mojadadi A, Gall M, Drew E, Barratt E, Madamidola OA, Brown SG, Milne AM, Martins da Silva SJ, Whalley KM, Barratt CLR, Jovanović A. A spontaneous increase in intracellular Ca2+ in metaphase II human oocytes in vitro can be prevented by drugs targeting ATP-sensitive K+ channels. Hum Reprod 2016; 31:287-97. [PMID: 26682579 PMCID: PMC4716808 DOI: 10.1093/humrep/dev300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
STUDY QUESTION Could drugs targeting ATP-sensitive K(+) (K(ATP)) channels prevent any spontaneous increase in intracellular Ca(2+) that may occur in human metaphase II (MII) oocytes under in vitro conditions? SUMMARY ANSWER Pinacidil, a K(ATP) channel opener, and glibenclamide, a K(ATP) channel blocker, prevent a spontaneous increase in intracellular Ca(2+) in human MII oocytes. WHAT IS KNOWN ALREADY The quality of the oocyte and maintenance of this quality during in vitro processing in the assisted reproductive technology (ART) laboratory is of critical importance to successful embryo development and a healthy live birth. Maintenance of Ca(2+) homeostasis is crucial for cell wellbeing and increased intracellular Ca(2+) levels is a well-established indicator of cell stress. STUDY DESIGN, SIZE, DURATION Supernumerary human oocytes (n = 102) collected during IVF/ICSI treatment that failed to fertilize were used from October 2013 to July 2015. All experiments were performed on mature (MII) oocytes. Dynamics of intracellular Ca(2+) levels were monitored in oocytes in the following experimental groups: (i) Control, (ii) Dimethyl sulfoxide (DMSO; used to dissolve pinacidil, glibenclamide and 2,4-Dinitrophenol (DNP)), (iii) Pinacidil, (iv) Glibenclamide, (v) DNP: an inhibitor of oxidative phosphorylation, (vi) Pinacidil and DNP and (vii) Glibenclamide and DNP. PARTICIPANTS/MATERIALS/SETTINGS/METHODS Oocytes were collected under sedation as part of routine treatment at an assisted conception unit from healthy women (mean ± SD) age 34.1 ± 0.6 years, n = 41. Those surplus to clinical use were donated for research. Oocytes were loaded with Fluo-3 Ca(2+)-sensitive dye, and monitored by laser confocal microscopy for 2 h at 10 min intervals. Time between oocyte collection and start of Ca(2+) monitoring was 80.4 ± 2.1 h. MAIN RESULTS AND THE ROLE OF CHANCE Intracellular levels of Ca(2+) increased under in vitro conditions with no deliberate challenge, as shown by Fluo-3 fluorescence increasing from 61.0 ± 11.8 AU (AU = arbitrary units; n = 23) to 91.8 ± 14.0 AU (n = 19; P < 0.001) after 2 h of monitoring. Pinacidil (100 µM) inhibited this increase in Ca(2+) (85.3 ± 12.3 AU at the beginning of the experiment, 81.7 ± 11.0 AU at the end of the experiment; n = 13; P = 0.616). Glibenclamide (100 µM) also inhibited the increase in Ca(2+) (74.7 ± 10.6 AU at the beginning and 71.8 ± 10.9 AU at the end of the experiment; n = 13; P = 0.851. DNP (100 mM) induced an increase in intracellular Ca(2+) that was inhibited by glibenclamide (100 µM; n = 9) but not by pinacidil (100 µM; n = 5). LIMITATIONS, REASONS FOR CAUTION Owing to clinical and ethical considerations, it was not possible to monitor Ca(2+) in MII oocytes immediately after retrieval. MII oocytes were available for our experimentation only after unsuccessful IVF or ICSI, which was, on average, 80.4 ± 2.1 h (n = 102 oocytes) after the moment of retrieval. As the MII oocytes used here were those that were not successfully fertilized, it is possible that they may have been abnormal with impaired Ca(2+) homeostasis and, furthermore, the altered Ca(2+) homeostasis might have been associated solely with the protracted incubation. WIDER IMPLICATIONS OF THE FINDINGS These results show that maintenance of oocytes under in vitro conditions is associated with intracellular increase in Ca(2+), which can be counteracted by drugs targeting K(ATP) channels. As Ca(2+) homeostasis is crucial for contributing to a successful outcome of ART, these results suggest that K(ATP) channel openers and blockers should be tested as drugs for improving success rates of ART. STUDY FUNDING/COMPETING INTERESTS University of Dundee, MRC (MR/K013343/1, MR/012492/1), NHS Tayside. Funding NHS fellowship (Dr Sarah Martins da Silva), NHS Scotland. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Gonçalo Fernandes
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Navin Dasai
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Natalia Kozlova
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Albaraa Mojadadi
