1
|
Barata IS, Gomes BC, Rodrigues AS, Rueff J, Kranendonk M, Esteves F. The Complex Dynamic of Phase I Drug Metabolism in the Early Stages of Doxorubicin Resistance in Breast Cancer Cells. Genes (Basel) 2022; 13:1977. [PMID: 36360213 PMCID: PMC9689592 DOI: 10.3390/genes13111977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
The altered activity of drug metabolism enzymes (DMEs) is a hallmark of chemotherapy resistance. Cytochrome P450s (CYPs), mainly CYP3A4, and several oxidoreductases are responsible for Phase I metabolism of doxorubicin (DOX), an anthracycline widely used in breast cancer (BC) treatment. This study aimed to investigate the role of Phase I DMEs involved in the first stages of acquisition of DOX-resistance in BC cells. For this purpose, the expression of 92 DME genes and specific CYP-complex enzymes activities were assessed in either sensitive (MCF-7 parental cells; MCF-7/DOXS) or DOX-resistant (MCF-7/DOXR) cells. The DMEs genes detected to be significantly differentially expressed in MCF-7/DOXR cells (12 CYPs and eight oxidoreductases) were indicated previously to be involved in tumor progression and/or chemotherapy response. The analysis of CYP-mediated activities suggests a putative enhanced CYP3A4-dependent metabolism in MCF-7/DOXR cells. A discrepancy was observed between CYP-enzyme activities and their corresponding levels of mRNA transcripts. This is indicative that the phenotype of DMEs is not linearly correlated with transcription induction responses, confirming the multifactorial complexity of this mechanism. Our results pinpoint the potential role of specific CYPs and oxidoreductases involved in the metabolism of drugs, retinoic and arachidonic acids, in the mechanisms of chemo-resistance to DOX and carcinogenesis of BC.
Collapse
|
2
|
Esteves F, Urban P, Rueff J, Truan G, Kranendonk M. Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding. Int J Mol Sci 2020; 21:E6669. [PMID: 32933097 PMCID: PMC7555755 DOI: 10.3390/ijms21186669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR's degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP's substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - José Rueff
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| |
Collapse
|
3
|
Rueff J, Rodrigues AS, Kranendonk M. A personally guided tour on some of our data with the Ames assay-A tribute to Professor Bruce Ames. Mutat Res 2019; 846:503094. [PMID: 31585631 DOI: 10.1016/j.mrgentox.2019.503094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
In contributing to this Special Issue of Mutation Research dedicated to Professor Bruce N. Ames in recognition of his 90th birthday in December 2018, we intend to portray the importance not only of the Ames Salmonella/mammalian-microsome mutagenicity assay in some of our studies over the years, but also the importance of the insight that Bruce Ames brought to the field of genetic toxicology.
Collapse
Affiliation(s)
- J Rueff
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, nº 6, 1150-008, Lisboa, Portugal.
