1
|
Zhang X, Gao J, Yang L, Feng X, Yuan X. Recurrent pregnancy loss: risk factors and predictive modeling approaches. J Matern Fetal Neonatal Med 2025; 38:2440043. [PMID: 39694576 DOI: 10.1080/14767058.2024.2440043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE This review aims to identify and analyze the risk factors associated with recurrent pregnancy loss (RPL) and to evaluate the effectiveness of various predictive models in estimating the risk of RPL. The review also explores recent advancements in machine learning algorithms that can enhance the accuracy of these predictive models. The ultimate goal is to provide a comprehensive understanding of how these tools can aid in the personalized management of women experiencing RPL. MATERIALS AND METHODS The review synthesizes current literature on RPL, focusing on various risk factors such as chromosomal abnormalities, autoimmune conditions, hormonal imbalances, and structural uterine anomalies. It also analyzes different predictive models for RPL risk assessment, including genetic screening tools, risk scoring systems that integrate multiple clinical parameters, and machine learning algorithms capable of processing complex datasets. The effectiveness and limitations of these models are critically evaluated to provide insights into their clinical application. RESULTS Key risk factors for RPL were identified, including chromosomal abnormalities (e.g. translocations and aneuploidies), autoimmune conditions (e.g. antiphospholipid syndrome), hormonal imbalances (e.g. thyroid dysfunction and luteal phase defects), and structural uterine anomalies (e.g. septate or fibroid-affected uteri). Predictive models such as genetic screening tools and risk scoring systems were shown to be effective in estimating RPL risk. Recent advancements in machine learning algorithms demonstrate potential for enhancing predictive accuracy by analyzing complex datasets, which may lead to improved personalized management strategies. CONCLUSIONS The integration of risk factors and predictive modeling offers a promising approach to improving outcomes for women affected by RPL. A comprehensive understanding of these factors and models can aid clinicians and researchers in refining risk assessment and developing targeted interventions. The review underscores the need for further research into specific pathways involved in RPL and the potential of novel treatments aimed at mitigating risk.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiawei Gao
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liuxin Yang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of traditional Chinese medicine, Harbin, China
| |
Collapse
|
2
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Motlagh Asghari K, Novinbahador T, Mehdizadeh A, Zolfaghari M, Yousefi M. Revolutionized attitude toward recurrent pregnancy loss and recurrent implantation failure based on precision regenerative medicine. Heliyon 2024; 10:e39584. [PMID: 39498089 PMCID: PMC11532865 DOI: 10.1016/j.heliyon.2024.e39584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Traditional treatment strategies for recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) often result in limited success, placing significant emotional and financial burdens on couples. However, novel approaches such as diagnostic gene profiling, cell therapy, stem cell-derived exosome therapy, and pharmacogenomics offer promising, personalized treatments. Combining traditional treatments with precision and regenerative medicine may enhance the efficacy of these approaches and improve pregnancy outcomes. This review explores how integrating these strategies can potentially transform the lives of couples experiencing repeated pregnancy loss or implantation failure, providing hope for improved treatment success. Precision and regenerative medicine represent a new frontier for managing RPL and RIF, offering promising solutions.
Collapse
Affiliation(s)
| | - Tannaz Novinbahador
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Ye Q, Liu FY, Xia XJ, Chen XY, Zou L, Wu HM, Li DD, Xia CN, Huang T, Cui Y, Zou Y. Whole exome sequencing identifies a novel mutation in Annexin A4 that is associated with recurrent spontaneous abortion. Front Med (Lausanne) 2024; 11:1462649. [PMID: 39399103 PMCID: PMC11466819 DOI: 10.3389/fmed.2024.1462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is a multifactorial disease, the exact causes of which are still unknown. Environmental, maternal, and genetic factors have been shown to contribute to this condition. The aim of this study was to investigate the presence of mutations in the ANXA4 gene in patients with RSA. Methods Genomic DNA was extracted from 325 patients with RSA and 941 control women with a normal reproductive history for whole-exome sequencing (WES). The detected variants were annotated and filtered, and the pathogenicity of the variants was predicted through the SIFT online tool, functional enrichment analyses, Sanger sequencing validation, prediction of changes in protein structure, and evolutionary conservation analysis. Furthermore, plasmid construction, Western blotting, RT-qPCR, and cell migration, invasion and adhesion assays were used to detect the effects of ANXA4 mutations on protein function. Results An ANXA4 mutation (p.G8D) in 1 of the 325 samples from patients with RSA (RSA-219) was identified through WES. This mutation was not detected in 941 controls or included in public databases. Evolutionary conservation analysis revealed that the amino acid residue affected by the mutation (p.G8D) was highly conserved among 13 vertebrate species, and the SIFT program and structural modeling analysis predicted that this mutation was harmful. Furthermore, functional assays revealed that this mutation could inhibit cell migration, invasion and adhesion. Conclusion Our study suggests that an unreported novel ANXA4 mutation (p.G8D) plays an important role in the pathogenesis of RSA and may contribute to the genetic diagnosis of RSA.
Collapse
Affiliation(s)
- Qian Ye
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Jian Xia
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Yong Chen
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Li Zou
- Quality Control Office, Ganzhou People's Hospital, Ganzhou, China
| | - Hui-Min Wu
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dan-Dan Li
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen-Nian Xia
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ting Huang
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
5
|
Yu X, Li L, Ning A, Wang H, Guan C, Ma X, Xia H. Primary cilia abnormalities participate in the occurrence of spontaneous abortion through TGF-β/SMAD2/3 signaling pathway. J Cell Physiol 2024; 239:e31292. [PMID: 38704705 DOI: 10.1002/jcp.31292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Spontaneous abortion is the most common complication in early pregnancy, the exact etiology of most cases cannot be determined. Emerging studies suggest that mutations in ciliary genes may be associated with progression of pregnancy loss. However, the involvement of primary cilia on spontaneous abortion and the underlying molecular mechanisms remains poorly understood. We observed the number and length of primary cilia were significantly decreased in decidua of spontaneous abortion in human and lipopolysaccharide (LPS)-induced abortion mice model, accompanied with increased expression of proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The length of primary cilia in human endometrial stromal cell (hESC) was significantly shortened after TNF-α treatment. Knocking down intraflagellar transport 88 (IFT88), involved in cilia formation and maintenance, promoted the expression of TNF-α. There was a reverse regulatory relationship between cilia shortening and TNF-α expression. Further research found that shortened cilia impair decidualization in hESC through transforming growth factor (TGF)-β/SMAD2/3 signaling. Primary cilia were impaired in decidua tissue of spontaneous abortion, which might be mainly caused by inflammatory injury. Primary cilia abnormalities resulted in dysregulation of TGF-β/SMAD2/3 signaling transduction and decidualization impairment, which led to spontaneous abortion.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Linyuan Li
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, Michigan, USA
| | - Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Lee JY, Moon J, Hu HJ, Ryu CS, Ko EJ, Ahn EH, Kim YR, Kim JH, Kim NK. Discovery of Pathogenic Variants Associated with Idiopathic Recurrent Pregnancy Loss Using Whole-Exome Sequencing. Int J Mol Sci 2024; 25:5447. [PMID: 38791485 PMCID: PMC11121708 DOI: 10.3390/ijms25105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Idiopathic recurrent pregnancy loss (RPL) is defined as at least two pregnancy losses before 20 weeks of gestation. Approximately 5% of pregnant couples experience idiopathic RPL, which is a heterogeneous disease with various causes including hormonal, chromosomal, and intrauterine abnormalities. Although how pregnancy loss occurs is still unknown, numerous biological factors are associated with the incidence of pregnancy loss, including genetic variants. Whole-exome sequencing (WES) was conducted on blood samples from 56 Korean patients with RPL and 40 healthy controls. The WES data were aligned by means of bioinformatic analysis, and the detected variants were annotated using machine learning tools to predict the pathogenicity of protein alterations. Each indicated variant was confirmed using Sanger sequencing. A replication study was also conducted in 112 patients and 114 controls. The Variant Effect Scoring Tool, Combined Annotation Dependent Depletion tool, Sorting Intolerant from Tolerant annotation tool, and various databases detected 10 potential variants previously associated with spontaneous abortion genes in patients by means of a bioinformatic analysis of WES data. Several variants were detected in more than one patient. Interestingly, several of the detected genes were functionally clustered, including some with a secretory function (mucin 4; MUC4; rs200737893 G>A and hyaluronan-binding protein 2; HABP2; rs542838125 G>T), in which growth arrest-specific 2 Like 2 (GAS2L2; rs140842796 C>T) and dynamin 2 (DNM2; rs763894364 G>A) are functionally associated with cell protrusion and the cytoskeleton. ATP Binding Cassette Subfamily C Member 6 (ABCC6) was the only gene with two variants. HABP2 (rs542838125 G>T), MUC4 (rs200737893 G>A), and GAS2L2 (rs140842796 C>T) were detected in only the patient group in the replication study. The combination of WES and machine learning tools is a useful method to detect potential variants associated with RPL. Using bioinformatic tools, we found 10 potential variants in 9 genes. WES data from patients are needed to better understand the causes of RPL.
Collapse
Affiliation(s)
- Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - JaeWoo Moon
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Hae-Jin Hu
- Endomics, Inc., Seongnam-si 13595, Republic of Korea; (J.M.); (H.-J.H.)
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13596, Republic of Korea; (E.H.A.); (Y.R.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.Y.L.); (C.S.R.); (E.J.K.)
| |
Collapse
|
7
|
Maksiutenko EM, Barbitoff YA, Nasykhova YA, Pachuliia OV, Lazareva TE, Bespalova ON, Glotov AS. The Landscape of Point Mutations in Human Protein Coding Genes Leading to Pregnancy Loss. Int J Mol Sci 2023; 24:17572. [PMID: 38139401 PMCID: PMC10743817 DOI: 10.3390/ijms242417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pregnancy loss is the most frequent complication of a pregnancy which is devastating for affected families and poses a significant challenge for the health care system. Genetic factors are known to play an important role in the etiology of pregnancy loss; however, despite advances in diagnostics, the causes remain unexplained in more than 30% of cases. In this review, we aggregated the results of the decade-long studies into the genetic risk factors of pregnancy loss (including miscarriage, termination for fetal abnormality, and recurrent pregnancy loss) in euploid pregnancies, focusing on the spectrum of point mutations associated with these conditions. We reviewed the evolution of molecular genetics methods used for the genetic research into causes of pregnancy loss, and collected information about 270 individual genetic variants in 196 unique genes reported as genetic cause of pregnancy loss. Among these, variants in 18 genes have been reported by multiple studies, and two or more variants were reported as causing pregnancy loss for 57 genes. Further analysis of the properties of all known pregnancy loss genes showed that they correspond to broadly expressed, highly evolutionary conserved genes involved in crucial cell differentiation and developmental processes and related signaling pathways. Given the features of known genes, we made an effort to construct a list of candidate genes, variants in which may be expected to contribute to pregnancy loss. We believe that our results may be useful for prediction of pregnancy loss risk in couples, as well as for further investigation and revealing genetic etiology of pregnancy loss.