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Department of Anatomy and Clinical Embryology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mandy Gall
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Ellen Drew
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Evelyn Barratt
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Oladipo A Madamidola
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee University of Abertay, Dundee, UK
| | | | - Alison M Milne
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sarah J Martins da Silva
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | | | - Christopher L R Barratt
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Aleksandar Jovanović
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
18
|
Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res 2016; 363:169-183. [PMID: 26453398 PMCID: PMC4700098 DOI: 10.1007/s00441-015-2291-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2015] [Indexed: 01/22/2023]
Abstract
Mammalian embryo development begins when the fertilizing sperm triggers a series of elevations in the oocyte's intracellular free Ca(2+) concentration. The elevations are the result of repeated release and re-uptake of Ca(2+) stored in the smooth endoplasmic reticulum. Ca(2+) release is primarily mediated by the phosphoinositide signaling system of the oocyte. The system is stimulated when the sperm causes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); IP3 then binds its receptor on the surface of the endoplasmic reticulum that induces Ca(2+) release. The manner in which the sperm generates IP3, the Ca(2+) mobilizing second messenger, has been the subject of extensive research for a long time. The sperm factor hypothesis has eventually gained general acceptance, according to which it is a molecule from the sperm that diffuses into the ooplasm and stimulates the phosphoinositide cascade. Much evidence now indicates that the sperm-derived factor is phospholipase C-zeta (PLCζ) that cleaves PIP2 and generates IP3, eventually leading to oocyte activation. A recent addition to the candidate sperm factor list is the post-acrosomal sheath WW domain-binding protein (PAWP), whose role at fertilization is currently under debate. Ca(2+) influx across the plasma membrane is also important as, in the absence of extracellular Ca(2+), the oscillations run down prematurely. In pig oocytes, the influx that sustains the oscillations seems to be regulated by the filling status of the stores, whereas in the mouse other mechanisms might be involved. This work summarizes the current understanding of Ca(2+) signaling in mammalian oocytes.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Bernhardt ML, Zhang Y, Erxleben CF, Padilla-Banks E, McDonough CE, Miao YL, Armstrong DL, Williams CJ. CaV3.2 T-type channels mediate Ca²⁺ entry during oocyte maturation and following fertilization. J Cell Sci 2015; 128:4442-52. [PMID: 26483387 DOI: 10.1242/jcs.180026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Initiation of mouse embryonic development depends upon a series of fertilization-induced rises in intracellular Ca(2+). Complete egg activation requires influx of extracellular Ca(2+); however, the channels that mediate this influx remain unknown. Here, we tested whether the α1 subunit of the T-type channel CaV3.2, encoded by Cacna1h, mediates Ca(2+) entry into oocytes. We show that mouse eggs express a robust voltage-activated Ca(2+) current that is completely absent in Cacna1h(-/-) eggs. Cacna1h(-/-) females have reduced litter sizes, and careful analysis of Ca(2+) oscillation patterns in Cacna1h(-/-) eggs following in vitro fertilization (IVF) revealed reductions in first transient length and oscillation persistence. Total and endoplasmic reticulum (ER) Ca(2+) stores were also reduced in Cacna1h(-/-) eggs. Pharmacological inhibition of CaV3.2 in wild-type CF-1 strain eggs using mibefradil or pimozide reduced Ca(2+) store accumulation during oocyte maturation and reduced Ca(2+) oscillation persistence, frequency and number following IVF. Overall, these data show that CaV3.2 T-type channels have prev8iously unrecognized roles in supporting the meiotic-maturation-associated increase in ER Ca(2+) stores and mediating Ca(2+) influx required for the activation of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christian F Erxleben
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yi-Liang Miao
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - David L Armstrong
