1
|
Dang Z, Wang Y, Wang M, Cao L, Ruan N, Huang Y, Li F, Xu Q, Chen W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132020. [PMID: 37429191 DOI: 10.1016/j.jhazmat.2023.132020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.
Collapse
Affiliation(s)
- Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
2
|
Zhang L, Yu Y, Zhang M, Rong K, Wu Y, Zhang M, Hu H. Genome-wide identification of xylan glucuronosyltransferase family in cotton and function characterization of GhGUX5 in regulating Verticillium wilt resistance. Int J Biol Macromol 2023:124795. [PMID: 37207759 DOI: 10.1016/j.ijbiomac.2023.124795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Xylan glucuronosyltransferase (GUX) is widely involved in a variety of physiological processes in plants, including plant development, growth and the defense response to pathogens. However, the function of GUX regulators in Verticillium dahliae (V. dahliae) infection has not been considered previously in cotton. Overall, 119 GUX genes were identified from multiple species and were phylogenetically categorized into seven classes. Duplication event analysis indicated that GUXs in Gossypium hirsutum primarily originated from segmental duplication. GhGUXs promoter analysis indicated cis-regulatory elements capable of reacting to several different stresses. RNA-Seq data and qRT-PCR analysis both indicated that most GhGUXs were associated with V. dahliae infection. Gene interaction network analysis showed that GhGUX5 interacted with 11 proteins, and the relative expression of these 11 proteins changed significantly following V. dahliae infection. In addition, silencing and overexpression of GhGUX5 results to enhance and reduce plant's susceptibility to V. dahliae. Further study showed that TRV: GhGUX5 silenced cotton plants exhibited a decrease in the degree of lignification, total lignin content, gene expression levels involved in lignin biosynthesis, and enzyme activity compared with TRV: 00. The above results indicate that GhGUX5 enhances Verticillium wilt resistance through the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kaikuo Rong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
3
|
Guo X, Liang J, Lin R, Zhang L, Wu J, Wang X. Series-Spatial Transcriptome Profiling of Leafy Head Reveals the Key Transition Leaves for Head Formation in Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2022; 12:787826. [PMID: 35069646 PMCID: PMC8770947 DOI: 10.3389/fpls.2021.787826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 05/12/2023]
Abstract
Chinese cabbage is an important leaf heading vegetable crop. At the heading stage, its leaves across inner to outer show significant morphological differentiation. However, the genetic control of this complex leaf morphological differentiation remains unclear. Here, we reported the transcriptome profiling of Chinese cabbage plant at the heading stage using 24 spatially dissected tissues representing different regions of the inner to outer leaves. Genome-wide transcriptome analysis clearly separated the inner leaf tissues from the outer leaf tissues. In particular, we identified the key transition leaf by the spatial expression analysis of key genes for leaf development and sugar metabolism. We observed that the key transition leaves were the first inwardly curved ones. Surprisingly, most of the heading candidate genes identified by domestication selection analysis obviously showed a corresponding expression transition, supporting that key transition leaves are related to leafy head formation. The key transition leaves were controlled by a complex signal network, including not only internal hormones and protein kinases but also external light and other stimuli. Our findings provide new insights and the rich resource to unravel the genetic control of heading traits.