Collapse
Affiliation(s)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| | | | | | | | | | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| |
Collapse
|
8
|
Xue H, Guo Q, Yu A, Lin M, Chen X, Xu L. Genetic analysis of chorionic villus tissues in early missed abortions. Sci Rep 2023; 13:21719. [PMID: 38081877 PMCID: PMC10713591 DOI: 10.1038/s41598-023-48358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal abnormalities are the most common etiology of early spontaneous miscarriage. However, traditional karyotyping of chorionic villus samples (CVSs) is limited by cell culture and its low resolution. The objective of our study was to investigate the efficiency of molecular karyotyping technology for genetic diagnosis of early missed abortion tissues. Chromosome analysis of 1191 abortion CVSs in early pregnancy was conducted from August 2016 to June 2021; 463 cases were conducted via copy-number variations sequencing (CNV-seq)/quantitative fluorescent-polymerase chain reaction (QF-PCR) and 728 cases were conducted using SNP array. Clinically significant CNVs of CVSs were identified to clarify the cause of miscarriage and to guide the couples' subsequent pregnancies. Among these, 31 cases with significant maternal cell contamination were removed from the study. Among the remaining 1160 samples, 751 cases (64.7%) with genetic abnormalities were identified, of which, 531 (45.8%) were single aneuploidies, 31 (2.7%) were multiple aneuploidies, 50 (4.3%) were polyploidies, 54 (4.7%) were partial aneuploidies, 77 (6.6%) had submicroscopic CNVs (including 25 with clinically significant CNVs and 52 had variants of uncertain significance), and 8 cases (0.7%) were uniparental disomies. Our study suggests that both SNP array and CNV-seq/QF-PCR are reliable, robust, and high-resolution technologies for genetic diagnosis of miscarriage.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Gulou District, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
9
|
Zeng W, Qi H, Du Y, Cai L, Wen X, Wan Q, Luo Y, Zhu J. Analysis of potential copy-number variations and genes associated with first-trimester missed abortion. Heliyon 2023; 9:e18868. [PMID: 37593615 PMCID: PMC10428042 DOI: 10.1016/j.heliyon.2023.e18868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Background Copy number variation sequencing (CNV-seq) was proven to be a highly effective tool in studying of chromosomal copy number variations (CNVs) in prenatal diagnosis and post-natal cases with developmental abnormalities. However, the overall characteristics of missed abortion (MA) CNVs were largely unexplored. Methods We retrospectively analyzed the results of CNV-seq in first-trimester MA. The samples included were single pregnancy loss before 13 gestational weeks, and other potential factors affecting embryonic implantation and development had been excluded. Gene ontology and KEGG enrichment analysis was performed on the smallest overlapping regions (SORs) of high-frequency deletion/duplication. Result On the basis of strict inclusion and exclusion criteria, only 152 samples were included in our study. 77 (50.7%) samples displayed chromosome number abnormalities, 32 (21%) showed isolated CNVs, and 43 (28.3%) showed no CNVs. A total of 45 CNVs, ranging in size between 300 Kb and 126.56 Mb were identified, comprising 13 segmental aneuploidies CNVs, and 32 submicroscopic CNVs. Among these CNVs, we screened out four SORs (5q31.3, 5p15.33-p15.2, 8p23.3-p23.2, and 8q22.2-24.3), which were potentially associated with first-term MA. 16 genes were identified as potential miscarriage candidate genes through gene-prioritization analysis, including three genes (MYOM2, SDHA and TPPP) critical for embryonic heart or brain development. Conclusion We identified some potential candidate CNVs and genes associated with first-trimester MA. 5q31.3 duplications, 5p15.33-p15.2 deletions, 8p23.3-p23.2 deletions and 8p22.2-p24.3 duplications are four potential candidate CNVs. Additionally, MYOM2, SDHA and TPPP are potential genes associated with first-trimester MA.
Collapse
Affiliation(s)
- Wen Zeng
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| | - Hong Qi
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| | - Yang Du
- Annoroad Gene Technology Co., Ltd, Beijing 100176, PR China
| | - Lirong Cai
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| | - Xiaohui Wen
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| | - Qian Wan
- Annoroad Gene Technology Co., Ltd, Beijing 100176, PR China
| | - Yao Luo
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| | - Jianjiang Zhu
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, No.53 Suzhou Street, Haidian District, Beijing 100080, PR China
| |
Collapse
|
10
|
Zhu D, Wei X, Zhou XY, Deng LB, Xiong SY, Chen JP, Chen GQ, Zou G, Sun LM. Chromosomal abnormalities in recurrent pregnancy loss and its association with clinical characteristics. J Assist Reprod Genet 2023; 40:1713-1720. [PMID: 37261584 PMCID: PMC10352212 DOI: 10.1007/s10815-023-02816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE To evaluate the distribution of chromosomal abnormalities in a recurrent pregnancy loss (RPL) cohort and explore the associations between chromosomal abnormalities and clinical characteristics. METHOD Over a 5-year period, fresh products of conception (POC) from women with RPL were analyzed by single-nucleotide polymorphism (SNP) array at our hospital. After obtaining the information on clinical characteristics, we investigated the associations between the causative chromosomal abnormalities and clinical characteristics by the chi-squared test or Fisher's exact test and logistic regression. RESULTS A total of 2383 cases were enrolled. Overall, 56.9% (1355/2383) were identified with causative chromosomal abnormalities, of which 92.1% (1248/1355) were numerical abnormalities, 7.5% (102/1355) were structural variants, and 0.4% (5/1355) were loss of heterozygosity (LOH). The risk of numerical abnormalities was increased in women with maternal age ≥ 35 years (OR, 1.71; 95% CI, 1.41-2.07), gestational age at pregnancy loss ≤ 12 weeks (OR, 2.78; 95% CI, 1.79-4.33), less number of previous pregnancy losses (twice: OR, 2.32; 95% CI, 1.84-2.94; 3 times: OR, 1.59; 95% CI, 1.23-2.05, respectively), and pregnancy with a female fetus (OR, 1.37; 95% CI, 1.15-1.62). The OR of pregnancy loss with recurrent abnormal CMA was 4.00 (95% CI: 1.87-8.58, P < 0.001) and the adjusted OR was 5.05 (95% CI: 2.00-12.72, P = 0.001). However, the mode of conception was not associated with the incidence of numerical abnormality. No association was noted between structural variants and clinical characteristics. CONCLUSION Chromosomal abnormality was the leading cause of RPL. Numerical chromosome abnormality was more likely to occur in cases with advanced maternal age, an earlier gestational age, fewer previous pregnancy losses, and pregnancy with a female fetus.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xing Wei
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin-Yao Zhou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lin-Bei Deng
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shi-Yi Xiong
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jian-Ping Chen
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guang-Quan Chen
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gang Zou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu-Ming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Zhuang J, Luo Q, Xie M, Chen Y, Jiang Y, Zeng S, Wang Y, Xie Y, Chen C. Etiological identification of recurrent male fatality due to a novel NSDHL gene mutation using trio whole-exome sequencing: A rare case report and literature review. Mol Genet Genomic Med 2023; 11:e2121. [PMID: 36504312 PMCID: PMC10009909 DOI: 10.1002/mgg3.2121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome is a rare X-linked dominant, lethal male disorder caused by mutations to the NSDHL (NAD(P)H steroid dehydrogenase-like protein) gene. It primarily exhibits strictly unilateral congenital hemidysplasia with ichthyosiform erythroderma and ipsilateral limb defects in female individuals. METHODS A Chinese couple suffering from recurrent spontaneous abortion in male fetuses was enrolled in this study. Chromosomal microarray analysis and whole-exome sequencing were performed for genetic etiological diagnosis. RESULTS A 33-year-old pregnant woman with recurrent spontaneous abortion was experiencing her third pregnancy with a male embryo. In this pregnancy, a miscarriage occurred at a gestational age of 10+6 weeks with no copy number variants. However, a novel mutation c.790-6C>T in the NSDHL gene was observed in the fetus through whole-exome sequencing (WES). Parental verification indicated that the NSDHL gene variant was inherited from the mother. Additionally, the variant in the NSDHL gene was absent in her subsequent pregnancy with a female fetus. CONCLUSION In this study, we detected c.790-6C>T, a novel variant in the NSDHL gene that results in recurrent miscarriage in males. Our study may broaden the scope of research on the NSDHL gene in CHILD syndrome and strengthens the application value of WES for the genetic etiological identification of recurrent miscarriage.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Meihua Xie
- Prenatal Diagnosis Center, Yueyang Central Hospital, Yueyang, China
| | - Yu'e Chen
- Ultrasonography, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Shuhong Zeng
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuanbai Wang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China
| |
Collapse
|
12
|
Yu N, Kwak-Kim J, Bao S. Unexplained recurrent pregnancy loss: Novel causes and advanced treatment. J Reprod Immunol 2023; 155:103785. [PMID: 36565611 DOI: 10.1016/j.jri.2022.103785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
In this study, recent research focusing on recurrent pregnancy loss (RPL) are reviewed. Recurrent pregnancy loss is a devastating reproductive health burden that affects about 5% of couples trying to conceive globally. Currently, there are few evidence-based diagnostic and treatment strategies for RPL. More so, the number of unexplained etiology cases in patients with RPL arrives at 50%. Here, we discuss the progress in diagnosis and treatment of unexplained RPL, as well as recommended treatment strategies and controversial etiologies.