| | - A S Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, nº 6, 1150-008, Lisboa, Portugal
| | - M Kranendonk
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, nº 6, 1150-008, Lisboa, Portugal
| |
Collapse
|
4
|
Campelo D, Esteves F, Brito Palma B, Costa Gomes B, Rueff J, Lautier T, Urban P, Truan G, Kranendonk M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int J Mol Sci 2018; 19:ijms19123914. [PMID: 30563285 PMCID: PMC6321550 DOI: 10.3390/ijms19123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is the unique redox partner of microsomal cytochrome P450s (CYPs). CPR exists in a conformational equilibrium between open and closed conformations throughout its electron transfer (ET) function. Previously, we have shown that electrostatic and flexibility properties of the hinge segment of CPR are critical for ET. Three mutants of human CPR were studied (S243P, I245P and R246A) and combined with representative human drug-metabolizing CYPs (isoforms 1A2, 2A6 and 3A4). To probe the effect of these hinge mutations different experimental approaches were employed: CYP bioactivation capacity of pre-carcinogens, enzyme kinetic analysis, and effect of the ionic strength and cytochrome b5 (CYB5) on CYP activity. The hinge mutations influenced the bioactivation of pre-carcinogens, which seemed CYP isoform and substrate dependent. The deviations of Michaelis-Menten kinetic parameters uncovered tend to confirm this discrepancy, which was confirmed by CYP and hinge mutant specific salt/activity profiles. CPR/CYB5 competition experiments indicated a less important role of affinity in CPR/CYP interaction. Overall, our data suggest that the highly flexible hinge of CPR is responsible for the existence of a conformational aggregate of different open CPR conformers enabling ET-interaction with structural varied redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bernardo Brito Palma
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| |
Collapse
|
5
|
Campelo D, Lautier T, Urban P, Esteves F, Bozonnet S, Truan G, Kranendonk M. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength. Front Pharmacol 2017; 8:755. [PMID: 29163152 PMCID: PMC5670117 DOI: 10.3389/fphar.2017.00755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
McCammon KM, Panda SP, Xia C, Kim JJP, Moutinho D, Kranendonk M, Auchus RJ, Lafer EM, Ghosh D, Martasek P, Kar R, Masters BS, Roman LJ. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype. J Biol Chem 2016; 291:20487-502. [PMID: 27496950 PMCID: PMC5034044 DOI: 10.1074/jbc.m116.716019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect.
Collapse
Affiliation(s)
- Karen M McCammon
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Satya P Panda
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Chuanwu Xia
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jung-Ja P Kim
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniela Moutinho
- the Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Michel Kranendonk
- the Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Richard J Auchus
- the Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Eileen M Lafer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Debashis Ghosh
- the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Pavel Martasek
- the Department of Pediatrics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 116 36 Prague 1, Czech Republic
| | - Rekha Kar
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Bettie Sue Masters
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229,
| | - Linda J Roman
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229,
| |
Collapse
|
7
|
Palma BB, Moutinho D, Urban P, Rueff J, Kranendonk M. Cytochrome P450 expression system for high-throughput real-time detection of genotoxicity: Application to the study of human CYP1A2 variants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:24-33. [DOI: 10.1016/j.mrgentox.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022]
|
8
|
Brito Palma B, Fisher CW, Rueff J, Kranendonk M. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites. Chem Res Toxicol 2016; 29:747-56. [DOI: 10.1021/acs.chemrestox.5b00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernardo Brito Palma
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| | - Charles W. Fisher
- School
of Pharmacy, Texas Tech University, 1300 Coulter Avenue, Amarillo, Texas 79106, United States
| | - José Rueff
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| | - Michel Kranendonk
- Centre
for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology
and Human Toxicology, NOVA Medical School/FCM, Universidade Nova de Lisboa, CEDOC II Building, Rua Câmara Pestana 6, room 2.23, 1150-082 Lisbon, Portugal
