1
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2025; 32:41-51. [PMID: 39333437 PMCID: PMC11729216 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Liu Q, Yu YY, Wang HY. Differences in CpG island distribution between exogenous and endogenous jaagsiekte sheep retrovirus strains. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:531-539. [PMID: 37901353 PMCID: PMC10612397 DOI: 10.30466/vrf.2022.552748.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2023]
Abstract
The jaagsiekte sheep retrovirus (JSRV), belonging to the betaretrovirus genus of the retroviridae family, includes both exogenous and endogenous jaagsiekte sheep retroviruses (exJSRV and enJSRV, respectively). At the proviral genome level, exJSRV and enJSRV strains have a high degree of similarity with their main variation regions being the LTR, gag, and env genes. In this study, for the first time, we investigated and compared the distribution of CpG islands between these enJSRV and exJSRV strains. Specifically, we analyzed a total of 42 full-length JSRV genomic sequences obtained from the GenBank® database to identify CpG islands in the exJSRV and enJSRV genomes using the MethPrimer software. Our results showed that the CpG islands in the two JSRV strains were mainly distributed in the LTR, gag, and env genes. In exJSRVs, 66.66% (6/9), 33.33% (3/9), and 100% (9/9) of the sequences presented at least one CpG island in LTR, gag, env genes, respectively, and for enJSRVs, 84.84% (28/33), 57.57% (19/33), and 96.96% (32/33) of the sequences presented at least one CpG island in the LTR, gag, and env genes. These findings suggested that the distribution, length, and genetic traits of CpG islands were different for the exJSRV and enJSRV strains. In future, it would be necessary to demonstrate the biological significance of CpG islands within these genes in exJSRV and enJSRV genomes. This will enhance understanding regarding the potential role of CpG islands in epigenetic regulation.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Agricultural Science and Technology, Nanchong Vocational and Technical College, Nanchong, China.
| | | | | |
Collapse
|
3
|
Guo L, Yu Z, Li Q, Liang X, Yang L. Correlation of MLH1 and MSH2 levels with clinicopathologic characteristics in colorectal cancer. Am J Transl Res 2023; 15:1107-1116. [PMID: 36915797 PMCID: PMC10006755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To determine the correlation of MLH1 and MSH2 expressions with clinicopathologic characteristics in colorectal cancer (CC). METHODS Clinical data, CC tissue, and paracancerous tissue from 88 patients treated in Baoji City People's Hospital from February 2015 to February 2017 were analyzed retrospectively. The relative expression levels of MLH1 and MSH2 in the tissues were measured with qRT-PCR, and the relationship of MLH1 and MSH2 with the pathological data of patients was analyzed. The value of MLH1 and MSH2 in the diagnosis of clinical stage, lymph node metastasis, and degree of differentiation in CC patients was analyzed by receiver operating curve (ROC). Cox regression analysis was applied to identify factors affecting prognosis. RESULTS The relative expression levels of MLH1 and MSH2 in CC tissue were lower than those in paracancerous tissue (P < 0.001). Tumor node metastasis stage (III + IV), poor differentiation, and lymph node metastasis were significantly increased in patients with low MLH1 and MSH2 expressions (P < 0.05). The levels of MLH1 and MSH2 in CC tissue of patients at stage I with moderately- or well-differentiated non-metastatic disease were higher than those in patients at stage II-IV with poor differentiation and lymph node metastasis, showing a good predictive ability. The 5-year survival rate of patients with low MLH1 and MSH2 expressions was lower as compared to its counterpart (P < 0.01). CONCLUSION The low expressions of MSH2 and MLH1 in CC tissue have a correlation with pathological characteristics and survival, so they can be used as auxiliary references for the prognosis in CC patients.
Collapse
Affiliation(s)
- Ling Guo
- Pathology Department, The First People's Hospital of Xianyang No. 10, Biyuan West Road, Qindu District, Xianyang 712000, Shaanxi, P. R. China
| | - Zhaohui Yu
- Gastrointestinal Surgery, The First People's Hospital of Xianyang No. 10, Biyuan West Road, Qindu District, Xianyang 712000, Shaanxi, P. R. China
| | - Qin Li
- Geriatric Medicine Department, Baoji City People's Hospital No. 24 Xinhua Lane, Jinger Road, Weibin, Baoji 721000, Shaanxi, P. R. China
| | - Xiaohu Liang
- Oncology Surgery, Baoji City People's Hospital No. 24 Xinhua Lane, Jinger Road, Weibin, Baoji 721000, Shaanxi, P. R. China
| | - Lindong Yang
- Department of Emergency, Baoji City People's Hospital No. 24 Xinhua Lane, Jinger Road, Weibin, Baoji 721000, Shaanxi, P. R. China
| |
Collapse
|
4
|
Shrestha KS, Aska EM, Tuominen MM, Kauppi L. Tissue-specific reduction in MLH1 expression induces microsatellite instability in intestine of Mlh1 +/- mice. DNA Repair (Amst) 2021; 106:103178. [PMID: 34311271 DOI: 10.1016/j.dnarep.2021.103178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
Tumors of Lynch syndrome (LS) patients display high levels of microsatellite instability (MSI), which results from complete loss of DNA mismatch repair (MMR), in line with Knudson's two-hit hypothesis. Why some organs, in particular those of the gastrointestinal (GI) tract, are prone to tumorigenesis in LS remains unknown. We hypothesized that MMR is haploinsufficient in certain tissues, compromising microsatellite stability in a tissue-specific manner before tumorigenesis. Using mouse genetics, we tested how levels of MLH1, a central MMR protein, affect age- and tissue-specific microsatellite stability in vivo and whether elevated MSI is detectable prior to loss of MMR function and to neoplastic growth. To assess putative tissue-specific MMR haploinsufficiency, we determined relevant molecular phenotypes (MSI, Mlh1 promoter methylation status, MLH1 protein and RNA levels) in jejuna of Mlh1+/- mice and compared them to those in spleen, as well as to MMR-proficient and -deficient controls (Mlh1+/+ and Mlh1-/- mice). While spleen MLH1 levels of Mlh1+/- mice were, as expected, approximately 50 % compared to wildtype mice, MLH1 levels in jejunum varied substantially between individual Mlh1+/- mice and moreover, decreased with age. Mlh1+/- mice with soma-wide Mlh1 promoter methylation often displayed severe MLH1 depletion in jejunum. Reduced (but still detectable) MLH1 levels correlated with elevated MSI in Mlh1+/- jejunum. MSI in jejunum increased with age, while in spleens of the same mice, MLH1 levels and microsatellites remained stable. Thus, MLH1 expression levels are particularly labile in intestine of Mlh1+/- mice, giving rise to tissue-specific MSI long before neoplasia. A similar mechanism likely also operates also in the human GI epithelium and could explain the wide range in age-of-onset of LS-associated tumorigenesis.
Collapse
Affiliation(s)
- Kul S Shrestha
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Doctoral Program in Integrative Life Sciences, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elli-Mari Aska
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Doctoral Program in Integrative Life Sciences, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna M Tuominen
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kauppi
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|