Collapse
|
4
|
Wang X, Lin L, Tang Y, Xia H, Zhang X, Yue M, Qiu X, Xu K, Wang Z. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture. BMC Genomics 2018; 19:280. [PMID: 29685103 PMCID: PMC5914067 DOI: 10.1186/s12864-018-4669-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus’ perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures. Results Segment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in ‘Shiranui’ than in ‘Kiyomi’ at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane’s weight (% of segment) were greater in ‘Kiyomi’. Conclusion Organoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus’ perceived sensory texture. Transcriptomic data showed high repeatability between two independent biological replicates. The expression levels of genes involved in cell wall structure metabolism, including pectin, cellulose, hemicellulose and lignin, were investigated. Meanwhile, chemical component contents of the segment membranes from mature fruit were analyzed. This study provided detailed transcriptional regulatory profiles of different organoleptic citrus qualities and integrated insights into the mechanisms affecting citrus’ sensory texture. Electronic supplementary material The online version of this article (10.1186/s12864-018-4669-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xun Wang
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Lijin Lin
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yi Tang
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Hui Xia
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiancong Zhang
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Maolan Yue
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xia Qiu
- Institution of Pomology & Olericulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ke Xu
- Sichuan Horticultural Crop Agrotechnical Promotion Workstation, No 4 Wuhou Memorial Temple Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Wang X, Tang Q, Zhao X, Jia C, Yang X, He G, Wu A, Kong Y, Hu R, Zhou G. Functional conservation and divergence of Miscanthus lutarioriparius GT43 gene family in xylan biosynthesis. BMC PLANT BIOLOGY 2016; 16:102. [PMID: 27114083 PMCID: PMC4845329 DOI: 10.1186/s12870-016-0793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/21/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Xylan is the most abundant un-cellulosic polysaccharides of plant cell walls. Much progress in xylan biosynthesis has been gained in the model plant species Arabidopsis. Two homologous pairs Irregular Xylem 9 (IRX9)/9L and IRX14/14L from glycosyltransferase (GT) family 43 have been proved to play crucial roles in xylan backbone biosynthesis. However, xylan biosynthesis in grass such as Miscanthus remains poorly understood. RESULTS We characterized seven GT43 members in M. lutarioriparius, a promising bioenergy crop. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the expression of MlGT43 genes was ubiquitously detected in the tissues examined. In-situ hybridization demonstrated that MlGT43A-B and MlGT43F-G were specifically expressed in sclerenchyma, while MlGT43C-E were expressed in both sclerenchyma and parenchyma. All seven MlGT43 proteins were localized to Golgi apparatus. Overexpression of MlGT43A-E but not MlGT43F and MlGT43G in Arabidopsis irx9 fully or partially rescued the mutant defects, including morphological changes, collapsed xylem and increased xylan contents, whereas overexpression of MlGT43F and MlGT43G but not MlGT43A-E complemented the defects of irx14, indicating that MlGT43A-E are functional orthologues of IRX9, while MlGT43F and MlGT43G are functional orthologues of IRX14. However, overexpression of all seven MlGT43 genes could not rescue the mucilage defects of irx14 seeds. Furthermore, transient transactivation analyses of MlGT43A-E reporters demonstrated that MlGT43A and MlGT43B but not MlGT43C-E were differentially activated by MlSND1, MlMYB46 or MlVND7. CONCLUSION The results demonstrated that all seven MlGT43s are functionally conserved in xylan biosynthesis during secondary cell wall formation but diversify in seed coat mucilage xylan biosynthesis. The results obtained provide deeper insight into xylan biosynthesis in grass, which lay the foundation for genetic modification of grass cell wall components and structure to better suit for next-generation biofuel production.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Tang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Xun Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, PR China
| | - Xuanwen Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Guo He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yingzhen Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key laboratory of Tobacco Genetic Improvement and Biotechnology, Qingdao, 266101, PR China
| | - Ruibo Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| | - Gongke Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
6
|
Shakhmatov EG, Atukmaev KV, Makarova EN. Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden. Carbohydr Polym 2016; 136:1358-69. [DOI: 10.1016/j.carbpol.2015.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023]
|
7
|
Pinard D, Mizrachi E, Hefer CA, Kersting AR, Joubert F, Douglas CJ, Mansfield SD, Myburg AA. Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics 2015; 16:402. [PMID: 25994181 PMCID: PMC4440533 DOI: 10.1186/s12864-015-1571-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. RESULTS Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production. CONCLUSIONS CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Charles A Hefer
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Anna R Kersting
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, Hufferstr. 1, Munster, D48149, Germany.