| |
Collapse
|
9
|
Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: Alternative approaches. Regul Toxicol Pharmacol 2015; 71:601-23. [DOI: 10.1016/j.yrtph.2014.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 08/06/2014] [Indexed: 11/21/2022]
|
10
|
Buist H, Bausch-Goldbohm R, Devito S, Venhorst J, Stierum R, Kroese E. WITHDRAWN: Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: An alternative approach. Regul Toxicol Pharmacol 2014; 70:392. [DOI: 10.1016/j.yrtph.2014.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 11/25/2022]
|
11
|
Functional characterization of eight human CYP1A2 variants: the role of cytochrome b5. Pharmacogenet Genomics 2013; 23:41-52. [PMID: 23295917 DOI: 10.1097/fpc.0b013e32835c2ddf] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interindividual variability in cytochrome P450 (CYP)-mediated xenobiotic metabolism is extensive. CYP metabolism requires two electrons, which can be donated by NADPH cytochrome P450 oxidoreductase (CYPOR) and/or cytochrome b5 (b5). Although substantial number of studies have reported on the function and effect of b5 in CYP-mediated catalysis, its mode of action is still not fully understood. OBJECTIVE The aim of this work was to examine the effect of b5 on the activities of eight natural-occurring variants of human CYP1A2, namely, T83M, S212C, S298R, G299S, I314V, I386F, C406Y, and R456H. MATERIALS AND METHODS An approach, as used in our former study was applied, coexpressing these polymorphic CYP1A2 variants separately with CYPOR and b5 in the bacterial cell model BTC-CYP. For each variant, 16 different activity parameters were measured, using eight different substrates. This heterogeneous data set was merged with the one of our former study (i.e. without b5) and a multivariate analysis was carried out. RESULTS This analysis indicated that b5 seems to have the ability to affect CYP1A2 variants to behave more like the wild-type variant. This was especially the case for variant I386F, for which the presence of b5 was crucial to show activity. Variants T83M and C406Y showed considerably different activity-profiles when in the presence of b5. Furthermore, our data seem to implicate CYP1A2 residue G299 in its interaction with CYPOR and/or b5. CONCLUSION Results indicate the ability of b5 to affect CYP1A2 variants to behave more like the wild-type variant, attenuating detrimental effects of structural mutations of these variants, seemingly through extensive allosteric effects.
Collapse
|
12
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
13
|
Moutinho D, Marohnic CC, Panda SP, Rueff J, Masters BS, Kranendonk M. Altered human CYP3A4 activity caused by Antley-Bixler syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system. Drug Metab Dispos 2012; 40:754-60. [PMID: 22252407 DOI: 10.1124/dmd.111.042820] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) variants have been described in patients with perturbed steroidogenesis and sexual differentiation, related to Antley-Bixler syndrome (ABS). It is important to determine the effect of these variants on CYP3A4, the major drug-metabolizing cytochrome P450 (P450) in humans. In this study, 12 CYPOR_ABS variants were separately coexpressed with CYP3A4 in a robust in vitro system to evaluate the effects of these variants on CYP3A4 activity in a milieu that recapitulates the stoichiometry of the mammalian systems. Full-length CYPOR variants were coexpressed with CYP3A4, resulting in relative expression levels comparable to those found in hepatic tissue. Dibenzylfluorescein (DBF), a CYP3A-specific reporter substrate (Biopharm Drug Dispos 24:375-384, 2003), was used to compare the variants and wild-type (WT) CYPOR activities with that of human liver microsomes. CYP3A4, combined with WT CYPOR, demonstrated kinetic parameters (k(cat) and K(m)) equal to those for pooled human liver microsomes. CYPOR variants Y181D, Y459H, V492E, L565P, and R616X all demonstrated maximal loss of CYP3A4 catalytic efficiency, whereas R457H and G539R retained ∼10 and 30% activities, respectively. Conversely, variants P228L, M263V, A287P, and G413S each showed WT-like capacity (k(cat)/K(m)), with the A287P variant being formerly reported to exhibit substantially lower catalytic efficiency. In addition, Q153R exhibited 60% of WT CYPOR capacity to support the DBF O-debenzylation reaction, contradicting increased catalytic efficiency (k(cat)/K(m)) relative to that for the WT, reported previously. Our data indicate the importance of use of simulated, validated in vitro systems, employing full-length proteins with appropriate stoichiometric incorporation of protein partners, when pharmacogenetic predictions are to be made for P450-mediated biotransformation.