Collapse
Affiliation(s)
- Na Yu
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Department of Obstetrics and Gynecology, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Berkay EG, Şoroğlu CV, Kalaycı T, Uyguner ZO, Akçapınar GB, Başaran S. A new enrichment approach for candidate gene detection in unexplained recurrent pregnancy loss and implantation failure. Mol Genet Genomics 2023; 298:253-272. [PMID: 36385415 DOI: 10.1007/s00438-022-01972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
Recurrent pregnancy loss (RPL) and implantation failure (RIF) are obstacles to livebirth and multifactorial conditions in which nearly half of the cases remain unexplained, and we aimed to identify maternal candidate gene variants and pathways for RPL and RIF by analyzing whole-exome sequencing (WES) data via a new detailed bioinformatics approach. A retrospective cohort study was applied to 35 women with normal chromosomal configuration diagnosed with unexplained RPL and/or RIF. WES and comprehensive bioinformatics analyses were performed. Published gene expression datasets (n = 46) were investigated for candidate genes. Variant effects on protein structure were analyzed for 12 proteins, and BUB1B was visualized in silico. WES and bioinformatics analyses are effective and applicable for studying URPL and RIF to detect mutations, as we suggest new candidates to explain the etiology. Forty-three variants in 39 genes were detected in 29 women, 7 of them contributing to oligogenic inheritance. These genes were related to implantation, placentation, coagulation, metabolism, immune system, embryological development, cell cycle-associated processes, and ovarian functions. WES, genomic variant analyses, expression data, and protein configuration studies offer new and promising ways to investigate the etiology of URPL and RIF. Discovering etiology-identifying genetic factors can help manage couples' needs and develop personalized therapies and new pharmaceutical products in the future. The classical approach with chromosomal analysis and targeted gene panel testing is insufficient in these cases; the exome data provide a promising way to detect and understand the possible clinical effects of the variant and its alteration on protein structure.
Collapse
Affiliation(s)
- Ezgi Gizem Berkay
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey. .,Department of Basic Sciences, Dentistry Faculty, Istanbul Kent University, 34433, Istanbul, Turkey.
| | - Can Veysel Şoroğlu
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34684, Istanbul, Turkey
| | - Tuğba Kalaycı
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34684, Istanbul, Turkey
| | - Seher Başaran
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
14
|
Zhang C, Guo Y, Yang Y, Du Z, Fan Y, Zhao Y, Yuan S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne) 2023; 14:1118121. [PMID: 36967779 PMCID: PMC10036807 DOI: 10.3389/fendo.2023.1118121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Considerable evidence shows that oxidative stress exists in the pathophysiological process of female reproductive system diseases. At present, there have been many studies on oxidative stress of placenta during pregnancy, especially for preeclampsia. However, studies that directly focus on the effects of oxidative stress on blood vessels at the maternal-fetal interface and their associated possible outcomes are still incomplete and ambiguous. To provide an option for early clinical prediction and therapeutic application of oxidative stress in female reproductive system diseases, this paper briefly describes the composition of the maternal-fetal interface and the molecular mediators produced by oxidative stress, focuses on the sources of oxidative stress and the signaling pathways of oxidative stress at the maternal-fetal interface, expounds the adverse consequences of oxidative stress on blood vessels, and deeply discusses the relationship between oxidative stress and some pregnancy complications and other female reproductive system diseases.
Collapse
Affiliation(s)
- Chenlu Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| |
Collapse
|
15
|
Li Q, Gong M, Shen J, Jin X, Mu Y, Xia L, Cheng J, Xia Y. The transcriptome expression levels related to ovulation induction and acupuncture protection therapy in rats through gene microarray. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Meirong Gong
- Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie Shen
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xun Jin
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanyun Mu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Liangjun Xia
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie Cheng
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Youbing Xia
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Affiliated Hospital, School of medical information & engineering of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
16
|
Zhu X, Gao Z, Wang Y, Huang W, Li Q, Jiao Z, Liu N, Kong X. Utility of trio-based prenatal exome sequencing incorporating splice-site and mitochondrial genome assessment in pregnancies with fetal ultrasound anomalies: prospective cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:780-792. [PMID: 35726512 DOI: 10.1002/uog.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the utility of trio-based prenatal exome sequencing (pES), incorporating splice-site and mitochondrial genome assessment, in the prenatal diagnosis of fetuses with ultrasound anomalies and normal copy-number variant sequencing (CNV-seq) results. METHODS This was a prospective study of 90 ongoing pregnancies with ultrasound anomalies that underwent trio-based pES after receiving normal CNV-seq results, from September 2020 to November 2021, in a single center in China. By using pES with a panel encompassing exome coding and splicing regions as well as mitochondrial genome for fetuses and parents, we identified the underlying genetic causes of fetal anomalies, incidental fetal findings and parental carrier status. Information on pregnancy outcome and the impact of pES findings on parental decision-making was collected. RESULTS Of the 90 pregnancies included, 28 (31.1%) received a diagnostic result that could explain the fetal ultrasound anomalies. The highest diagnostic yield was noted for brain abnormalities (3/6 (50.0%)), followed by hydrops (4/9 (44.4%)) and skeletal abnormalities (13/34 (38.2%)). Collectively, 34 variants of 20 genes were detected in the 28 diagnosed cases, with 55.9% (19/34) occurring de novo. Variants of uncertain significance (VUS) associated with fetal phenotypes were detected in six (6.7%) fetuses. Interestingly, fetal (n = 4) and parental (n = 3) incidental findings (IFs) were detected in seven (7.8%) cases. These included two fetuses carrying a de-novo likely pathogenic (LP) variant of the CIC and FBXO11 genes, respectively, associated with neurodevelopmental disorders, and one fetus with a LP variant in a mitochondrial gene. The remaining fetus presented with unilateral renal dysplasia and was incidentally found to carry a pathogenic PKD1 gene variant resulting in adult-onset polycystic kidney, which was later confirmed to be inherited from the mother. In addition, parental heterozygous variants associated with autosomal recessive diseases were detected in three families, including one with additional fetal diagnostic findings. Diagnostic results or fetal IFs contributed to parental decision-making about termination of the pregnancy in 26 families (26/72 (36.1%)), while negative pES results or identification of VUS encouraged 40 families (40/72 (55.6%)) to continue their pregnancy, which ended in a live birth in all cases. CONCLUSION Trio-based pES can provide additional genetic information for pregnancies with fetal ultrasound anomalies without a CNV-seq diagnosis. The incidental findings and parental carrier status reported by trio-based pES with splice-site and mitochondrial genome analysis extend its clinical application, but careful genetic counseling is warranted. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- X Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Gao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - W Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Q Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Jiao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - N Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Pearson-Farr JE, Wheway G, Jongen MSA, Goggin P, Lewis RM, Cheong Y, Cleal JK. Endometrial gland specific progestagen-associated endometrial protein and cilia gene splicing changes in recurrent pregnancy loss. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0002. [PMID: 35971960 PMCID: PMC9513660 DOI: 10.1530/raf-22-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Endometrial glands are essential for fertility, consisting of ciliated and secretory cells that facilitate a suitable uterine environment for embryo implantation. This study sought to determine whether an endometrial gland specific transcriptome and splicing profile are altered in women with recurrent pregnancy loss. Our data provide a comprehensive catalogue of cilia and PAEP gene isoforms and relative exon usage in endometrial glands. We report a previously unannotated endometrial gland cilia transcript GALNT11 and its susceptibility to exon skipping. Key endometrial receptivity gene transcripts are also reported to change in endometrial glands of women with recurrent pregnancy loss. The endometrial gland cilia and PAEP targets identified in this study could be used to identify a perturbed endometrium, isolate causes of recurrent pregnancy loss and develop targeted therapies in personalised medicine.
Collapse
Affiliation(s)
- Jennifer E Pearson-Farr
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Gabrielle Wheway
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Maaike S A Jongen
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Patricia Goggin
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Ying Cheong
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
- Complete Fertility Centre Southampton, Princess Anne Hospital, Division of Women and Newborn, Southampton, UK
| | - Jane K Cleal
- Human Development and Health, University of Southampton, Faculty of Medicine, Southampton, UK
| |
Collapse
|
18
|
Functional and pathological role of 15-Lipoxygenase and its metabolites in pregnancy and pregnancy-associated complications. Prostaglandins Other Lipid Mediat 2022; 161:106648. [PMID: 35577309 DOI: 10.1016/j.prostaglandins.2022.106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 01/03/2023]
Abstract
Maternal lipid metabolism status during pregnancy may have pivotal effects on a healthy pregnancy, the progression of labor, and childbirth. Based on evidence, changes in maternal lipid profile and metabolism is related to various alterations in fetal metabolic status, fat mass, birth weight and can result in serious maternal and fetal complications. 15-lipoxygenase accounts as a key enzyme in metabolizing polyunsaturated fatty acids that generate various inflammatory lipid metabolites. The possible involvement of 15- lipoxygenase and its metabolites in the inflammatory process, cell proliferation and death, and immune response has been postulated. The indicative role of the 15- lipoxygenase enzymatic pathway in the implantation process, stages of pregnancy, embryogenesis, organogenesis, progression of labor, pregnancy period, and pregnancy-associated complications is remarkable. Accordingly, this study will review the research conducted on the role of 15- lipoxygenase in different reproductive tissues, and its pathological role in pregnancy-related diseases to provide more insight regarding the emerging role of 15-lipoxygenase in normal pregnancy.