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Pinto MCX, Kihara AH, Goulart VAM, Tonelli FMP, Gomes KN, Ulrich H, Resende RR. Calcium signaling and cell proliferation. Cell Signal 2015; 27:2139-49. [PMID: 26275497 DOI: 10.1016/j.cellsig.2015.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição, Rua Arcturus (Jd Antares), 09606-070, São Bernardo do Campo, SP, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Fernanda M P Tonelli
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Katia N Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
21
|
Wang C, Zhang L, Jaeger LA, Machaty Z. Store-Operated Ca2+ Entry Sustains the Fertilization Ca2+ Signal in Pig Eggs. Biol Reprod 2015; 93:25. [PMID: 26063872 DOI: 10.1095/biolreprod.114.126151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/01/2015] [Indexed: 11/01/2022] Open
Abstract
The role of store-operated Ca(2+) entry (SOCE) in the maintenance of sperm-induced Ca(2+) oscillations was investigated in porcine eggs. We found that 10 μM gadolinium (Gd(3+)), which is known to inhibit SOCE, blocked Ca(2+) entry that was triggered by thapsigargin-induced store depletion and also caused an abrupt cessation of the fertilization Ca(2+) signal. In a similar manner 3,5-bis(trifluoromethyl)pyrazole 2 (20 μM), and tetrapandin-2 (10 μM), potent SOCE inhibitors, also blocked thapsigargin-stimulated Ca(2+) entry and disrupted the Ca(2+) oscillations after sperm-egg fusion. The downregulation of Stim1 or Orai1 in the eggs did not alter the Ca(2+) content of the intracellular stores, whereas co-overexpression of these proteins led to the generation of irregular Ca(2+) transients after fertilization that stopped prematurely. We also found that thapsigargin completely emptied the endoplasmic reticulum, and that the series of Ca(2+) transients stopped abruptly after the addition of thapsigargin to the fertilized eggs, indicating that the proper reloading of the intracellular stores is a prerequisite for the maintenance of the Ca(2+) oscillations. These data strengthen our previous findings that in porcine eggs SOCE is a major signaling cascade that is responsible for sustaining the repetitive Ca(2+) signal at fertilization.
Collapse
Affiliation(s)
- Chunmin Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Laurie A Jaeger
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
22
|
Tomas-Martin P, Lopez-Guerrero AM, Casas-Rua V, Pozo-Guisado E, Martin-Romero FJ. Phospho-STIM1 is a downstream effector that mediates the signaling triggered by IGF-1 in HEK293 cells. Cell Signal 2015; 27:545-54. [PMID: 25562429 DOI: 10.1016/j.cellsig.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022]
Abstract
STIM1 is a Ca(2+) sensor of the endoplasmic reticulum (ER) that triggers the activation of plasma membrane Ca(2+) channels upon depletion of Ca(2+) levels within the ER. During thapsigargin-triggered Ca(2+) store depletion, ERK1/2 phosphorylates STIM1 at Ser575, Ser608, and Ser621. This phosphorylation plays a role in the regulation of STIM1 dissociation from the microtubule plus-end binding protein EB1, an essential step for STIM1 activation by thapsigargin. However, little is known regarding the physiological role of this phosphorylation. Because IGF-1 triggers the activation of the RAF-MEK-ERK and the phosphoinositide pathways, the role of STIM1 phosphorylation in IGF-1 stimulation was studied. There was found to be phosphorylation of ERK1/2 in both the presence and the absence of extracellular Ca(2+), demonstrating that Ca(2+) influx is not essential for ERK1/2 activation. In parallel, IGF-1 triggered STIM1 phosphorylation at the aforementioned sites, an effect that was blocked by PD0325901, a MEK1/2 inhibitor used to block ERK1/2 activation. Also, STIM1-GFP was found in clusters upon IGF-1 stimulation, and STIM1-S575A/S608A/S621A-GFP strongly reduced this multimerization. Interestingly, phospho-STIM1 was mainly found in clusters when cells were treated with IGF-1, and IGF-1 triggered the dissociation of STIM1 from EB1, similarly to what has been observed for thapsigargin, suggesting that STIM1 mediates the IGF-1 signaling pathway. A study of IGF-1-stimulated NFAT translocation was therefore performed, finding that STIM1-S575A/S608A/S621A blocked this translocation, as did the fusion protein STIM1-EB1, confirming that both STIM1 phosphorylation and STIM1-EB1 dissociation are required for IGF-1-triggered Ca(2+)-dependent signaling, and demonstrating that STIM1 phosphorylation plays a role as a downstream effector of the RAF-MEK-ERK pathway and an upstream activator of Ca(2+) entry.