Collapse
Affiliation(s)
- Daniela Moutinho
- Department of Genetics, Faculty of Medical Sciences, Centro de Investigação em Genética Molecular Humana, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Small, highly strained heterocycles are archetypical alkylating agents (oxiranes, beta-lactones, aziridinium, and thiirinium ions). Oxetanes, which are tetragonal ethers, are higher homologues of oxiranes and reduced counterparts of beta-lactones, and would therefore be expected to be active alkylating agents. Oxetanes are widely used in the manufacture of polymers, especially in organic light-emitting diodes (OLEDs), and are present, as a substructure, in compounds such as the widely used antimitotic taxol. Whereas the results of animal tests suggest that trimethylene oxide (TMO), the parent compound, and beta,beta-dimethyloxetane (DMOX) are active carcinogens at the site of injection, no studies have explored the alkylating ability and genotoxicity of oxetanes. This work addresses the issue using a mixed methodology: a kinetic study of the alkylation reaction of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilicity similar to that of DNA bases, by three oxetanes (TMO, DMOX, and methyloxetanemethanol), and a mutagenicity, genotoxicity, and cell viability study (Salmonella microsome test, BTC E. coli test, alkaline comet assay, and MTT assay). The results suggest either that oxetanes lack genotoxic capacity or that their mode of action is very different from that of epoxides and beta-lactones.
Collapse
|
15
|
Functional characterization of eight human cytochrome P450 1A2 gene variants by recombinant protein expression. THE PHARMACOGENOMICS JOURNAL 2010; 10:478-88. [DOI: 10.1038/tpj.2010.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Marohnic CC, Panda SP, McCammon K, Rueff J, Masters BSS, Kranendonk M. Human cytochrome P450 oxidoreductase deficiency caused by the Y181D mutation: molecular consequences and rescue of defect. Drug Metab Dispos 2009; 38:332-40. [PMID: 19884324 DOI: 10.1124/dmd.109.030445] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Patients with congenital adrenal hyperplasia, exhibiting combined CYP17 and CYP21 deficiency, were shown by Arlt et al. (2004) to harbor a 541T-->G mutation in exon 5 of POR (encoding NADPH-cytochrome P450 reductase, CYPOR), which resulted in a Y181D substitution that obliterated electron transfer capacity. Using bacterial expression models, we examined catalytic and physical properties of the human CYPOR Y181D variant. As purified, Y181D lacked flavin mononucleotide (FMN) and NADPH-cytochrome c reductase (NCR) activity but retained normal flavin adenine dinucleotide binding and NADPH utilization. Titration of the purified protein with FMN restored 64 of wild-type (WT) NCR activity in Y181D with an activation constant of approximately 2 microM. As determined by FMN fluorescence quenching, Y181D had K(d)(FMN) = 7.3 microM. Biplasmid coexpression of CYPOR and CYP1A2, at the physiological ratio of approximately 1:10 in the engineered MK_1A2_POR Escherichia coli strain, showed the compromised capacity of Y181D to support CYP1A2-catalyzed metabolism of the procarcinogens 2-aminoanthracene, 2-amino-3-methylimidazo(4,5-f)quinoline, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Isolated MK1A2_POR membranes confirmed FMN stimulation of Y181D NCR activity with a 1.6 microM activation constant. CYP1A2 ethoxyresorufin-O-dealkylase activity of the MK1A2_POR(Y181D) membranes, undetectable in the absence of added FMN, increased to 37% of MK1A2_POR(WT) membranes with a 1.2 microM FMN activation constant. Therefore, we conclude that compromised FMN binding is the specific molecular defect causing POR deficiency in patients with Y181D mutation and that this defect, in large part, can be overcome in vitro by FMN addition.
Collapse
Affiliation(s)
- Christopher C Marohnic
- Department of Biochemistry, 7760, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Impairment of human CYP1A2-mediated xenobiotic metabolism by Antley-Bixler syndrome variants of cytochrome P450 oxidoreductase. Arch Biochem Biophys 2008; 475:93-9. [PMID: 18455494 DOI: 10.1016/j.abb.2008.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/08/2023]
Abstract
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: POR(null), POR(wt), POR(YH), and POR(VE), for which equivalent CYP1A2 and CYPOR levels were confirmed, except for POR(null), not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in POR(YH) and POR(VE) models than in POR(wt), indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.
Collapse
|