1
|
Moon DO. Advancing Cancer Therapy: The Role of KIF20A as a Target for Inhibitor Development and Immunotherapy. Cancers (Basel) 2024; 16:2958. [PMID: 39272816 PMCID: PMC11393963 DOI: 10.3390/cancers16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis begins with a detailed examination of the gene expression and protein structure of KIF20A, highlighting its interaction with critical cellular components that influence key processes such as Golgi membrane transport and mitotic spindle assembly. The primary focus is on the development of specific KIF20A inhibitors, detailing their roles and the challenges encountered in enhancing their efficacy, such as achieving specificity, overcoming tumor resistance, and optimizing delivery systems. Additionally, it delves into the prognostic value of KIF20A across multiple cancer types, emphasizing its role as a novel tumor-associated antigen, which lays the groundwork for the development of targeted peptide vaccines. The therapeutic efficacy of these vaccines as demonstrated in recent clinical trials is discussed. Future directions are proposed, including the integration of precision medicine strategies to personalize treatments and the use of combination therapies to improve outcomes. By concentrating on the significant potential of KIF20A as both a direct target for inhibitors and an antigen in cancer vaccines, this review sets a foundation for future research aimed at harnessing KIF20A for effective cancer treatment.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Ranaivoson FM, Crozet V, Benoit MPMH, Abdalla Mohammed Khalid A, Kikuti C, Sirkia H, El Marjou A, Miserey-Lenkei S, Asenjo AB, Sosa H, Schmidt CF, Rosenfeld SS, Houdusse A. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol 2023; 13:230122. [PMID: 37726093 PMCID: PMC10508983 DOI: 10.1098/rsob.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
Collapse
Affiliation(s)
- Fanomezana Moutse Ranaivoson
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Vincent Crozet
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | | | | | - Carlos Kikuti
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Helena Sirkia
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ahmed El Marjou
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Stéphanie Miserey-Lenkei
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ana B. Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph F. Schmidt
- Third Institute of Physics-Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | | | - Anne Houdusse
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| |
Collapse
|
3
|
Zhang Y, Wu L, Wen X, Lv X. Identification and validation of risk score model based on gene set activity as a diagnostic biomarker for endometriosis. Heliyon 2023; 9:e18277. [PMID: 37539146 PMCID: PMC10395533 DOI: 10.1016/j.heliyon.2023.e18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective The enigmatic nature of Endometriosis (EMS) pathogenesis necessitates investigating alterations in signaling pathway activity to enhance our comprehension of the disease's characteristics. Methods Three published gene expression profiles (GSE11691, GSE25628, and GSE7305 datasets) were downloaded, and the "combat" algorithm was employed for batch correction, gene expression difference analysis, and pathway enrichment difference analysis. The protein-protein interaction (PPI) network was constructed to identify core genes, and the relative enrichment degree of gene sets was evaluated. The Lasso regression model identified candidate gene sets with diagnostic value, and a risk scoring diagnostic model was constructed for further validation on the GSE86534 and GSE5108 datasets. CIBERSORT was used to assess the composition of immune cells in EMS, and the correlation between EMS diagnostic value gene sets and immune cells was evaluated. Results A total of 568 differentially expressed genes were identified between eutopic and ectopic endometrium, with 10 core genes in the PPI network associated with cell cycle regulation. Inflammation-related pathways, including cytokine-receptor signaling and chemokine signaling pathways, were significantly more active in ectopic endometrium compared to eutopic endometrium. Diagnostic gene sets for EMS, such as homologous recombination, base excision repair, DNA replication, P53 signaling pathway, adherens junction, and SNARE interactions in vesicular transport, were identified. The risk score's area under the curve (AUC) was 0.854, as indicated by the receiver operating characteristic (ROC) curve, and the risk score's diagnostic value was validated by the validation cohort. Immune cell infiltration analysis revealed correlations between the risk score and Macrophages M2, Plasma cells, resting NK cells, activated NK cells, and regulatory T cells. Conclusion The risk scoring diagnostic model, based on pathway activity, demonstrates high diagnostic value and offers novel insights and strategies for the clinical diagnosis and treatment of Endometriosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gynecology, Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Lulu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiang Wen
