1
|
Ma N, Liu B, Jin Y, Wang J, Qin W, Zheng F, Qin R, Li J, Hang F, Qin A. Aquaporin 9 causes recurrent spontaneous abortion by inhibiting trophoblast cell epithelial-mesenchymal transformation and invasion through the PI3K/AKT pathway†. Biol Reprod 2023; 109:736-748. [PMID: 37602667 DOI: 10.1093/biolre/ioad097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Invasion of the endometrium by trophoblast cells is a key event during pregnancy, although the underlying mechanism remains unclear. Aquaporin 9 (AQP 9) is expressed in many eukaryotes and is associated with cell invasion. The objective of this study was to evaluate the significance of AQP9 in recurrent spontaneous abortion. METHODS We screened the GSE22490 dataset and further differentiated aquaporin 9 expression in villi. AQP9 was evaluated as one of the key factors in abortion by injecting AQP9 overexpressed plasmid into the uterus of CD1 mice. Trophoblast cells were transfected with AQP9-overexpressing plasmid or siAQP9 to measure cell proliferation, migration, invasion, and apoptosis. Western blot was used to measure changes in the expression of invasion, epithelial-mesenchymal transformation process, and PI3K/AKT pathway. Finally, the role of AQP9 in PI3K/AKT signaling pathway was determined using the PI3K/AKT inhibitor, LY294002, and activator, 740Y-P. RESULTS AQP9 is highly expressed in recurrent spontaneous abortion villus. Intrauterine injections of AQP9-overexpressing plasmid into CD1 mice resulted in atrophy and blackness of the gestational sac and increased the absorption rate, it is the causative factor of abortion. AQP9 upregulation inhibited the proliferation, invasion, migration, and epithelial-mesenchymal transformation process in vitro of trophoblast cells and increased cell apoptosis. The opposite result was observed after silencing AQP9. AQP9 overexpression also inhibited the PI3K/AKT pathway. LY294002 and 740Y-P partially recovered AQP9-induced trophoblast invasion and migration via the PI3K/AKT pathway. CONCLUSIONS AQP9 reduces the invasive ability of trophoblast cells by regulating PI3K/AKT signaling pathway, participating in recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Nana Ma
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Bo Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Jiawei Wang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Fengque Zheng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Rongyan Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Jiaxu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Fu Hang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| |
Collapse
|
2
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
3
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
4
|
Lee I, Jeon MJ, Kim JS, Park JH, Won BH, Kim H, Lee JH, Yun BH, Park JH, Seo SK, Choi YS, Cho S, Lee BS. Aberrant Expression of Sodium-Potassium-Chloride Cotransporter in Endometriosis. Reprod Sci 2021; 28:2641-2648. [PMID: 33709377 DOI: 10.1007/s43032-021-00531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Cell membrane ion channels have important roles in cell migration during cancer development and metastasis. Although endometriosis is a benign gynecological disease, some migration and invasion characteristics of endometriosis are similar to those of cancer. However, only a few studies have examined cell membrane ion channels and their associations with endometriosis. This study aimed to investigate the effects of these ion channels on development of endometriosis. A total of 39 women who underwent laparoscopic ovarian cyst enucleation were included in the study population. Eutopic endometrium or ectopic endometrium tissues were obtained from each patient based on allocation to an endometriosis group (n=21) or a control group (n=18). Quantitative real-time PCR (qRT-PCR) and western blot analyses were performed to quantify NKCC1, NKCC2, and CLCN3 mRNA expression and protein concentrations. SiRNA transfection and migration assays of the endometrial stromal cells were performed to test the effects of the ion channels on the migration ability. The qRT-PCR and western blot analyses revealed significantly elevated mRNA expression and protein expression of NKCC1, NKCC2, and CLCN3 in the ectopic endometrial tissue from the patients with endometriosis (p < 0.05). Migration assay of siRNA transfected cells suggested a decreased migratory potential of the endometrial stromal cells (p < 0.001). The magnitudes of expression of NKCC1, NKCC2, and CLCN3 were positively correlated with endometrioma size. The increased expression of NKCC1, NKCC2, and CLCN3 in endometriosis offers opportunities to understand mechanisms of endometriosis and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung Jae Jeon
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Sook Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Ji Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Bo Hee Won