Collapse
|
19
|
Li J, Wang L, Ding J, Cheng Y, Diao L, Li L, Zhang Y, Yin T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front Immunol 2022; 13:826198. [PMID: 35572542 PMCID: PMC9094436 DOI: 10.3389/fimmu.2022.826198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women aiming to achieve childbirth. Although studies have shown that RPL is associated with failure of endometrial decidualization, placental dysfunction, and immune microenvironment disorder at the maternal-fetal interface, the exact pathogenesis remains unknown. With the development of high-throughput technology, more studies have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL, and new gene mutations and new biomarkers of RPL have been discovered, providing an opportunity to explore the pathogenesis of RPL from different biological processes. Bioinformatics analyses of these differentially expressed genes, proteins and metabolites also reflect the biological pathways involved in RPL, laying a foundation for further research. In this review, we summarize the findings of omics studies investigating decidual tissue, villous tissue and blood from patients with RPL and identify some possible limitations of current studies.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jinli Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Capalbo A, Buonaiuto S, Figliuzzi M, Damaggio G, Girardi L, Caroselli S, Poli M, Patassini C, Cetinkaya M, Yuksel B, Azad A, Grøndahl M, Hoffmann E, Simón C, Colonna V, Kahraman S. A standardized approach for case selection and genomic data analysis of maternal exomes for the diagnosis of oocyte maturation and early embryonic developmental arrest in IVF. Reprod Biomed Online 2022; 45:508-518. [DOI: 10.1016/j.rbmo.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
|
21
|
Lynch MT, Maloney KA, Pollin TI, Streeten EA, Puffenberger EG, Strauss KA, Shuldiner AR, Mitchell BD. Impact of parental relatedness on reproductive outcomes among the Old Order Amish of Lancaster County. Am J Med Genet A 2022; 188:2119-2128. [PMID: 35442562 DOI: 10.1002/ajmg.a.62757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022]
Abstract
Genetically isolated populations that arise due to recent bottleneck events have reduced genetic variation reflecting the common set of founders. Increased genetic relatedness among members of isolated populations puts them at increased risk for some recessive disorders that are rare in outbred populations. To assess the burden on reproductive health, we compared frequencies of adverse reproductive outcomes between Amish couples who were both heterozygous carriers of a highly penetrant pathogenic or likely pathogenic variant and noncarrier couples from the same Amish community. In addition, we evaluated whether overall genetic relatedness of parents was associated with reproductive outcomes. Of the 1824 couples included in our study, 11.1% were at risk of producing a child with an autosomal recessive disorder. Carrier couples reported a lower number of miscarriages compared to noncarrier couples (p = 0.02), although the number of stillbirths (p = 0.3), live births (p = 0.9), and number of pregnancies (p = 0.9) did not differ significantly between groups. In contrast, higher overall relatedness between spouses was positively correlated with number of live births (p < 0.0001), pregnancies (p < 0.0001), and stillbirths (p = 0.03), although not with the number of miscarriages (p = 0.4). These results highlight a complex association between relatedness of parents and reproductive health outcomes in this community.
Collapse
Affiliation(s)
- Megan T Lynch
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristin A Maloney
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Toni I Pollin
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A Streeten
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | -
- Regeneron Genetics Center LLC, Tarrytown, New York, USA
| | | | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Xu Q, Chan Y, Feng Y, Zhu B, Yang B, Zhu S, Su L, Zou L, Feng N, Li Y. Factors associated with fetal karyotype in spontaneous abortion: a case-case study. BMC Pregnancy Childbirth 2022; 22:320. [PMID: 35421926 PMCID: PMC9012016 DOI: 10.1186/s12884-022-04491-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Most embryos that spontaneously abort during early pregnancy are found to have chromosomal abnormalities. The purpose of this study is to explore the factors involved in chromosome aberrations during embryogenesis. Methods A case-case study was performed to compare the risk factors for spontaneous abortion with and without embryo chromosome aberration. A total of 160 cases of spontaneous abortion were enrolled from a tertiary general hospital in Kunming. KaryoLite BACs-on-Beads (KL-BoBs) and fluorescence in situ hybridization (FISH) were employed to determine chromosomal constitution of abortion chorion villus samples. Maternal serum levels of homocysteine (Hcy) were detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Information about clinical background and environmental exposure was collected through a self-designed questionnaire. To identify the inherited chromosomal abnormalities, couples with chromosomal abnormalities in abortus were recalled for karyotyping. Results The overall rate of chromosomal abnormalities was 62.5% (100/160, KL-BoBs combined with FISH) including 51.9% (83/160) aneuploidies, 6.3% (10/160) polyploidies, and 4.4% (7/160) structural abnormalities. Only one case of structural abnormality was found to be inherited from maternal balanced translocation. Compared to abortus with normal karyotype, abortus with abnormal karyotype showed a positive association with parental age and elevated maternal serum homocysteine (Hcy) level, but negative association with previous miscarriage and perceived noise. Conclusions Embryonic chromosomal aberrations accounted for the majority of spontaneous abortion cases. A combination of internal and external factors may induce spontaneous abortion through fetal chromosomal aberrations or other pathogenic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04491-8.
Collapse
|
23
|
Buonaiuto S, Biase ID, Aleotti V, Ravaei A, Marino AD, Damaggio G, Chierici M, Pulijala M, D'Ambrosio P, Esposito G, Ayub Q, Furlanello C, Greco P, Capalbo A, Rubini M, Biase SD, Colonna V. Prioritization of putatively detrimental variants in euploid miscarriages. Sci Rep 2022; 12:1997. [PMID: 35132093 PMCID: PMC8821623 DOI: 10.1038/s41598-022-05737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Collapse
Affiliation(s)
| | | | - Valentina Aleotti
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | - Madhuri Pulijala
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | | | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Pantaleo Greco
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | - Michele Rubini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy.
| |
Collapse
|
24
|
Abnormal ciliogenesis in decidual stromal cellsin recurrent miscarriage. J Reprod Immunol 2022; 150:103486. [DOI: 10.1016/j.jri.2022.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/29/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
|
25
|
Xiang H, Wang C, Pan H, Hu Q, Wang R, Xu Z, Li T, Su Y, Ma X, Cao Y, Wang B. Exome-Sequencing Identifies Novel Genes Associated with Recurrent Pregnancy Loss in a Chinese Cohort. Front Genet 2021; 12:746082. [PMID: 34925444 PMCID: PMC8674582 DOI: 10.3389/fgene.2021.746082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common reproductive problem affecting around 5% of couples worldwide. At present, about half of RPL cases remained unexplained. Previous studies have suggested an important role for genetic determinants in the etiology of RPL. Here, we performed whole-exome sequencing (WES) analysis on 100 unrelated Han Chinese women with a history of two or more spontaneous abortions. We identified 6736 rare deleterious nonsynonymous variants across all patients. To focus on possible candidate genes, we generated a list of 95 highly relevant genes that were functionally associated with miscarriage according to human and mouse model studies, and found 35 heterozygous variants of 28 RPL-associated genes in 32 patients. Four genes (FOXA2, FGA, F13A1, and KHDC3L) were identified as being strong candidates. The FOXA2 nonsense variant was for the first time reported here in women with RPL. FOXA2 knockdown in HEK-293T cells significantly diminished the mRNA and protein expression levels of LIF, a pivotal factor for maternal receptivity and blastocyst implantation. The other genes, with 29 variants, were involved in angiogenesis, the immune response and inflammation, cell growth and proliferation, which are functionally important processes for implantation and pregnancy. Our study identified several potential causal genetic variants in women with RPL by WES, highlighting the important role of genes controlling coagulation, confirming the pathogenic role of KHDC3L and identifying FOXA2 as a newly identified causal gene in women with RPL.
Collapse
Affiliation(s)
- Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Hong Pan
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Qian Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Ruyi Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yezhou Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Xu Ma
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
26
|
Carey AZ, Blue NR, Varner MW, Page JM, Chaiyakunapruk N, Quinlan AR, Branch DW, Silver RM, Workalemahu T. A Systematic Review to Guide Future Efforts in the Determination of Genetic Causes of Pregnancy Loss. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3. [PMID: 35462723 PMCID: PMC9031276 DOI: 10.3389/frph.2021.770517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Pregnancy loss is the most common obstetric complication occurring in almost 30% of conceptions overall and in 12–14% of clinically recognized pregnancies. Pregnancy loss has strong genetic underpinnings, and despite this consensus, our understanding of its genetic causes remains limited. We conducted a systematic review of genetic factors in pregnancy loss to identify strategies to guide future research.Methods: To synthesize data from population-based association studies on genetics of pregnancy loss, we searched PubMed for relevant articles published between 01/01/2000-01/01/2020. We excluded review articles, case studies, studies with limited sample sizes to detect associations (N < 4), descriptive studies, commentaries, and studies with non-genetic etiologies. Studies were classified based on developmental periods in gestation to synthesize data across various developmental epochs.Results: Our search yielded 580 potential titles with 107 (18%) eligible after title/abstract review. Of these, 54 (50%) were selected for systematic review after full-text review. These studies examined either early pregnancy loss (n = 9 [17%]), pregnancy loss >20 weeks' gestation (n = 10 [18%]), recurrent pregnancy loss (n = 32 [59%]), unclassified pregnancy loss (n = 3 [4%]) as their primary outcomes. Multiple genetic pathways that are essential for embryonic/fetal survival as well as human development were identified.Conclusion: Several genetic pathways may play a role in pregnancy loss across developmental periods in gestation. Systematic evaluation of pregnancy loss across developmental epochs, utilizing whole genome sequencing in families may further elucidate causal genetic mechanisms and identify other pathways critical for embryonic/fetal survival.
Collapse
Affiliation(s)
- Andrew Z. Carey
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
| | - Nathan R. Blue
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Michael W. Varner
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Jessica M. Page
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - D. Ware Branch
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Robert M. Silver
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Tsegaselassie Workalemahu
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Tsegaselassie Workalemahu
| |
Collapse
|
27
|
Kline J, Vardarajan B, Abhyankar A, Kytömaa S, Levin B, Sobreira N, Tang A, Thomas-Wilson A, Zhang R, Jobanputra V. Embryonic lethal genetic variants and chromosomally normal pregnancy loss. Fertil Steril 2021; 116:1351-1358. [PMID: 34756330 DOI: 10.1016/j.fertnstert.2021.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To examine whether rare damaging genetic variants are associated with chromosomally normal pregnancy loss and estimate the magnitude of the association. DESIGN Case-control. SETTING Cases were derived from a consecutive series of karyotyped losses at one New Jersey hospital. Controls were derived from the National Database for Autism Research. PATIENT(S) Cases comprised 19 chromosomally normal loss conceptus-parent trios. Controls comprised 547 unaffected siblings of autism case-parent trios. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The rate of damaging variants in the exome (loss of function and missense-damaging) and the proportions of probands with at least one such variant among cases vs. controls. RESULTS The proportions of probands with at least one rare damaging variant were 36.8% among cases and 22.9% among controls (odds ratio, 2.0; 99% confidence interval, 0.5-7.3). No case had a variant in a known fetal anomaly gene. The proportion with variants in possibly embryonic lethal genes increased in case probands (odds ratio, 14.5; 99% confidence interval, 1.5-89.7); variants occurred in BAZ1A, FBN2, and TIMP2. CONCLUSION(S) Rare genetic variants in the conceptus may be a cause of chromosomally normal pregnancy loss. A larger sample is needed to estimate the magnitude of the association with precision and identify relevant biologic pathways.