- Department of Pathology, The First People's Hospital of Huizhou City, Huizhou 516000, China
| | - Xiuwei Lv
- Department of Traditional Chinese Medicine, Rocket Force Medical Center of PLA, Beijing 100088, China
| |
Collapse
|
4
|
Liu B, Su J, Fan B, Ni X, Jin T. High expression of KIF20A in bladder cancer as a potential prognostic target for poor survival of renal cell carcinoma. Medicine (Baltimore) 2023; 102:e32667. [PMID: 36637953 PMCID: PMC9839245 DOI: 10.1097/md.0000000000032667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Urinary system tumors are malignant tumors, including renal cancer and bladder cancer. however, molecular target of them remains unclear. GSE14762 and GSE53757 were downloaded from GEO database to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes were used for enrichment analysis. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed on whole genome, as formulated by gene set enrichment analysis. Survival analysis was also performed. Comparative toxicogenomics database was used to identify diseases most associated with hub genes. A total of 1517 DEGs were identified. DEGs were mainly enriched in cancer pathway, HIF-1 signaling pathway, organic acid metabolism, glyoxylate and dicarboxylate metabolism, and protein homodimerization activity. Ten hub genes (TPX2, ASPM, NUSAP1, RAD51AP1, CCNA2, TTK, PBK, MELK, DTL, kinesin family member 20A [KIF20A]) were obtained, which were up-regulated in tumor tissue. The expression of KIF20A was related with the overall survival of renal and bladder cancer. KIF20A was up-regulated in the tumor tissue, and might worsen the overall survival of bladder and kidney cancer. KIF20A could be a novel biomarker of bladder and kidney cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
- * Correspondence: Bin Liu, Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Hebei 050000, PR China (e-mail: )
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Bo Fan
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Xiaochen Ni
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Tingting Jin
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| |
Collapse
|
5
|
Hassan Ibrahim I, Balah A, Gomaa Abd Elfattah Hassan A, Gamal Abd El-Aziz H. Role of motor proteins in human cancers. Saudi J Biol Sci 2022; 29:103436. [PMID: 36131778 PMCID: PMC9483653 DOI: 10.1016/j.sjbs.2022.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Motor proteins include several protein families (Kinesin, Dynein and Myosin) responsible for intracellular transport, intercellular communication, among other functions. In cancer cells, motor proteins along with microtubules (MT) and other tubulin and actin structures, are crucial for cell proliferation and invasion. The cBioPortal platform for Cancer Genomics database was queried for solid cancers in a combined cohort of 9204 patients with complete cancer genomics data. To assess the importance of motor proteins in cancer, copy number alterations (CNAs) and survival rates were analyzed in the combined dataset. Kinesin, Dynein, and Myosin families showed CNAs in 47%, 49%, and 57 % of patients, respectively, in at least one of their members. Survival analysis showed that CNAs in Kinesin and Dynein, families' genes in the same patients were significantly correlated to decreased overall survival. These results added more evidence to previous literature highlighting the importance of motor proteins as a target in cancer therapy. Kinesin inhibitors could act by several mechanisms such as inhibiting spindle assembly or centrosome separation during mitosis, leading to cell cycle arrest and eventually apoptosis. Dynein inhibitors modulate Dynein's activity and MT binding, inhibiting cell proliferation and invasion. Myosin inhibitors act by stabilizing MT, inducing cell cycle arrest and inhibiting invasiveness. Increasing the specificity of motor proteins targeting drugs could improve cancer therapy and patient survival.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Amany Balah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al- Azhar University, Postal code 11765, Egypt
| | - Abrar Gomaa Abd Elfattah Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Heba Gamal Abd El-Aziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| |
Collapse
|
6
|