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
8
|
|
9
|
Li L, Huang J, Qin L, Huang Y, Zeng W, Rao Y, Li J, Li X, Xu W. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. PHYSIOLOGIA PLANTARUM 2014; 152:367-79. [PMID: 24641584 DOI: 10.1111/ppl.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 05/02/2023]
Abstract
Xylan is the major hemicellulosic constituent in dicot secondary cell walls. Cell wall composition of cotton fiber changes dynamically throughout development. Not only the amounts but also the molecular sizes of the hemicellulosic polysaccharides show substantial changes during cotton fiber development. However, none of the genes encoding glycosyltransferases (GTs) responsible for synthesizing xylan have been isolated and characterized in cotton fiber. In this study, we applied a bioinformatics approach and identified two putative GTs from cotton, designated GhGT43A1 and GhGT43C1, which belong to the CAZy GT43 family and are closely related to Arabidopsis IRX9 and IRX14, respectively. We show that GhGT43A1 is highly and preferentially expressed in 15 and 20 days post-anthesis (dpa) cotton fiber, whereas GhGT43C1 is ubiquitously expressed in most organs, with especially high expression in 15 dpa fiber and hypocotyl. Complementation analysis demonstrates that GhG43A1 and GhGT43C1 are orthologs of Arabidopsis IRX9 and IRX14, respectively. Furthermore, we show that overexpression of GhGT43A1 or GhGT43C1 in Arabidopsis results in increased xylan content. We also show that overexpression of GhGT43A1 or GhGT43C1 leads to more cellulose deposition. These findings suggest that GhGT43A1 and GhGT43C1 likely participate in xylan synthesis during fiber development.
Collapse
Affiliation(s)
- Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Camargo ELO, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJPL, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira GAG. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC PLANT BIOLOGY 2014; 14:256. [PMID: 25260963 PMCID: PMC4189757 DOI: 10.1186/s12870-014-0256-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/20/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E. grandis) with a special focus on xylem secondary cell walls and global gene expression patterns. RESULTS Histological observations of the xylem secondary cell walls further confirmed by chemical analyses showed that lignin was reduced by luxuriant fertilization, whereas a consistent lignin deposition was observed in trees grown in N-limiting conditions. Also, the syringyl/guaiacyl (S/G) ratio was significantly lower in luxuriant nitrogen samples. Deep sequencing RNAseq analyses allowed us to identify a high number of differentially expressed genes (1,469) between contrasting N treatments. This number is dramatically higher than those obtained in similar studies performed in poplar but using microarrays. Remarkably, all the genes involved the general phenylpropanoid metabolism and lignin pathway were found to be down-regulated in response to high N availability. These findings further confirmed by RT-qPCR are in agreement with the reduced amount of lignin in xylem secondary cell walls of these plants. CONCLUSIONS This work enabled us to identify, at the whole genome level, xylem genes differentially regulated by N availability, some of which are involved in the environmental control of xylogenesis. It further illustrates that N fertilization can be used to alter the quantity and quality of lignocellulosic biomass in Eucalyptus, offering exciting prospects for the pulp and paper industry and for the use of short coppices plantations to produce second generation biofuels.
Collapse
Affiliation(s)
- Eduardo Leal Oliveira Camargo
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Leandro Costa Nascimento
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Marçal Soler
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Marcela Mendes Salazar
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Jorge Lepikson-Neto
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Wesley Leoricy Marques
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Ana Alves
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Paulo José Pereira Lima Teixeira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | | | - Marcelo Falsarella Carazzolle
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Yves Martinez
- />Fédération de Recherche “Agrobiosciences, Interactions et Biodiversité”, 24 Chemin de borde rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Ana Carolina Deckmann
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - José Carlos Rodrigues
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Jacqueline Grima-Pettenati
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Gonçalo Amarante Guimarães Pereira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| |
Collapse
|
11
|
Mewalal R, Mizrachi E, Mansfield SD, Myburg AA. Cell wall-related proteins of unknown function: missing links in plant cell wall development. PLANT & CELL PHYSIOLOGY 2014; 55:1031-43. [PMID: 24683037 DOI: 10.1093/pcp/pcu050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lignocellulosic biomass is an important feedstock for the pulp and paper industry as well as emerging biofuel and biomaterial industries. However, the recalcitrance of the secondary cell wall to chemical or enzymatic degradation remains a major hurdle for efficient extraction of economically important biopolymers such as cellulose. It has been estimated that approximately 10-15% of about 27,000 protein-coding genes in the Arabidopsis genome are dedicated to cell wall development; however, only about 130 Arabidopsis genes thus far have experimental evidence validating cell wall function. While many genes have been implicated through co-expression analysis with known genes, a large number are broadly classified as proteins of unknown function (PUFs). Recently the functionality of some of these unknown proteins in cell wall development has been revealed using reverse genetic approaches. Given the large number of cell wall-related PUFs, how do we approach and subsequently prioritize the investigation of such unknown genes that may be essential to or influence plant cell wall development and structure? Here, we address the aforementioned question in two parts; we first identify the different kinds of PUFs based on known and predicted features such as protein domains. Knowledge of inherent features of PUFs may allow for functional inference and a concomitant link to biological context. Secondly, we discuss omics-based technologies and approaches that are helping identify and prioritize cell wall-related PUFs by functional association. In this way, hypothesis-driven experiments can be designed for functional elucidation of many proteins that remain missing links in our understanding of plant cell wall biosynthesis.