Collapse
Affiliation(s)
- Jennie Kline
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York; Gertrude H. Sergievsky Center, Columbia University, New York, New York.
| | - Badri Vardarajan
- Gertrude H. Sergievsky Center, Columbia University, New York, New York
| | | | - Sonja Kytömaa
- Boston University School of Medicine, Boston, Massachusetts
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Andrew Tang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Ruiwei Zhang
- Life Sciences Practice, Charles River Associates, New York, New York
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, New York; New York Genome Center, New York, New York
| |
Collapse
|
28
|
Lisova KM, Kalinovska IV, Pryimak SH, Tokar PY, Varlas VN. Changes in the level of fetoplacental complex hormones in pregnant women with miscarriage. J Med Life 2021; 14:487-491. [PMID: 34621371 PMCID: PMC8485377 DOI: 10.25122/jml-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of the study was TO analyze the fetoplacental complex hormone levels and changes in their dynamics in pregnant women with miscarriage and the impact of these features on the subsequent course of pregnancy. Hormone levels were determined at different stages of gestation in 50 healthy women with a physiological course of pregnancy (control group) and 50 pregnant women with a history of miscarriage (main group). The women of the main group had a significantly slower rate of increase in hormones and a lag in quantitative indicators than the control group. The estradiol level indicators were 4.1 times (76.0%) and 2.89 times (65.5%) lower in women with miscarriage in the embryonic and late fetal period, respectively, compared to healthy women. Indicators of the level of placental lactogen and chorionic gonadotropin in the embryonic period in women with miscarriage were lower by 39.1% and 50.9%, respectively, compared to healthy women. In the late fetal period, the level of these hormones was lower by 72.9% and 35.4%, respectively. In the embryonic and late fetal periods, progesterone levels were lower by 67.4% and 68.4%, respectively, compared to the control group. The data obtained are evidence of a pronounced hormonal abnormality of the placenta, and hence a marker of fetoplacental dysfunction, which on the background of miscarriage develops at the early stages and continues to progress with the course of pregnancy.
Collapse
Affiliation(s)
| | | | | | - Petro Yuriyovych Tokar
- Department of Obstetrics and Gynecology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
29
|
Ali Alghamdi M, Alrasheedi A, Alghamdi E, Adly N, AlAali WY, Alhashem A, Alshahrani A, Shamseldin H, Alkuraya FS, Alfadhel M. Molecular autopsy by proxy in preconception counseling. Clin Genet 2021; 100:678-691. [PMID: 34406647 PMCID: PMC9290025 DOI: 10.1111/cge.14049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023]
Abstract
Monogenic diseases that result in early pregnancy loss or neonatal death are genetically and phenotypically highly variable. This often poses significant challenges in arriving at a molecular diagnosis for reproductive planning. Molecular autopsy by proxy (MABP) refers to the genetic testing of relatives of deceased individuals to deduce the cause of death. Here, we specifically tested couples who lost one or more children/pregnancies with no available DNA. We developed our testing strategy using whole exome sequencing data from 83 consanguineous Saudi couples. We detected the shared carrier state of 50 pathogenic variants/likely pathogenic variants in 43 families and of 28 variants of uncertain significance in 24 families. Negative results were seen in 16 couples after variant reclassification. In 10 families, the risk of more than one genetic disease was documented. Secondary findings were seen in 10 families: either genetic variants with potential clinical consequences for the tested individual or a female carrier for X‐linked conditions. This couple‐based approach has enabled molecularly informed genetic counseling for 52% (43/83 families). Given the predominance of autosomal recessive causes of pregnancy and child death in consanguineous populations, MABP can be a helpful approach to consanguineous couples who seek counseling but lack molecular data on their deceased offspring.
Collapse
Affiliation(s)
- Malak Ali Alghamdi
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Medical Genetics Division, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ameinah Alrasheedi
- Department of Pediatrics, College of Medicine and Medical Sciences, Qassim University, Al Qassim, Saudi Arabia
| | - Esra Alghamdi
- College of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nouran Adly
- College of Medicine Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wajeih Y AlAali
- Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia.,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Hanan Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia.,Genetics and Precision Medicine department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Zhu Q, Zhou Y, Ding J, Chen L, Liu J, Zhou T, Bian W, Ding G, Li G. Screening of Candidate Pathogenic Genes for Spontaneous Abortion using Whole Exome Sequencing. Comb Chem High Throughput Screen 2021; 25:1462-1473. [PMID: 34225611 DOI: 10.2174/1386207324666210628115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in obstetrics and reproduction. OBJECTIVE This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing. METHODS Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients. RESULTS A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples. CONCLUSION There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.
Collapse
Affiliation(s)
- Qingwen Zhu
- Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Yiwen Zhou
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Jiayi Ding
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Li Chen
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Jia Liu
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Tao Zhou
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Wenjun Bian
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Guohui Ding
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Guang Li
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| |
Collapse
|
31
|
Zhao S, Lu J, Chen Y, Wang Z, Cao J, Dong Y. Exploration of the potential roles of m6A regulators in the uterus in pregnancy and infertility. J Reprod Immunol 2021; 146:103341. [PMID: 34116483 DOI: 10.1016/j.jri.2021.103341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Infertility is a prevalent female reproductive disease worldwide. Currently, there are many unknown etiologies of infertility. N6-methyladenosine (m6A) is the most prevalent modification of eukaryotic mRNA. This study intended to investigate the implications of m6A regulators in the uterus for pregnancy and infertility. Pregnant ICR mice on days (D) 0, 4, 6, 10, and 15 were used to monitor m6A methylation in the uterus by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then m6A methylation regulators were detected by real-time quantitative PCR (qPCR), western blot and immunohistochemistry (IHC). We found that m6A levels increased and that m6A regulators were expressed differently in the uterus during pregnancy. Then, we acquired expression data from endometrial tissue from women with infertility and recurrent pregnancy loss from the Gene Expression Omnibus (GEO) database. The expression of m6A regulators in infertility was significantly dysregulated according to the data mining technique. Specifically, the mRNA levels of METTL16 (p = 0.0147) and WTAP (p = 0.028) were lower and those of ALKBH5 (p = 0.0432) and IGF2BP2 (p = 0.0016) were higher in the endometrium of infertile patients. Meanwhile, many immunity-related pathways are abnormal in infertility, such as cytokine-cytokine receptor interactions, natural killer cell-mediated cytotoxicity and leukocyte transendothelial migration. In conclusion, we found that the m6A levels in the uterus increased as pregnancy progressed, and these regulators were dysregulated in the endometrium of infertility patients. These results suggest that m6A methylation may be very important in the establishment of implantation and maintenance of pregnancy and may become a new direction for research on infertility.
Collapse
Affiliation(s)
- Shisu Zhao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| |
Collapse
|
32
|
Najafi K, Mehrjoo Z, Ardalani F, Ghaderi-Sohi S, Kariminejad A, Kariminejad R, Najmabadi H. Identifying the causes of recurrent pregnancy loss in consanguineous couples using whole exome sequencing on the products of miscarriage with no chromosomal abnormalities. Sci Rep 2021; 11:6952. [PMID: 33772059 PMCID: PMC7997959 DOI: 10.1038/s41598-021-86309-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Recurrent miscarriages occur in about 5% of couples trying to conceive. In the past decade, the products of miscarriage have been studied using array comparative genomic hybridization (a-CGH). Within the last decade, an association has been proposed between miscarriages and single or multigenic changes, introducing the possibility of detecting other underlying genetic factors by whole exome sequencing (WES). We performed a-CGH on the products of miscarriage from 1625 Iranian women in consanguineous or non-consanguineous marriages. WES was carried out on DNA extracted from the products of miscarriage from 20 Iranian women in consanguineous marriages and with earlier normal genetic testing. Using a-CGH, a statistically significant difference was detected between the frequency of imbalances in related vs. unrelated couples (P < 0.001). WES positively identified relevant alterations in 11 genes in 65% of cases. In 45% of cases, we were able to classify these variants as pathogenic or likely pathogenic, according to the American College of Medical Genetics and Genomics guidelines, while in the remainder, the variants were classified as of unknown significance. To the best of our knowledge, our study is the first to employ WES on the products of miscarriage in consanguineous families with recurrent miscarriages regardless of the presence of fetal abnormalities. We propose that WES can be helpful in making a diagnosis of lethal disorders in consanguineous couples after prior genetic testing.
Collapse
Affiliation(s)
- Kimia Najafi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Zohreh Mehrjoo
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Fariba Ardalani
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Siavash Ghaderi-Sohi
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Ariana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Roxana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Hossein Najmabadi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran.
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran.
| |
Collapse
|
33
|
Yang LL, Liang SS. Study on pathogenic genes of dwarfism disease by next-generation sequencing. World J Clin Cases 2021; 9:1600-1609. [PMID: 33728303 PMCID: PMC7942040 DOI: 10.12998/wjcc.v9.i7.1600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There are many factors that lead to dwarfism, and the mechanism has not yet been elucidated. Next-generation sequencing may identify candidate-related gene mutations, which may clarify the molecular cause.
AIM To analyze genetic variation by using a constructed panel related to dwarfism by utilizing next-generation sequencing platform sequencing analysis to screen candidate-related gene mutations.
METHODS Physical and laboratory characteristics, including clinical examination, growth hormone drug challenge test, serum insulin-like growth factor-1 (IGF-1), IGF binding protein 3, other related tests, imaging examination, and chromosome karyotyping, were analyzed. Next-generation sequencing was performed to analyze pathogenicity variability.
RESULTS In the 39 dwarfism patients, 10 had pathogenicity variability. Gene variation was found in the OBSL1, SLC26A2, PTPN11, COL27AI, HDAC6, CUL7, FGFR3, DYNC2H1, GH1, and ATP7B genes. Of the 10 patients with pathogenicity variability, the related physical characteristics included double breast development and growth hormone deficiency, enuresis and indirect inguinal hernia on the left, two finger distance of 70.2 cm, head circumference of 49.2 cm, ischium/lower body length of 1.8 cm, weak limb muscles, and partial growth hormone deficiency. After 6 mo of growth hormone therapy, the concentrations of IGF-1 and IGF binding protein 3 increased from 215.2 ± 170.3 to 285.0 ± 166.0 and 3.9 ± 1.4 to 4.2 ± 1.1, respectively.
CONCLUSION OBSL1, SLC26A2, PTPN11, COL27AI, HDAC6, CUL7, FGFR3, DYNC2H1, GH1, and ATP7B genes may be related to the incidence of dwarfism, and more research needs to be performed to elucidate the mechanism.
Collapse
Affiliation(s)
- Lv-Lv Yang
- Department of Pediatrics, Quanzhou First Hospital, Quanzhou 362000, Fujian Province, China
| | - Shi-Shan Liang
- Department of Pediatrics, Quanzhou First Hospital, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
34
|
Łazarczyk E, Pasińska M, Osmańska-Załuska K, Haus O. Selected genetic causes of miscarriages. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 15–25% of pregnancies end in spontaneous abortion, which is an expulsion
from the mother body of the fetus weighing less than 500 g or before the 20th week of gestation.