Collapse
Affiliation(s)
- Patricia Tomas-Martin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Aida M Lopez-Guerrero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Vanessa Casas-Rua
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Eulalia Pozo-Guisado
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| |
Collapse
|
23
|
Serrano-Flores B, Garay E, Vázquez-Cuevas FG, Arellano RO. Differential role of STIM1 and STIM2 during transient inward (T in) current generation and the maturation process in the Xenopus oocyte. BMC PHYSIOLOGY 2014; 14:9. [PMID: 25399338 PMCID: PMC4236480 DOI: 10.1186/s12899-014-0009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Xenopus oocyte is a useful cell model to study Ca2+ homeostasis and cell cycle regulation, two highly interrelated processes. Here, we used antisense oligonucleotides to investigate the role in the oocyte of stromal interaction molecule (STIM) proteins that are fundamental elements of the store-operated calcium-entry (SOCE) phenomenon, as they are both sensors for Ca2+ concentration in the intracellular reservoirs as well as activators of the membrane channels that allow Ca2+ influx. RESULTS Endogenous STIM1 and STIM2 expression was demonstrated, and their synthesis was knocked down 48-72 h after injecting oocytes with specific antisense sequences. Selective elimination of their mRNA and protein expression was confirmed by PCR and Western blot analysis, and we then evaluated the effect of their absence on two endogenous responses: the opening of SOC channels elicited by G protein-coupled receptor (GPCR)-activated Ca2+ release, and the process of maturation stimulated by progesterone. Activation of SOC channels was monitored electrically by measuring the T in response, a Ca2+-influx-dependent Cl- current, while maturation was assessed by germinal vesicle breakdown (GVBD) scoring and electrophysiology. CONCLUSIONS It was found that STIM2, but not STIM1, was essential in both responses, and T in currents and GVBD were strongly reduced or eliminated in cells devoid of STIM2; STIM1 knockdown had no effect on the maturation process, but it reduced the T in response by 15 to 70%. Thus, the endogenous SOCE response in Xenopus oocytes depended mainly on STIM2, and its expression was necessary for entry into meiosis induced by progesterone.
Collapse
|
24
|
Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 2013; 28:284-99. [PMID: 24444815 DOI: 10.1016/j.rbmo.2013.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022]
Abstract
Assisted reproduction technology (ART) has become an attractive option for infertility treatment and holds tremendous promise. However, at present, there is still room for improvement in its success rates. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. To better understand the mechanism underlying oocyte maturation and for the future improvement of assisted reproduction technology, this review focuses on the complex processes of cytoplasmic organelles and the dynamic alterations of the cytoskeleton that occur during oocyte maturation. Ovarian stimulation and in-vitro maturation are the major techniques used in assisted reproduction technology and their influence on the organelles of oocytes is also discussed. Since the first birth by assisted reproduction treatment was achieved in 1978, numerous techniques involved in assisted reproduction have been developed and have become attractive options for infertility treatment. However, the unsatisfactory success rate remains as a main challenge. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. Oocyte maturation includes both nuclear and cytoplasmic maturation. Nuclear maturation primarily involves chromosomal segregation, which has been well studied, whereas cytoplasmic maturation involves a series of complicated processes, and there are still many parts of this process that remain controversial. Ovarian stimulation and in-vitro maturation (IVM) are the major techniques of assisted reproduction. The effect of ovarian stimulation or IVM on the behaviour of cell organelles of the oocyte has been postulated as the reason for the reduced developmental potential of in-vitro-produced embryos. To further understanding of the mechanism of oocyte maturation and future improvement of assisted reproduction treatment, the complex events of cytoplasmic organelles and the cytoskeleton that occur during oocyte maturation and the influence of ovarian stimulation and IVM on these organelles are described in this review.