Collapse
Affiliation(s)
- Ritesh Mewalal
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
12
|
Gorshkova TA, Kozlova LV, Mikshina PV. Spatial structure of plant cell wall polysaccharides and its functional significance. BIOCHEMISTRY (MOSCOW) 2014; 78:836-53. [PMID: 24010845 DOI: 10.1134/s0006297913070146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plant polysaccharides comprise the major portion of organic matter in the biosphere. The cell wall built on the basis of polysaccharides is the key feature of a plant organism largely determining its biology. All together, around 10 types of polysaccharide backbones, which can be decorated by different substituents giving rise to endless diversity of carbohydrate structures, are present in cell walls of higher plants. Each of the numerous cell types present in plants has cell wall with specific parameters, the features of which mostly arise from the structure of polymeric components. The structure of polysaccharides is not directly encoded by the genome and has variability in many parameters (molecular weight, length, and location of side chains, presence of modifying groups, etc.). The extent of such variability is limited by the "functional fitting" of the polymer, which is largely based on spatial organization of the polysaccharide and its ability to form supramolecular complexes of an appropriate type. Consequently, the carrier of the functional specificity is not the certain molecular structure but the certain type of the molecules having a certain degree of heterogeneity. This review summarizes the data on structural features of plant cell wall polysaccharides, considers formation of supramolecular complexes, gives examples of tissue- and stage-specific polysaccharides and functionally significant carbohydrate-carbohydrate interactions in plant cell wall, and presents approaches to analyze the spatial structure of polysaccharides and their complexes.
Collapse
Affiliation(s)
- T A Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
| | | | | |
Collapse
|
13
|
Zhao X, Ouyang K, Gan S, Zeng W, Song L, Zhao S, Li J, Doblin MS, Bacic A, Chen XY, Marchant A, Deng X, Wu AM. Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba (Rubiaceae) during xylogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:602. [PMID: 25426124 PMCID: PMC4224071 DOI: 10.3389/fpls.2014.00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/16/2014] [Indexed: 05/07/2023]
Abstract
Wood, derived from plant secondary growth, is a commercially important material. Both cellulose and lignin assembly have been well studied during wood formation (xylogenesis), but heteroxylan biosynthesis is less well defined. Elucidation of the heteroxylan biosynthetic pathway is crucial to understand the mechanism of wood formation. Here, we use Neolamarckia cadamba, a fast-growing tropical tree, as a sample to analyze heteroxylan formation at the biochemical and molecular levels during wood formation. Analysis of the non-cellulosic polysaccharides isolated from N. cadamba stems shows that heteroxylans dominate non-cellulosic polysaccharides and increase with xylogenesis. Microsomes isolated from stems of 1-year-old N. cadamba exhibited UDP-Xyl synthase and xylosyltransferase activities with the highest activity present in the middle and basal stem regions. To further understand the genetic basis of heteroxylan synthesis, RNA sequencing (RNA-seq) was used to generate transcriptomes of N. cadamba during xylogenesis. The RNA-seq results showed that genes related to heteroxylan synthesis had higher expression levels in the middle and basal part of the stem compared to the apical part. Our results describe the heteroxylan distribution and heteroxylan synthesis trait in N. cadamba and give a new example for understanding the mechanism of heteroxylan synthesis in tropical tree species in future.