Determining abortions etiology is difficult due to its multifactorial character. Chromosomal
abnormalities cause 38.6–80% of miscarriages. The largest group (93%) of chromosomal
aberrations found in miscarried fetuses are numerical changes – aneuploidies and polyploidies.
Much rarer (7%) are unbalanced structural aberrations, which can arise de novo or can be inherited
from a carrier parent. In couples with spontaneous abortions, reciprocal chromosomal
translocations (RCT) occur the most frequently, next are Robertsonian translocations and inversions.
More complex chromosome abnormalities, e.g. double aneuploidies are found in 3.8%
of fetuses. Another group of causes responsible for abortions are monogenic diseases of embryo
or fetus resulting from autosomal dominant, autosomal recessive or X-linked mutations.
Among mutations which may contribute to pregnancy loss are factor V Leiden gene mutations
(c.1601G>A, earlier 1691G>A) and prothrombin gene mutation (c.97G>A, earlier 20210G>A).
The research on mutations in candidate genes, eg.: ALOX15, CR1, CYP1A1, CYP17, CYP2D6, FOXP3,
HLA-G, IL-6, KHDC3L, NLRP7, NOS3, PLK4, SYCP3, TLR3, TNF, TP53 and VEGFA is still ongoing.
Collapse
Affiliation(s)
- Ewelina Łazarczyk
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Magdalena Pasińska
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Katarzyna Osmańska-Załuska
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Olga Haus
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
35
|
RNA Sequencing of Decidua Reveals Differentially Expressed Genes in Recurrent Pregnancy Loss. Reprod Sci 2021; 28:2261-2269. [DOI: 10.1007/s43032-021-00482-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
|
36
|
Fatemi N, Ray PF, Ramezanali F, Shahani T, Amiri-Yekta A, Kherraf ZE, Cazin C, Almadani N, Varkiani M, Sarmadi S, Sodeifi N, Gourabi H, Biglari A, Totonchi M. KH domain containing 3 like (KHDC3L) frame-shift mutation causes both recurrent pregnancy loss and hydatidiform mole. Eur J Obstet Gynecol Reprod Biol 2021; 259:100-104. [PMID: 33639414 DOI: 10.1016/j.ejogrb.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Recurrent pregnancy loss (RPL) is a common infertility-related complication that affects approximately 1-3 % of women worldwide. Known causes of etiology are found in approximately half the cases but the other half remain unexplained. It is estimated that several thousands of genes contribute to reproductive success in mammals and the genetic causes of RPL cannot be fully addressed through targeted genetic tests. In recent years, massive parallel sequencing technologies has helped discovering many causal mutations in hereditary diseases such as RPL. STUDY DESIGN Using whole-exome sequencing (WES), we studied a large multiplex consanguineous family with multiple cases of RPL and hydatidiform moles (HM). In addition, targeted Sanger sequencing was applied to 40 additional non-related individuals with RPL. RESULTS The use of WES permitted to identify the pathogenic variant in KHDC3L (c.322_325delGACT) in related who experienced RPL with or without HM. Sanger sequencing confirmed the segregation of the mutation throughout the pedigree and permitted to establish this variant as the genetic cause responsible for RPL and HM in this family. CONCLUSION KHDC3L is well established as a susceptibility gene for HM but we confirmed here that KHDC3L deleterious variants can also induce RPL. In addition, we observed a genotype-phenotype correlation, demonstrating that women with a truncating KHDC3L homozygous variant could not sustain a pregnancy and often had pregnancy losses mainly due to HM while those with the same heterozygous variant could have children but often endured RPL with no HM.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, 38000, France
| | - Fariba Ramezanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Tina Shahani
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zine-Eddine Kherraf
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, 38000, France
| | - Caroline Cazin
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, INSERM 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F38000, France; Unité Médicale de génétique de l'infertilité et de diagnostic pré-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, 38000, France
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Varkiani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Soheila Sarmadi
- Department of Pathology, Mohebb-e-Yas Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
37
|
Whole exome sequencing, a hypothesis-free approach to investigate recurrent early miscarriage. Reprod Biomed Online 2021; 42:789-798. [PMID: 33658156 DOI: 10.1016/j.rbmo.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/19/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
RESEARCH QUESTION Are there genetic determinants shared by unrelated women with unexplained recurrent early miscarriage (REM)? DESIGN Thirty REM cases and 30 controls were selected with extreme phenotype among women from Eastern Brittany (France), previously enrolled in an incident case-control study on thrombophilic mutations. Cases and controls were selected based on the number of early miscarriages or live births, respectively. Peripheral blood was collected for DNA extraction at initial visit. The burden of low-frequency variants in the coding part of the genes was compared using whole exome sequencing (WES). RESULTS Cases had 3 to 17 early miscarriages (20 cases: ≥5 previous losses). Controls had 1 to 4 live births (20 controls: ≥3 previous live births) and no miscarriages. WES data were available for 29 cases and 30 controls. A total of 209,387 variants were found (mean variant per patient: 59,073.05) with no difference between groups (P = 0.68). The top five most significantly associated genes were ABCA4, NFAM1, TCN2, AL078585.1 and EPS15. Previous studies suggest the involvement of vitamin B12 deficiency in REM. TCN2 encodes for vitamin B12 transporter into cells. Therefore, holotranscobalamin (active vitamin B12) was measured for both cases and controls (81.2 ± 32.1 versus 92.9 ± 34.3 pmol/l, respectively, P = 0.186). Five cases but no controls were below 50 pmol/l (P = 0.052). CONCLUSIONS This study highlights four new genes of interest in REM, some of which belong to known networks of genes involved in embryonic development (clathrin-mediated endocytosis and ciliary pathway). The study also confirms the involvement of TCN2 (vitamin B12 pathway) in the early first trimester of pregnancy.
Collapse
|
38
|
Banerjee B, Chakraborty A, Kar S, Mohapatra P. A case–control study identifying the frequency and spectrum of chromosomal anomalies and variants in a cohort of 1000 couples with a known history of recurrent pregnancy loss in the Eastern region of India. J Hum Reprod Sci 2021; 14:422-430. [PMID: 35197689 PMCID: PMC8812384 DOI: 10.4103/jhrs.jhrs_68_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/05/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Recurrent pregnancy loss (RPL) is a common occurrence that affects up to 15% of couples in their reproductive years. In both males and females with RPL and infertility, chromosomal abnormalities play a significant impact. Aim: The study was designed to examine the involvement of chromosomal anomalies and the frequency of certain chromosomal variants persistent among couples experiencing RPL. Setting and Design: This case–control study was conducted on 1000 couples from January 2015 to September 2020 in the state of Odisha, India, strictly adhering to principles of Helsinki Declaration (1975). The study was performed at the School of Biotechnology, KIIT University in collaboration with inDNA Life Sciences Private Limited. Materials and Methods: A cohort of 1148 individuals with a history of RPL were selected for the study and they were screened with respect to fertile controls for the presence of any chromosomal anomaly using G-banding, nucleolar organizing region (NOR)-banding and fluorescence in situ hybridisation wherever necessary. Statistical Analysis: The connection between distinct polymorphic variations and the occurrence of RPL was assessed using Fisher's exact test. Significant was defined as a P ≤ 0.005. Results: One hundred and thirty-four individuals were found to harbor chromosomal anomalies. This study elucidates that along with balanced chromosomal translocations, the involvement of polymorphic variants also plays a significant role in cases of RPL. Conclusion: The cumulative occurrence of chromosomal anomalies and variants across our cohort of 1148 individuals indicates that the chromosomal assessment of all couples experiencing RPL must be performed by all the clinicians. This study aids us in identifying chromosomal polymorphisms as major players of RPL in addition to novel chromosomal translocations.
Collapse
|
39
|
Fan L, Wu J, Wu Y, Shi X, Xin X, Li S, Zeng W, Deng D, Feng L, Chen S, Xiao J. Analysis of Chromosomal Copy Number in First-Trimester Pregnancy Loss Using Next-Generation Sequencing. Front Genet 2020; 11:545856. [PMID: 33193619 PMCID: PMC7606984 DOI: 10.3389/fgene.2020.545856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Embryonic chromosomal abnormality is one of the significant causative factors of early pregnancy loss. Our goal was to evaluate the clinical utility of next-generation sequencing (NGS) technology in identifying chromosomal anomalies associated with first-trimester pregnancy loss. In addition, we attempted to provide fertility guidance to couples anticipating a successful pregnancy. A total of 1,010 miscarriage specimens were collected between March 2016 and January 2019 from women who suffered first-trimester pregnancy loss. Total DNA was isolated from products of conception, and NGS analysis was carried out. We detected a total of 634 cases of chromosomal variants. Among the 634 cases, 462 (72.9%) displayed numerical variants including 383 (60.4%) aneuploidies, 44 (6.9%) polyploidies, and 34 (5.5%) mosaicisms. The other 172 (27.1%) cases showed structural variants including 19 (3.0%) benign copy number variations (CNVs), 52 (8.2%) pathogenic CNVs, and 101 (16%) variants of unknown significance (VOUS) CNVs. When maternal age was ≥ 35 years, the sporadic abortion (SA) group showed an increased frequency of chromosomal variants in comparison with the recurrent miscarriage (RM) group (90/121 vs. 64/104). It was evident that the groups with advanced maternal age had a sharply increased frequency of aneuploidy, whatever the frequency of pregnancy loss (71/121 vs. 155/432, 49/104 vs. 108/349). Our data suggest that NGS could be used for the successful detection of genetic anomalies in pregnancy loss. We recommend that fetal chromosome analysis be offered routinely for all pregnancy losses, regardless of their frequency.