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Heeyon Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Wu YT, Ma SY, Sun WQ, Shen WW, Zhu HT, Zhang Q, Chen HF. TRIM65 Promotes Invasion of Endometrial Stromal Cells by Activating ERK1/2/C-myc Signaling via Ubiquitination of DUSP6. J Clin Endocrinol Metab 2021; 106:526-538. [PMID: 33146694 DOI: 10.1210/clinem/dgaa804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endometriosis (EM) is a benign gynecological disease that shares some characteristics with malignancy, such as proliferation and invasion. So far, the pathogenesis of EM is still unclear. In this study, we investigated whether TRIM65 can play a role in the development of EM. METHODS TRIM65 expression levels in eutopic, ectopic, and normal endometrium were detected by quantitative real-time PCR and Western blot. Cell proliferation and invasion of primary endometrial stromal (EMS) cells were detected by CCK-8 and Transwell analysis. The interaction between TRIM65 and DUSP6 or C-myc was measured by coimmunoprecipitation, ubiquitylation, dual luciferase, and chromatin immunoprecipitation analysis. RESULTS We found that TRIM65 was identified as an up-regulated gene in ectopic endometrial tissues and EMS cells compared with control groups without EM. TRIM65 expression was positively correlated with the levels of p-ERK1/2, C-myc, matrix metalloproteinase-2, and integrin β1 in ectopic endometrial tissues in patients and mice. TRIM65 promoted the cell proliferation and invasion of EMS cells via the ERK1/2/C-myc pathway through ubiquitination of DUSP6. C-myc promoted TRIM65 expression through inducing TRIM65 promoter activity. Additionally, the increased expression of TRIM65, C-myc, matrix metalloproteinase-2, integrin β1, and p-ERK1/2 and the decreased expression of DUSP6 in ectopic endometrial tissues were significantly suppressed by inhibition of ERK1/2 signaling pathway in ectopic endometrial tissues in experimental mice model. CONCLUSION In conclusion, TRIM65 promotes invasion of ectopic EMS cells by activating a feedback loop with the ERK1/2/C-myc signaling pathway and may be a potential therapeutic target for EM.
Collapse
Affiliation(s)
- Ying-Ting Wu
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Yu Ma
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Qin Sun
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Ting Zhu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhang
- Department of Infectious Disease of Tongren Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Fen Chen
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
7
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
8
|
Lou J, Zou Y, Luo Y, Zhang ZY, Liu FY, Tan J, Zeng X, Wan L, Huang OP. Novel MYH8 mutations in 152 Han Chinese samples with ovarian endometriosis. Gynecol Endocrinol 2020; 36:632-635. [PMID: 32308057 DOI: 10.1080/09513590.2020.1751107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is a common gynecological disease affecting up to 10% of women at reproductive age. Prior combined studies implied that MYH8 mutations might exist in endometriosis. Here, 152 Han Chinese samples with ovarian endometriosis were analyzed for the presence of MYH8 mutations. Two heterozygous missense mutations in the MYH8 gene, c.1441A > C (p.I481L) and c.4057G > A (p.E1353K), were identified in our samples. These mutations were neither found in public databases nor detected in our 485 Han Chinese control women without endometriosis. The p.I481L-mutated sample belonged to 34-year-old, who had slightly elevated serum CA 125 (42.09 U/mL); while the sample with p.E1353K mutation belonged to 25 years old, who had a markedly increased serum CA125 (89.86 U/mL). The evolutionary conservation analysis results suggested that these MYH8 mutations caused highly conserved amino acid substitutions among vertebrate species. Both the mutations were predicted to be 'disease causing' by MutationTaster and SIFT programs. In addition, no association was observed between MYH8 mutations and the available clinical data. In summary, the present study identified two novel potential pathogenic mutations in the MYH8 gene in samples with ovarian endometriosis for the first time, implying that MYH8 mutations might play a positive role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jun Lou
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Gynecological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Jun Tan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Lei Wan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Ou-Ping Huang
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View. Int J Mol Sci 2020; 21:ijms21031114. [PMID: 32046116 PMCID: PMC7037987 DOI: 10.3390/ijms21031114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. OBJECTIVE To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis. METHODS A search on PubMed and Medline databases was performed from inception to November 2019. RESULTS Cystic fibrosis transmembrane conductance regulator (CFTR), transient receptor potentials (TRPs), aquaporins (AQPs), and chloride channel (ClC)-3 expression and activity were analyzed. CFTR expression changed during the menstrual phases and was enhanced in endometriosis samples; its overexpression promoted endometrial cell proliferation, migration, and invasion throughout nuclear factor kappa-light-chain-enhancer of activated B cells-urokinase plasminogen activator receptor (NFκB-uPAR) signaling pathway. No connection between TRPs and the pathogenesis of endometriosis was found. AQP5 activity was estrogen-increased and, through phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT), helped in vivo implantation of ectopic endometrium. In vitro, AQP9 participated in extracellular signal-regulated kinases/p38 mitogen-activated protein kinase (ERK/p38 MAPK) pathway and helped migration and invasion stimulating matrix metalloproteinase (MMP)2 and MMP9. ClC-3 was also overexpressed in ectopic endometrium and upregulated MMP9. CONCLUSION Available evidence suggests a pivotal role of CFTR, AQPs, and ClC-3 in endometriosis etiopathogenesis. However, data obtained are not sufficient to establish a direct role of ion channels in the etiology of the disease. Further studies are needed to clarify this relationship.