Collapse
|
25
|
Casas-Rua V, Alvarez IS, Pozo-Guisado E, Martín-Romero FJ. Inhibition of STIM1 phosphorylation underlies resveratrol-induced inhibition of store-operated calcium entry. Biochem Pharmacol 2013; 86:1555-63. [PMID: 24095720 DOI: 10.1016/j.bcp.2013.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
Abstract
Resveratrol, a natural phytoalexin that shows health-promoting benefits, is an inhibitor of store-operated calcium entry (SOCE). Knowledge of the molecular mechanism underlying this inhibition is required for the proper design of therapies that include resveratrol or related stilbenoids, but remains largely unknown. To unravel this mechanism, using HEK293 cells as a model, we found that resveratrol inhibited the ERK1/2 activation triggered by Ca²⁺ store depletion. As a consequence, resveratrol inhibited STIM1 phosphorylation at residues Ser575, Ser608, and Ser621. Because this phosphorylation regulates the dissociation of STIM1 from the microtubule plus-end binding protein EB1 under store depletion conditions, resveratrol inhibited STIM1-EB1 dissociation. This inhibition had downstream effects such as inhibition of STIM1 multimerization in response to store depletion, and a significant impairment in the binding of STIM1 to ORAI1. Although additional targets for resveratrol in the molecular mechanism that governs SOCE cannot be discarded, the present results demonstrate that ERK1/2 pathway is a major target for resveratrol, and that the impairment of its activation produces a significant inhibition of SOCE.
Collapse
Affiliation(s)
- Vanessa Casas-Rua
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz, Spain; Department of Cell Biology, School of Life Sciences, University of Extremadura, Badajoz, Spain.
| | | | | | | |
Collapse
|
26
|
STIM1 negatively regulates Ca²⁺ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 2013; 453:187-200. [PMID: 23668188 DOI: 10.1042/bj20130178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STIM1 (stromal interaction molecule 1) mediates SOCE (store-operated Ca²⁺ entry) in skeletal muscle. However, the direct role(s) of STIM1 in skeletal muscle, such as Ca²⁺ release from the SR (sarcoplasmic reticulum) for muscle contraction, have not been identified. The times required for the maximal expression of endogenous STIM1 or Orai1, or for the appearance of puncta during the differentiation of mouse primary skeletal myoblasts to myotubes, were all different, and the formation of puncta was detected with no stimulus during differentiation, suggesting that, in skeletal muscle, the formation of puncta is a part of the differentiation. Wild-type STIM1 and two STIM1 mutants (Triple mutant, missing Ca²⁺-sensing residues but possessing the intact C-terminus; and E136X, missing the C-terminus) were overexpressed in the myotubes. The wild-type STIM1 increased SOCE, whereas neither mutant had an effect on SOCE. It was interesting that increases in the formation of puncta were observed in the Triple mutant as well as in wild-type STIM1, suggesting that SOCE-irrelevant puncta could exist in skeletal muscle. On the other hand, overexpression of wild-type or Triple mutant, but not E136X, attenuated Ca²⁺ releases from the SR in response to KCl [evoking ECC (excitation-contraction coupling) via activating DHPR (dihydropyridine receptor)] in a dominant-negative manner. The attenuation was removed by STIM1 knockdown, and STIM1 was co-immunoprecipitated with DHRP in a Ca²⁺-independent manner. These results suggest that STIM1 negatively regulates Ca²⁺ release from the SR through the direct interaction of the STIM1 C-terminus with DHPR, and that STIM1 is involved in both ECC and SOCE in skeletal muscle.