Collapse
Affiliation(s)
- Lei Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianli Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Xin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Quintero-Ronderos P, Laissue P. Genetic Variants Contributing to Early Recurrent Pregnancy Loss Etiology Identified by Sequencing Approaches. Reprod Sci 2020; 27:1541-1552. [PMID: 32430708 DOI: 10.1007/s43032-020-00187-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recurrent pregnancy loss (RPL) affects up to 5% of couples. It is believed that genetic factors contribute to the disease's etiology and pathophysiology. Hundreds of genes represent coherent RPL candidates due to mammalian implantation's inherent complexity. Sanger sequencing (direct sequencing) of candidate genes has identified potential RPL causative genes (and variants), including those regulating embryo implantation and pregnancy maintenance. Although this approach is a reliable technique, the simultaneous analysis of large genomic regions is challenging. Next-generation sequencing (NGS) technology has thus emerged as a useful alternative for determining genetic variants and transcriptomic disturbances contributing to monogenic and polygenic diseases pathogenesis. However, interpreting results remains challenging as NGS experiments provide an enormous amount of complex data. The molecular aspects of specific diseases must be fully understood for accurate interpretation of NGS data. This review was thus aimed at describing (for the first time) the most relevant studies involving Sanger and NGS sequencing, leading to the description of variants related to RPL pathogenesis. Successful RPL-related NGS initiatives (including RNAseq-based studies) and future challenges are discussed. We consider that the information given here should be useful for clinicians, scientists, and students to enable a better understanding of RPL etiology. It may also provide a basis for the development of diagnostic/prognostic approaches contributing toward translational medicine.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, 1100100, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, 1100100, Colombia.
| |
Collapse
|
41
|
Dong Z, Yan J, Xu F, Yuan J, Jiang H, Wang H, Chen H, Zhang L, Ye L, Xu J, Shi Y, Yang Z, Cao Y, Chen L, Li Q, Zhao X, Li J, Chen A, Zhang W, Wong HG, Qin Y, Zhao H, Chen Y, Li P, Ma T, Wang WJ, Kwok YK, Jiang Y, Pursley AN, Chung JPW, Hong Y, Kristiansen K, Yang H, Piña-Aguilar RE, Leung TY, Cheung SW, Morton CC, Choy KW, Chen ZJ. Genome Sequencing Explores Complexity of Chromosomal Abnormalities in Recurrent Miscarriage. Am J Hum Genet 2019; 105:1102-1111. [PMID: 31679651 DOI: 10.1016/j.ajhg.2019.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022] Open
Abstract
Recurrent miscarriage (RM) affects millions of couples globally, and half of them have no demonstrated etiology. Genome sequencing (GS) is an enhanced and novel cytogenetic tool to define the contribution of chromosomal abnormalities in human diseases. In this study we evaluated its utility in RM-affected couples. We performed low-pass GS retrospectively for 1,090 RM-affected couples, all of whom had routine chromosome analysis. A customized sequencing and interpretation pipeline was developed to identify chromosomal rearrangements and deletions/duplications with confirmation by fluorescence in situ hybridization, chromosomal microarray analysis, and PCR studies. Low-pass GS yielded results in 1,077 of 1,090 couples (98.8%) and detected 127 chromosomal abnormalities in 11.7% (126/1,077) of couples; both members of one couple were identified with inversions. Of the 126 couples, 39.7% (50/126) had received former diagnostic results by karyotyping characteristic of normal human male or female karyotypes. Low-pass GS revealed additional chromosomal abnormalities in 50 (4.0%) couples, including eight with balanced translocations and 42 inversions. Follow-up studies of these couples showed a higher miscarriage/fetal-anomaly rate of 5/10 (50%) compared to 21/93 (22.6%) in couples with normal GS, resulting in a relative risk of 2.2 (95% confidence interval, 1.1 to 4.6). In these couples, this protocol significantly increased the diagnostic yield of chromosomal abnormalities per couple (11.7%) in comparison to chromosome analysis (8.0%, chi-square test p = 0.000751). In summary, low-pass GS identified underlying chromosomal aberrations in 1 in 9 RM-affected couples, enabling identification of a subgroup of couples with increased risk of subsequent miscarriage who would benefit from a personalized intervention.
Collapse
Affiliation(s)
- Zirui Dong
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; BGI-Shenzhen, Shenzhen 518083, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Junhao Yan
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China
| | - Fengping Xu
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jianying Yuan
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huilin Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China; Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Shenzhen, 518133, China
| | - Haixiao Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lei Zhang
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China
| | - Lingfei Ye
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yuhua Shi
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China
| | - Zhenjun Yang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Lingyun Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiaoling Li
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xia Zhao
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiguang Li
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hoi Gin Wong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yingying Qin
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China
| | - Han Zhao
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China
| | - Yuan Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pei Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tao Ma
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yvonne K Kwok
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yuan Jiang
- BGI-Shenzhen, Shenzhen 518083, China; Complete Genomics, Mountain View, CA 95134, USA
| | - Amber N Pursley
- Department of Molecular and Cellar Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jacqueline P W Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Hong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National Genebank, BGI-Shenzhen, Shenzhen 518120, China; James D. Watson Institute of Genome Sciences, Hangzhou 310008, China
| | - Raul E Piña-Aguilar
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center For Medical Genetics, Hong Kong, China; Hong Kong Branches of Chinese National Engineering Research Centers - Center for Assisted Reproductive Technology and Reproductive Genetics, Hong Kong, China
| | - Sau Wai Cheung
- Department of Molecular and Cellar Biology, Baylor College of Medicine, Houston, TX 77030, USA; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center For Medical Genetics, Hong Kong, China
| | - Cynthia C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Manchester Centre for Audiology and Deafness, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center For Medical Genetics, Hong Kong, China; Hong Kong Branches of Chinese National Engineering Research Centers - Center for Assisted Reproductive Technology and Reproductive Genetics, Hong Kong, China.
| | - Zi-Jiang Chen
- Centre for Reproductive Medicine, Shandong University, Jinan 250021, China; The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Hong Kong Branches of Chinese National Engineering Research Centers - Center for Assisted Reproductive Technology and Reproductive Genetics, Hong Kong, China.
| |
Collapse
|
42
|
Robbins SM, Thimm MA, Valle D, Jelin AC. Genetic diagnosis in first or second trimester pregnancy loss using exome sequencing: a systematic review of human essential genes. J Assist Reprod Genet 2019; 36:1539-1548. [PMID: 31273585 PMCID: PMC6707996 DOI: 10.1007/s10815-019-01499-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Non-aneuploid recurrent pregnancy loss (RPL) affects approximately 100,000 pregnancies worldwide annually. Exome sequencing (ES) may help uncover the genetic etiology of RPL and, more generally, pregnancy loss as a whole. Previous studies have attempted to predict the genes that, when disrupted, may cause human embryonic lethality. However, predictions by these early studies rarely point to the same genes. Case reports of pathogenic variants identified in RPL cases offer another clue. We evaluated known genetic etiologies of RPL identified by ES. METHODS We gathered primary research articles from PubMed and Embase involving case reports of RPL reporting variants identified by ES. Two authors independently reviewed all articles for eligibility and extracted data based on predetermined criteria. Preliminary and amended analysis isolated 380 articles; 15 met all inclusion criteria. RESULTS These 15 articles described 74 families with 279 reported RPLs with 34 candidate pathogenic variants in 19 genes (NOP14, FOXP3, APAF1, CASP9, CHRNA1, NLRP5, MMP10, FGA, FLT1, EPAS1, IDO2, STIL, DYNC2H1, IFT122, PADI6, CAPS, MUSK, NLRP2, NLRP7) and 26 variants of unknown significance in 25 genes. These genes cluster in four essential pathways: (1) gene expression, (2) embryonic development, (3) mitosis and cell cycle progression, and (4) inflammation and immunity. CONCLUSIONS For future studies of RPL, we recommend trio-based ES in cases with normal parental karyotypes. In vitro fertilization with preimplantation genetic diagnosis can be pursued if causative variants are found. Utilization of other sequencing technologies in concert with ES should improve understanding of the causes of early embryonic lethality in humans.
Collapse
Affiliation(s)
- Sarah M Robbins
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew A Thimm
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Colley E, Hamilton S, Smith P, Morgan NV, Coomarasamy A, Allen S. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update 2019; 25:452-472. [PMID: 31150545 DOI: 10.1093/humupd/dmz015] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
BACKGROUND
Approximately 50% of pregnancy losses are caused by chromosomal abnormalities, such as aneuploidy. The remainder has an apparent euploid karyotype, but it is plausible that there are cases of pregnancy loss with other genetic aberrations that are not currently routinely detected. Studies investigating the use of exome sequencing and chromosomal microarrays in structurally abnormal pregnancies and developmental disorders have demonstrated their clinical application and/or potential utility in these groups of patients. Similarly, there have been several studies that have sought to identify genes that are potentially causative of, or associated with, spontaneous pregnancy loss, but the evidence has not yet been synthesized.
OBJECTIVE AND RATIONALE
The objective was to identify studies that have recorded monogenic genetic contributions to pregnancy loss in euploid pregnancies, establish evidence for genetic causes of pregnancy loss, identify the limitations of current evidence, and make recommendations for future studies. This evidence is important in considering additional research into Mendelian causes of pregnancy loss and appropriate genetic investigations for couples experiencing recurrent pregnancy loss.
SEARCH METHODS
A systematic review was conducted in MEDLINE (1946 to May 2018) and Embase (1974 to May 2018). The search terms ‘spontaneous abortion’, ‘miscarriage’, ‘pregnancy loss’, or ‘lethal’ were used to identify pregnancy loss terms. These were combined with search terms to identify the genetic contribution including ‘exome’, ‘human genome’, ‘sequencing analysis’, ‘sequencing’, ‘copy number variation’, ‘single-nucleotide polymorphism’, ‘microarray analysis’, and ‘comparative genomic hybridization’. Studies were limited to pregnancy loss up to 20 weeks in humans and excluded if the genetic content included genes that are not lethal in utero, PGD studies, infertility studies, expression studies, aneuploidy with no recurrence risk, methodologies where there is no clinical relevance, and complex genetic studies. The quality of the studies was assessed using a modified version of the Newcastle–Ottawa scale.
OUTCOMES
A total of 50 studies were identified and categorized into three themes: whole-exome sequencing studies; copy number variation studies; and other studies related to pregnancy loss including recurrent molar pregnancies, epigenetics, and mitochondrial DNA aberrations. Putatively causative variants were found in a range of genes, including CHRNA1 (cholinergic receptor, nicotinic, alpha polypeptide 1), DYNC2H1 (dynein, cytoplasmic 2, heavy chain 1), and RYR1 (ryanodine receptor 1), which were identified in multiple studies. Copy number variants were also identified to have a causal or associated link with recurrent miscarriage.
WIDER IMPLICATIONS
Identification of genes that are causative of or predisposing to pregnancy loss will be of significant individual patient impact with respect to counselling and treatment. In addition, knowledge of specific genes that contribute to pregnancy loss could also be of importance in designing a diagnostic sequencing panel for patients with recurrent pregnancy loss and also in understanding the biological pathways that can cause pregnancy loss.