Collapse
|
10
|
Zhang J, Tan J, Zhang C, Wang Y, Chen X, Lei C, Chen H, Fang X. Research on associations between variants and haplotypes of Aquaporin 9 (AQP9) gene with growth traits in three cattle breeds. Anim Biotechnol 2019; 32:185-193. [PMID: 31680615 DOI: 10.1080/10495398.2019.1675681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aquaporin 9 plays critical roles in aspects of energy homeostasis, metabolism, gluconeogenesis, fat synthesis and even the individual growth and development. So the Aquaporin 9 (AQP9) gene is a potential candidate gene for bovine growth traits. In this study, we detected the polymorphism of the bovine AQP9 gene including all exons by PCR-SSCP and DNA sequencing methods with six pairs of PCR primers in 555 individuals from three cattle breeds. Three novel SNPs (NC_007308:g.47575 C > T, 47615 C > T, 47690A > G) were detected using P6 primer. The linkage disequilibrium analysis indicated that the three SNPs were completely linked (r2 = 1), which constructed three genotypes (AA, AB, BB). The genotype AB was dominant in all three breeds. The frequencies of haplotype A and haplotype B were almost equivalent between each other. The individuals with genotype AB were significantly higher than those individuals with genotype BB in body weight (p < 0.01), chest circumference (p < 0.05) and rump length (p < 0.05). Moreover, individuals with genotype AA were significantly higher than those of individuals with genotype BB in body height (p < 0.01). These results suggested that the novel SNPs could be a perfect molecular marker for marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Jingmin Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China.,Shanghai Vocational College of Agriculture and Forestry, Shanghai, P. R. China
| | - Jiaoyan Tan
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
11
|
de Mello Santos T, Cavariani MM, Pereira DN, Schimming BC, Chuffa LGDA, Domeniconi RF. Maternal Protein Restriction Modulates Angiogenesis and AQP9 Expression Leading to a Delay in Postnatal Epididymal Development in Rat. Cells 2019; 8:cells8091094. [PMID: 31533210 PMCID: PMC6770568 DOI: 10.3390/cells8091094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
The maternal nutritional status is essential to the health and well-being of the fetus. Maternal protein restriction during the perinatal stage causes sperm alterations in the offspring that are associated with epididymal dysfunctions. Vascular endothelial growth factor (VEGF) and its receptor, VEGFr-2, as well as aquaporins (AQPs) are important regulators of angiogenesis and the epididymal microenvironment and are associated with male fertility. We investigated the effects of maternal protein restriction on epididymal angiogenesis and AQP expression in the early stages of postnatal epididymal development. Pregnant rats were divided into two experimental groups that received either a normoprotein (17% protein) or low-protein diet (6% protein) during gestation and lactation. At postnatal day (PND)7 and PND14, male offspring were euthanized, the epididymides were subjected to morphometric and microvascular density analyses and to VEGF-A, VEGF-r2, AQP1 and AQP9 expression analyses. The maternal low-protein diet decreased AQP9 and VEGFr-2 expression, decreased epididymal microvascularity and altered the morphometric features of the epididymal epithelium; no changes in AQP1 expression were observed at the beginning of postnatal epididymal development. Maternal protein restriction alters microvascularization and affects molecules involved in the epidydimal microenvironment, resulting in morphometric alterations related to a delay in the beginning of epididymis postnatal development.
Collapse
Affiliation(s)
- Talita de Mello Santos
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Marilia Martins Cavariani
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Dhrielly Natália Pereira
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | - Bruno César Schimming
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| | | | - Raquel Fantin Domeniconi
- Department of Anatomy, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-970, SP, Brazil.
| |
Collapse
|