Jin Z, Tao S, Zhang C, Xu D, Zhu Z. KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway. Exp Cell Res 2022; 420:113322. [PMID: 36037925 DOI: 10.1016/j.yexcr.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Adult fibrosarcoma is an aggressive subtype of soft tissue sarcoma (STS), in which high expression of KIF20A indicates a poor prognosis. However, the precise role of KIF20A in fibrosarcoma progression remains unknown. In this study, we initially examined KIF20A expression and function in the human fibrosarcoma cell line HT-1080. The results showed that KIF20A was highly expressed in HT-1080, knockdown of KIF20A impaired cell proliferation, migration, invasion and induced G2/M arrest and cell apoptosis. Transcriptome study suggested that PI3K-Akt signal pathway was involved in these biological changes. We confirmed that PI3K-Akt and NF-κB signaling pathways were impaired after the down-regulation of KIF20A, which can be reversed by the Akt activator SC79 in HT-1080 in vitro. In a xenograft mouse model, knockdown of KIF20A inhibited tumor growth, Ki67 expression and liver metastasis. Taken together, our results suggested that KIF20A promoted fibrosarcoma progression via PI3K-Akt signaling pathway and might be a potential therapeutic target for fibrosarcoma.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China; State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Schrock MS, Scarberry L, Stromberg BR, Sears C, Torres AE, Tallman D, Krupinski L, Chakravarti A, Summers MK. MKLP2 functions in early mitosis to ensure proper chromosome congression. J Cell Sci 2022; 135:275559. [PMID: 35638575 DOI: 10.1242/jcs.259560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Mitotic kinesin-like protein 2 (MKLP2) is a motor protein with a well-established function in promoting cytokinesis. However, our results with siRNAs targeting MKLP2 and small molecule inhibitors of MKLP2 (MKLP2i) suggested a function earlier in mitosis, prior to anaphase. In this study we provide direct evidence that MKLP2 facilitates chromosome congression in prometaphase. We employed live imaging to observe HeLa cells with fluorescently tagged histones treated with MKLP2i and discovered a pronounced chromosome congression defect. We show that MKLP2 facilitates error correction as inhibited cells had a significant increase in unstable, syntelic kinetochore-microtubule attachments. We find that the aberrant attachments are accompanied by elevated Aurora Kinase (A/B) activity and phosphorylation of the downstream target, pHEC1 (Ser 55). Lastly, we show that MKLP2 inhibition results in aneuploidy, confirming that MKLP2 safeguards cells against chromosomal instability.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Luke Scarberry
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Claire Sears
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Undergraduate Studies, Kenyon College, Gambier, OH, 43022, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - David Tallman
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Lucas Krupinski
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
9
|
Nakamura M, Takano A, Thang PM, Tsevegjav B, Zhu M, Yokose T, Yamashita T, Miyagi Y, Daigo Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int J Oncol 2020; 57:277-288. [PMID: 32467984 DOI: 10.3892/ijo.2020.5060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify novel prognostic biomarkers and therapeutic targets for breast cancer; thus, genes that are frequently overexpressed in several types of breast cancer were screened. Kinesin family member 20A (KIF20A) was identified as a candidate molecule during this process. Immunohistochemical staining performed using tissue microarrays from 257 samples of different breast cancer subtypes revealed that KIF20A was expressed in 195 (75.9%) of these samples, whereas it was seldom expressed in normal breast tissue. KIF20A protein was expressed in all types of breast cancer observed. However, it was more frequently expressed in human epidermal growth factor receptor 2 (HER2)‑positive and triple‑negative breast cancer than in the luminal type. Moreover, KIF20A expression was significantly associated with the poor prognosis of patients with breast cancer. A multivariate analysis indicated that KIF20A expression was an independent prognostic factor for patients with breast cancer. The suppression of endogenous KIF20A expression using small interfering ribonucleic acids or via treatment with paprotrain, a selective inhibitor of KIF20A, significantly inhibited breast cancer cell growth through cell cycle arrest at the G2/M phase and subsequent mitotic cell death. These results suggest that KIF20A is a candidate prognostic biomarker and therapeutic target for different types of breast cancer.
Collapse
Affiliation(s)
- Masako Nakamura
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Phung Manh Thang
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Bayarbat Tsevegjav
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Ming Zhu
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| |
Collapse
|