1
|
Pelclova D, Bradna P, Lischkova L, Zdimal V, Maskova L, Klusackova P, Kolesnikova V, Ondracek J, Schwarz J, Pohanka M, Navratil T, Vlckova S, Fenclova Z, Duskova J, Rossnerova A, Roubickova A. Are there Risks from Nanocomposite Restoration Grinding for Dentists? Int Dent J 2024:S0020-6539(24)00144-8. [PMID: 39060197 DOI: 10.1016/j.identj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES To evaluate the effect of short-term inhalational exposure to nanoparticles released during dental composite grinding on oxidative stress and antioxidant capacity markers. MATERIALS AND METHODS Twenty-four healthy volunteers were examined before and after exposure in dental workshop. They spent 76.8 ± 0.7 min in the testing room during grinding of dental nanocomposites. The individual exposure to aerosol particles in each participant´s breathing zones was monitored using a personal nanoparticle sampler (PENS). Exhaled breath condensate (EBC), blood, and urine samples were collected pre- and post-exposure to measure one oxidative stress marker, i.e., thiobarbituric acid reactive substances (TBARS), and two biomarkers of antioxidant capacity, i.e., ferric-reducing antioxidant power (FRAP) and reduced glutathione (GSH) by spectrophotometry. Spirometry and fractional exhaled nitric oxide (FeNO) were used to evaluate the effect of acute inhalational exposure. RESULTS Mean mass of dental nanocomposite ground away was 0.88 ± 0.32 g. Average individual doses of respirable particles and nanoparticles measured by PENS were 380 ± 150 and 3.3 ± 1.3 μg, respectively. No significant increase of the post-exposure oxidative stress marker TBARS in EBC and plasma was seen. No decrease in antioxidant capacity biomarkers FRAP and GSH in EBC post-exposure was seen, either. Post-exposure, conjunctival hyperemia was seen in 62.5% volunteers; however, no impairment in spirometry or FeNO results was observed. No correlation of any biomarker measured with individual exposure was found, however, several correlations with interfering factors (age, body mass index, hypertension, dyslipidemia, and environmental pollution parameters) were seen. CONCLUSIONS This study, using oxidative stress biomarker and antioxidant capacity biomarkers in biological fluids of volunteers during the grinding of dental nanocomposites did not prove a negative effect of this intense short-term exposure. However, further studies are needed to evaluate oxidative stress in long-term exposure of both stomatologists and patients and diverse populations with varying health statuses.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ludmila Maskova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Schwarz
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Tomas Navratil
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Duskova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Nanotoxicology and Molecular Epidemiology, Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Klusackova P, Lischkova L, Kolesnikova V, Navratil T, Vlckova S, Fenclova Z, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Dvorackova S, Rossnerova A, Pohanka M, Bradna P, Zdimal V, Pelclova D. Elevated glutathione in researchers exposed to engineered nanoparticles due to potential adaptation to oxidative stress. Nanomedicine (Lond) 2024; 19:185-198. [PMID: 38275177 DOI: 10.2217/nnm-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Aim: To find a practical biomonitoring method for researchers exposed to nanoparticles causing oxidative stress. Methods: In a continuation of a study in 2016-2018, biological samples (plasma, urine and exhaled breath condensate [EBC]) were collected in 2019-2020 from 43 researchers (13.8 ± 3.0 years of exposure) and 45 controls. Antioxidant status was assessed using glutathione (GSH) and ferric-reducing antioxidant power, while oxidative stress was measured as thiobarbituric acid reactive substances, all using spectrophotometric methods. Researchers' personal nanoparticle exposure was monitored. Results: Plasma GSH was elevated in researchers both before and after exposure (p < 0.01); postexposure plasma GSH correlated with nanoparticle exposure, and GSH in EBC increased. Conclusion: The results suggest adaptation to chronic exposure to nanoparticles, as monitored by plasma and EBC GSH.