Collapse
|
27
|
Does cryopreservation of ovarian tissue affect the distribution and function of germinal vesicle oocytes mitochondria? BIOMED RESEARCH INTERNATIONAL 2013; 2013:489032. [PMID: 23956986 PMCID: PMC3730362 DOI: 10.1155/2013/489032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate mitochondrial alteration and ATP content of germinal vesicle (GV) oocytes isolated from fresh and vitrified ovaries. After superovulation, the ovaries from adult mice were collected and divided into control and vitrified groups. GV oocytes were isolated mechanically from each group. Half were cultured for 24 hours and their maturation was assessed. Metaphase II oocytes were collected and submitted to in vitro fertilization and their fertilization rates and development to the blastocyst stage were evaluated. In the remaining GV oocytes, ATP levels were quantified, and mitochondrial distribution, mitochondrial membrane potential, and intracellular free calcium were detected with rhodamine 123, JC-1 and Flou-4 AM staining, using laser-scanning confocal microscopy. Maturation and fertilization rates of GV oocytes and the developmental rates of subsequent embryos were significantly lower in vitrified samples (P < 0.05). The ATP content and Ca(2+) levels differed significantly in fresh and vitrified GV oocytes (P < 0.05). Most mitochondria were seen as large and homogenous aggregates (66.6%) in fresh GV oocytes compared to vitrified oocytes (50%). No significant differences in mitochondrial membrane potential were found between the groups. The lower maturation and fertilization rates of GV oocytes from vitrified ovaries may be due to changes in their mitochondrial function and distribution.
Collapse
|
28
|
Gruszczynska-Biegala J, Kuznicki J. Native STIM2 and ORAI1 proteins form a calcium-sensitive and thapsigargin-insensitive complex in cortical neurons. J Neurochem 2013; 126:727-38. [PMID: 23711249 DOI: 10.1111/jnc.12320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 01/14/2023]
Abstract
In non-excitatory cells, stromal interaction molecule 1 (STIM1) and STIM2 mediate store-operated calcium entry via an interaction with ORAI1 calcium channels. However, in neurons, STIM2 over-expression appears to play a role in calcium homeostasis that is different from STIM1 over-expression. The aim of this study was to establish the role and localization of native STIM2 in the neuronal cell. Co-immunoprecipitation experiments revealed that the interaction between endogenous STIM2 and ORAI1 was greater in a low-calcium medium than in a high-calcium medium. Using a Proximity Ligation Assay (PLA), the number of apparent complexes of endogenous STIM2 with ORAI1 was quantified. No change in the number of PLA signals was observed in the presence of thapsigargin, which depletes calcium from the endoplasmic reticulum (ER). However, the number of apparent STIM2-ORAI1 complexes increased when intracellular and subsequently ER calcium concentrations were decreased by BAPTA-AM or a low-calcium medium. Both Fura-2 acetoxymethyl ester calcium imaging and PLA in the same neuronal cell indicated that the calcium responses correlated strongly with the number of endogenous STIM2-ORAI1 complexes. The small drop in calcium levels in the ER caused by decreased intracellular calcium levels appeared to initiate the calcium-sensitive and thapsigargin-insensitive interaction between STIM2 and ORAI1. We show in neuronal somata the formation of endogenous complexes of stromal interaction molecule 2 (STIM2) with ORAI1 calcium channels. Their number increased when intracellular Ca²⁺ concentrations were decreased by the Ca²⁺ chelator BAPTA-AM or a low-calcium medium (EGTA), but did not in the presence of thapsigargin (TG). We conclude that the small drop of Ca²⁺ level in endoplasmic reticulum, due to the decreased level of intracellular Ca²⁺, is sufficient to trigger STIM2-ORAI1 complex formation in a thapsigargin-insensitive manner.
Collapse
|
29
|
Abstract
Calcium (Ca2+) signals are involved in the regulation of oocyte maturation and play a critical role during fertilization. In the egg, Ca2+is stored in the lumen of the endoplasmic reticulum and a signal is generated when the stored Ca2+is released through specialized channels in the membrane of the endoplasmic reticulum to elevate the free Ca2+concentration in the cytoplasm. Extracellular Ca2+is also important, indicated by the fact that the mobilization of luminal Ca2+is typically followed by Ca2+entry across the plasma membrane. The transmembrane Ca2+flux replenishes the endoplasmic reticulum, and thus, it is essential to sustain prolonged Ca2+signals. It also seems to be responsible for the stimulation of important signaling cascades required for complete egg activation. Characterization of the pathway that mediates Ca2+entry implies that its major components include STIM1, a protein that senses the filling status of the stores, and ORAI1, a channel protein located in the plasma membrane. Defining the mechanism and functions of Ca2+entry will not only lead to a better understanding of egg physiology but may also help improving the efficiency of a number of assisted reproductive technologies.