Collapse
Affiliation(s)
- Emily Colley
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susan Hamilton
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| | - Paul Smith
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arri Coomarasamy
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephanie Allen
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| |
Collapse
|
44
|
Next generation sequencing in recurrent pregnancy loss-approaches and outcomes. Eur J Med Genet 2019; 63:103644. [PMID: 30991114 DOI: 10.1016/j.ejmg.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/26/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Next generation sequencing (NGS) has revolutionized the diagnosis of postnatal genetic diseases, but so far has been used less frequently to study reproductive disorders. Here we provide an overview of approaches and outcomes of genome sequencing for identifying causes of recurrent pregnancy loss (RPL). This includes exome sequencing to look for pathogenic sequence changes in the whole exome or in a preselected list of genes considered important for early embryonic development and pregnancy maintenance, as well as low coverage whole genome sequencing useful for identifying cryptic balanced chromosome rearrangements and copy number variants (CNVs) in couples with RPL and miscarriages. For the purpose of this review only studies with at least 2 pregnancy losses were included with NGS performed on complete families, or only on miscarriages, couples or females with RPL. Overall, mutations in candidate genes responsible for recurrent embryonic/fetal loss were found in up to 60% of cases, opening the door for possible identification of affected future pregnancies at the preimplantation stage. Recurrence of specific mutations or affected genes in different studies was rare (e.g.DYNC2H1, KIF14, RYR1 and GLE1) however genes involved in cell division, cilia function or fetal movement were frequently identified as candidates, the later possibly reflecting the fact that a large number of studied cases had features of fetal akinesia deformation sequence (FADS). Genome sequencing of the couple and miscarriages is most informative, as it allows analysis of the individual mutations as well as their collective burden on the genome and biological processes. However genome sequencing of the couple with RPL with follow up of candidate parental mutations in miscarriages appears to be a promising avenue when miscarriage DNA amounts or quality are suboptimal for whole genome studies. In the future, increasing the number of studied families, establishment of a database cataloguing CNVs and mutations found in early pregnancy loss as well as their functional assessment in miscarriage cells and parental reproductive tissues is needed for improved understanding of their role in adverse pregnancy outcome.
Collapse
|
45
|
Quintero-Ronderos P, Laissue P. Genetic Variants Contributing to Early Recurrent Pregnancy Loss Etiology Identified by Sequencing Approaches. Reprod Sci 2019:1933719119831769. [PMID: 30879428 DOI: 10.1177/1933719119831769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recurrent pregnancy loss (RPL) affects up to 5% of couples. It is believed that genetic factors contribute to the disease's etiology and pathophysiology. Hundreds of genes represent coherent RPL candidates due to mammalian implantation's inherent complexity. Sanger sequencing (direct sequencing) of candidate genes has identified potential RPL causative genes (and variants), including those regulating embryo implantation and pregnancy maintenance. Although this approach is a reliable technique, the simultaneous analysis of large genomic regions is challenging. Next-generation sequencing (NGS) technology has thus emerged as a useful alternative for determining genetic variants and transcriptomic disturbances contributing to monogenic and polygenic diseases pathogenesis. However, interpreting results remains challenging as NGS experiments provide an enormous amount of complex data. The molecular aspects of specific diseases must be fully understood for accurate interpretation of NGS data. This review was thus aimed at describing (for the first time) the most relevant studies involving Sanger and NGS sequencing, leading to the description of variants related to RPL pathogenesis. Successful RPL-related NGS initiatives (including RNAseq-based studies) and future challenges are discussed. We consider that the information given here should be useful for clinicians, scientists, and students to enable a better understanding of RPL etiology. It may also provide a basis for the development of diagnostic/prognostic approaches contributing toward translational medicine.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- 1 Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Paul Laissue
- 1 Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
46
|
Wang H, Yuan D, Wang S, Luo L, Zhang Y, Ye J, Zhu K. Cytogenetic and genetic investigation of miscarriage cases in Eastern China. J Matern Fetal Neonatal Med 2019; 33:3385-3390. [PMID: 30741046 DOI: 10.1080/14767058.2019.1572738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Recurrent miscarriage (RM) affects about 5% of pregnancies. Etiology of 30-50% RM cases remains unknown. Advanced highly sensitive detection and analysis methods may help solve some of the cases.Methods: Products of conception from 1155 RM cases were analyzed using classic karyotyping. Some cases without abnormal findings were subjected to next generation DNA sequencing (NGS) and chromosome copy number variation (CNV) analysis.Results: Classic karyotyping identified abnormalities in 56.62% of the cases. Of the103 specimens analyzed using NGS, 39 (37.86%) were found to carry "pathogenic" CNVs. Recurrent microdeletions and microduplications were identified, and some with unique distribution patterns.Conclusion: NGS CNV analysis is a highly sensitive and flexible method for detecting genetic abnormalities in RM cases.
Collapse
Affiliation(s)
- Hua Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Chinese Traditional Medicine, Taizhou, China
| | - Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Taizhou, China
| | - Saili Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Chinese Traditional Medicine, Taizhou, China
| | - Li Luo
- Department of Obstetrics and Gynecology, Taizhou Hospital of Chinese Traditional Medicine, Taizhou, China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Chinese Traditional Medicine, Taizhou, China
| | - Jun Ye
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou, China
| | - Kuichun Zhu
- R&D Department, Labway Clinical Laboratories, Shanghai, China
| |
Collapse
|
47
|
Pan H, Xiang H, Wang J, Wei Z, Zhou Y, Liu B, Li T, Ma X, Cao Y, Wang B. CAPS Mutations Are Potentially Associated with Unexplained Recurrent Pregnancy Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:124-131. [DOI: 10.1016/j.ajpath.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
|
48
|
Guo W, Zhu X, Yan L, Qiao J. The present and future of whole-exome sequencing in studying and treating human reproductive disorders. J Genet Genomics 2018; 45:517-525. [DOI: 10.1016/j.jgg.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
|
49
|
A survey of undetected, clinically relevant chromosome abnormalities when replacing postnatal karyotyping by Whole Genome Sequencing. Eur J Med Genet 2018; 62:103543. [PMID: 30248410 DOI: 10.1016/j.ejmg.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Whole genome sequencing (WGS) holds the potential to identify pathogenic gene mutations, copy number variation, uniparental disomy and structural rearrangements in a single genetic test. With its high diagnostic yield and decreasing costs, the question arises whether WGS can serve as a single test for all referrals to diagnostic genome laboratories ("one test fits all"). Here, we provide an estimate for the proportion of clinically relevant aberrations identified by light microscopy in postnatal referrals that would go undetected by WGS. To this end, we compiled the clinically relevant abnormal findings for each of the different referral categories in our laboratory during the period 2006-2015. We assumed that WGS would be performed on 300-500 bp DNA fragments with 150-bp paired sequence reads, and that the mean genome coverage is 30x, corresponding to current practice. For the detection of chromosomal mosaicism we set minimum thresholds of 10% for monosomy and 20% for trisomy. Based on the literature we assumed that balanced Robertsonian translocations and ∼9% of other, balanced chromosome rearrangements would not be detectable because of breakpoints in sequences of repetitive DNA. Based on our analysis of all 14,957 referrals, including 1455 abnormal cases, we show that at least 8.1% of these abnormalities would escape detection (corresponding to 0.79% of all referrals). The highest rate occurs in referrals of premature ovarian failure, as 73.3% of abnormalities would not be identified because of the frequent occurrence of low-level sex chromosome mosaicism. Among referrals of recurrent miscarriage, 25.6% of abnormalities would go undetected, mainly because of a high proportion of balanced Robertsonian translocations. In referrals of mental retardation (with or without multiple congenital anomalies) the abnormality would be missed in only 0.35% of referrals. These include cases without imbalances of unique DNA sequences but of clinical relevance, as for example, r(20) epilepsy syndrome. The expected shift to large-scale implementation of WGS ("one test fits most") as initial genetic test will be beneficial to patients and their families, since a cause for the clinical phenotype can be identified in more cases by a single genetic test at an early phase in the diagnostic process. However, a niche for genome analysis by light microscopy will remain. For example, in referrals of newborns with a suspicion of Down syndrome, karyotyping is not only a cost-effective method for providing a quick diagnosis, but also discriminates between trisomy 21 and a Robertsonian translocation involving chromosome 21. Thus, when replacing karyotyping by WGS, one must be aware of the rates and spectra of undetected abnormalities. In addition, it is equally important that requirements for cytogenetic follow-up studies are recognized.
Collapse
|
50
|
Ryu CS, Sakong JH, Ahn EH, Kim JO, Ko D, Kim JH, Lee WS, Kim NK. Association study of the three functional polymorphisms (TAS2R46G>A, OR4C16G>A, and OR4X1A>T) with recurrent pregnancy loss. Genes Genomics 2018; 41:61-70. [PMID: 30203366 DOI: 10.1007/s13258-018-0738-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
This study was purposed to investigate whether genetic polymorphisms in the function of stop-gain are associated with a fetal or placental development play roles and a development of idiopathic recurrent pregnancy loss (RPL) in Korean females. Three stop-gain polymorphisms were selected using next-generation sequencing screening, which allows for the rigorous examination and discovery of previously uncharacterized stop-gain genes and stop-gain expression profiles. Accordingly, we investigated the association of stop-gain polymorphisms in Korean women with RPL. Three functional polymorphisms in the TAS2R46G>A (rs2708381), OR4C16G>A (rs1459101), and OR4X1A>T (rs10838851) genes were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism assays and real-time PCR analysis. We determined that the OR4C16G>A polymorphism was associated with idiopathic RPL in Korean women (Adjusted odds ratio [AOR] 1.782; 95% confidence interval [CI] 1.004-3.163; P = 0.048, and AOR 1.766; 95% CI 1.020-3.059; P = 0.042). In addition, the prevalence of RPL was increased in women with the OR4C16GA + AA genotype and blood coagulation measures of prothrombin time (PT) > 10.4 s (AOR 8.292; 95% CI 2.744-25.054). We suggest that the OR4C16G>A polymorphism might serve as a clinically useful biomarker for the development, prevention, and prognosis of RPL.
Collapse
Affiliation(s)
- Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, South Korea
| | - Jung Hyun Sakong
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, South Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, South Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, South Korea
| | - Daeun Ko
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam, 13496, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, South Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Gangnam, 06135, South Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|