Collapse
Affiliation(s)
- Xianhai Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Kunxi Ouyang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, GuangzhouChina
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
| | - Lili Song
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, HangzhouChina
| | - Shuai Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Juncheng Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, VICAustralia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VICAustralia
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
| | - Alan Marchant
- Centre for Biological Sciences, University of Southampton, SouthamptonUK
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
- College of Forest, South China Agricultural University, GuangzhouChina
- *Correspondence: Xiaomei Deng and Ai-Min Wu, College of Forest, South China Agricultural University, Guangzhou 510642, China e-mail: ;
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, GuangzhouChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, GuangzhouChina
- College of Forest, South China Agricultural University, GuangzhouChina
- *Correspondence: Xiaomei Deng and Ai-Min Wu, College of Forest, South China Agricultural University, Guangzhou 510642, China e-mail: ;
| |
Collapse
|
14
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. Hemicellulose biosynthesis. PLANTA 2013; 238:627-42. [PMID: 23801299 DOI: 10.1007/s00425-013-1921-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/14/2013] [Indexed: 05/17/2023]
Abstract
One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA,
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen X, Vega-Sánchez ME, Verhertbruggen Y, Chiniquy D, Canlas PE, Fagerström A, Prak L, Christensen U, Oikawa A, Chern M, Zuo S, Lin F, Auer M, Willats WGT, Bartley L, Harholt J, Scheller HV, Ronald PC. Inactivation of OsIRX10 leads to decreased xylan content in rice culm cell walls and improved biomass saccharification. MOLECULAR PLANT 2013. [PMID: 23180670 DOI: 10.1093/mp/sss135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
17
|
Hall H, Ellis B. Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem. BMC PLANT BIOLOGY 2013; 13:14. [PMID: 23350960 PMCID: PMC3635874 DOI: 10.1186/1471-2229-13-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. RESULTS By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. CONCLUSIONS The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
Collapse
Affiliation(s)
- Hardy Hall
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Currently: Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
18
|
Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. THE PLANT CELL 2013; 25:270-87. [PMID: 23371948 PMCID: PMC3584541 DOI: 10.1105/tpc.112.107334] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 05/17/2023]
Abstract
Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Stefan Eberhard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Clayton Warder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Chunhua Yuan
- Campus Chemical Instrument Center, Ohio State University, Columbus, Ohio 43210
| | - Zhangying Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Xiang Zhu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-4712
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Jeffrey S. Miller
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - David Baldwin
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Charles Pham
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Division of Biological Sciences, University of Georgia, Athens, Georgia 30602-4712
| | - Ronald Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Alan Darvill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Marcia J. Kieliszewski
- Department of Chemistry and Biochemistry, Biochemistry Facility, Ohio University, Athens, Ohio 45701
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Address correspondence to
| |
Collapse
|
19
|
Nookaraju A, Pandey SK, Bae HJ, Joshi CP. Designing cell walls for improved bioenergy production. MOLECULAR PLANT 2013; 6:8-10. [PMID: 23041788 DOI: 10.1093/mp/sss111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Akula Nookaraju
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
20
|
Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:11-31. [PMID: 23162114 DOI: 10.1093/jxb/ers287] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vascular plants (Tracheophytes) have adapted to a variety of environments ranging from arid deserts to tropical rainforests, and now comprise >250,000 species. While they differ widely in appearance and growth habit, all of them share a similar specialized tissue system (vascular tissue) for transporting water and nutrients throughout the organism. Plant vascular systems connect all plant organs from the shoot to the root, and are comprised of two main tissue types, xylem and phloem. In this review we examine the current state of knowledge concerning the process of vascular tissue formation, and highlight important mechanisms underlying key steps in vascular cell type specification, xylem and phloem tissue patterning, and, finally, the differentiation and maturation of specific xylem cell types.
Collapse
Affiliation(s)
- Mathias Schuetz
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada
| | | | | |
Collapse
|