Collapse
|
30
|
Cheon B, Lee HC, Wakai T, Fissore RA. Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell 2013; 24:1396-410. [PMID: 23468522 PMCID: PMC3639051 DOI: 10.1091/mbc.e13-01-0065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in Ca2+ homeostasis render oocytes competent to undergo [Ca2+]i oscillations and activation. During mouse oocyte maturation Ca2+ influx and SOCE are down-regulated, whereas [Ca2+]ER content increases. Bypassing the down-regulation of Ca2+ influx disturbs oocyte maturation. In preparation for fertilization, mammalian oocytes undergo optimization of the mechanisms that regulate calcium homeostasis. Among these changes is the increase in the content of the Ca2+ stores ([Ca2+]ER), a process that requires Ca2+ influx. Nevertheless, the mechanism(s) that mediates this influx remains obscure, although is known that [Ca2+]ER can regulate Ca2+ influx via store-operated Ca2+ entry (SOCE). We find that during maturation, as [Ca2+]ER increases, Ca2+ influx decreases. We demonstrate that mouse oocytes/eggs express the two molecular components of SOCE—stromal interaction molecule 1 (Stim1) and Orai1—and expression of human (h) Stim1 increases Ca2+ influx in a manner that recapitulates endogenous SOCE. We observe that the cellular distribution of hStim1 and hOrai1 during maturation undergoes sweeping changes that curtail their colocalization during the later stages of maturation. Coexpression of hStim1 and hOrai1 enhances influx throughout maturation but increases basal Ca2+ levels only in GV oocytes. Further, expression of a constitutive active form of hStim1 plus Orai1, which increases basal Ca2+ throughout maturation, disturbs resumption of meiosis. Taken together, our results demonstrate that Ca2+ influx and SOCE are regulated during maturation and that alteration of Ca2+ homeostasis undermines maturation in mouse oocytes.
Collapse
Affiliation(s)
- Banyoon Cheon
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01002, USA
| | | | | | | |
Collapse
|
31
|
Lee B, Palermo G, Machaca K. Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition. J Cell Sci 2013; 126:1672-81. [PMID: 23424198 DOI: 10.1242/jcs.121335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) entry (SOCE) is the predominant Ca(2+) influx pathway in vertebrate oocytes, and in Xenopus SOCE completely inactivates during meiosis. Here, we show that SOCE is downregulated during mouse meiosis, but remains active in mature metaphase II eggs. SOCE inhibition is due to a decreased ability of the Ca(2+) sensor STIM1 to translocate to the cortical endoplasmic reticulum domain and due to internalization of Orai1. Reversing SOCE downregulation by overexpression of STIM1 and Orai1 prolongs the Ca(2+) oscillations at egg activation and disrupts the egg-to-embryo transition. Thus, SOCE downregulation during mammalian oocyte maturation is a crucial determinant of the fertilization-specific Ca(2+) transient, egg activation and early embryonic development.
Collapse
Affiliation(s)
- Bora Lee
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
32
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
33
|
Ca(2+) homeostasis and regulation of ER Ca(2+) in mammalian oocytes/eggs. Cell Calcium 2012; 53:63-7. [PMID: 23260016 DOI: 10.1016/j.ceca.2012.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/23/2022]
Abstract
The activation of the developmental program in mammalian eggs relies on the initiation at the time of fertilization of repeated rises in the intracellular concentration of free calcium ([Ca(2+)](i)), also known as [Ca(2+)](i) oscillations. The ability to mount the full complement of oscillations is only achieved at the end of oocyte maturation, at the metaphase stage of meiosis II (MII). Over the last decades research has focused on addressing the mechanisms by which the sperm initiates the oscillations and identification of the channels that mediate intracellular Ca(2+) release. This review will describe the up-to-date knowledge of other aspects of Ca(2+) homeostasis in mouse oocytes, such as the mechanisms that transport Ca(2+) out of the cytosol into the endoplasmic reticulum (ER), the Ca(2+) store of the oocyte/egg, into other organelles and also those that extrude Ca(2+). Evidence pointing to channels in the plasma membrane that mediate Ca(2+) entry from the extracellular milieu, which is required for the persistence of the oscillations, is also discussed, along with the modifications that these mechanisms undergo during maturation. Lastly, we highlight areas where additional research is needed to obtain a better understating of the molecules and mechanisms that regulate Ca(2+) homeostasis in this unique Ca(2+) signaling system.
Collapse
|
34
|
Takahashi T, Kikuchi T, Kidokoro Y, Shirakawa H. Ca²⁺ influx-dependent refilling of intracellular Ca²⁺ stores determines the frequency of Ca²⁺ oscillations in fertilized mouse eggs. Biochem Biophys Res Commun 2012; 430:60-5. [PMID: 23159627 DOI: 10.1016/j.bbrc.2012.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022]
Abstract
On mammalian fertilization, long-lasting Ca(2+) oscillations are induced in the egg by the fusing spermatozoon. While each transient Ca(2+) increase in Ca(2+) concentration ([Ca(2+)]) in the cytosol is due to Ca(2+) release from the endoplasmic reticulum (ER), Ca(2+) influx from outside is required for Ca(2+) oscillations to persist. In this study, we investigated how Ca(2+) influx is interrelated to the cycle of Ca(2+) release and uptake by the intracellular Ca(2+) stores during Ca(2+) oscillations in fertilized mouse eggs. In addition to monitoring cytosolic [Ca(2+)] with fura-2, the influx rate was evaluated using Mn(2+) quenching technique, and the change in [Ca(2+)] in the ER lumen was visualized with a targeted fluorescent probe. We found that the influx was stimulated after each transient Ca(2+) release and then diminished gradually to the basal level, and demonstrated that the ER Ca(2+) stores once depleted by Ca(2+) release were gradually refilled until the next Ca(2+) transient to be initiated. Experiments altering extracellular [Ca(2+)] in the middle of Ca(2+) oscillations revealed the dependence of both the refilling rate and the oscillation frequency on the rate of Ca(2+) influx, indicating the crucial role of Ca(2+) influx in determining the intervals of Ca(2+) transients. As for the influx pathway supporting Ca(2+) oscillations to persist, STIM1/Orai1-mediated store-operated Ca(2+) entry (SOCE) may not significantly contribute, since neither known SOCE blockers nor the expression of protein fragments that interfere the interaction between STIM1 and Orai1 inhibited the oscillation frequency or the influx rate.
Collapse
Affiliation(s)
- Tooru Takahashi
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo 182-8585, Japan
| | | | | | | |
Collapse
|
35
|
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65. [PMID: 22914293 DOI: 10.1038/nrm3414] [Citation(s) in RCA: 523] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca(2+)) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca(2+) stored within the ER lumen. As ER Ca(2+) is released to generate primary Ca(2+) signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca(2+)-selective Orai channels to mediate finely controlled Ca(2+) signals and to homeostatically balance cellular Ca(2+). Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
36
|
Wang C, Lee K, Gajdócsi E, Papp ÁB, Machaty Z. Orai1 mediates store-operated Ca2+ entry during fertilization in mammalian oocytes. Dev Biol 2012; 365:414-23. [DOI: 10.1016/j.ydbio.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 11/26/2022]
|
37
|
Calcium influx-mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci U S A 2012; 109:4169-74. [PMID: 22371584 DOI: 10.1073/pnas.1112333109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca(2+)) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores. We tested the hypothesis that Ca(2+) influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca(2+) source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca(2+) influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca(2+) occurred, in the absence of Ca(2+) influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca(2+) chelator, BAPTA/AM, demonstrated that Ca(2+) influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca(2+) transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca(2+)-free medium remained arrested in metaphase II. Inhibition of store-operated Ca(2+) entry had no effect on ICSI-induced egg activation, so Ca(2+) influx through alternative channels must participate in egg activation signaling. Ca(2+) influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca(2+). These results suggest that Ca(2+) influx at fertilization not only maintains Ca(2+) oscillations by replenishing Ca(2+) stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.
Collapse
|