Collapse
Affiliation(s)
- Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Tomas Navratil
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 182 00, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Lucie Ondrackova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Martin Kostejn
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Stepanka Dvorackova
- Faculty of Mechanical Engineering, Department of Machining & Assembly, Department of Engineering Technology, Department of Material Science, Technical University of Liberec, Liberec, 461 17, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Nanotoxicology & Molecular Epidemiology, Prague, 142 20, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, 500 01, Czech Republic
| | - Pavel Bradna
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, 165 02, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Prague, 128 00, Czech Republic
| |
Collapse
|
3
|
Ceppi M, Smolkova B, Staruchova M, Kazimirova A, Barancokova M, Volkovova K, Collins A, Kocan A, Dzupinkova Z, Horska A, Buocikova V, Tulinska J, Liskova A, Mikusova ML, Krivosikova Z, Wsolova L, Kuba D, Rundén-Pran E, El Yamani N, Longhin EM, Halašová E, Kyrtopoulos S, Bonassi S, Dusinska M. Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503572. [PMID: 36669817 DOI: 10.1016/j.mrgentox.2022.503572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated. The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay). Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively. Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.
Collapse
Affiliation(s)
- Marcello Ceppi
- Biostatistics Unit, San Martino Policlinic Hospital, Genoa, Italy.
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Slovakia.
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Andrew Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Anton Kocan
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Zuzana Dzupinkova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia; Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| | - Alexandra Horska
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Slovakia.
| | - Jana Tulinska
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, Slovakia.
| | - Aurelia Liskova
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, Slovakia.
| | | | - Zora Krivosikova
- Department of Clinical and Experimental Pharmacotherapy, Slovak Medical University, Bratislava, Slovakia.
| | - Ladislava Wsolova
- Institute of Biophysics, Informatics and BioStatistics, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia.
| | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia.
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Naouale El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Eleonora Martha Longhin
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Soterios Kyrtopoulos
- Institute of Biology, Medicinal Chemistry, and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | - Stefano Bonassi
- IRCCS San Raffaele Pisana, Unit of Clinical and Molecular Epidemiology, Rome, Italy.
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| |
Collapse
|
4
|
An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc 2020; 15:3844-3878. [PMID: 33199871 DOI: 10.1038/s41596-020-0401-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.
Collapse
|
5
|
Terrazas SIBM, Galan BSM, De Carvalho FG, Venancio VP, Antunes LMG, Papoti M, Toro MJU, da Costa IF, de Freitas EC. Açai pulp supplementation as a nutritional strategy to prevent oxidative damage, improve oxidative status, and modulate blood lactate of male cyclists. Eur J Nutr 2019; 59:2985-2995. [DOI: 10.1007/s00394-019-02138-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023]
|
6
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
7
|
Løhr M, Jensen A, Eriksen L, Grønbæk M, Loft S, Møller P. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells. Mutagenesis 2015; 30:695-700. [DOI: 10.1093/mutage/gev031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456-480. [PMID: 25897356 PMCID: PMC4398902 DOI: 10.4239/wjd.v6.i3.456] [Citation(s) in RCA: 706] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.
Collapse
|
9
|
The comet assay as a tool for human biomonitoring studies: The ComNet Project. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:27-39. [DOI: 10.1016/j.mrrev.2013.10.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
10
|
Kaur R, Kaur S, Lata M. Evaluation of DNA damage in agricultural workers exposed to pesticides using single cell gel electrophoresis (comet) assay. INDIAN JOURNAL OF HUMAN GENETICS 2012; 17:179-87. [PMID: 22345990 PMCID: PMC3276987 DOI: 10.4103/0971-6866.92100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND: Pesticides are used in agriculture to protect crops, but they pose a potential risk to farmers and environment. The aim of the present study is to investigate the relation between the occupational exposure to various pesticides and the presence of DNA damage. MATERIALS AND METHODS: Blood samples of 210 exposed workers (after a day of intense spraying) and 50 control subjects belonging to various districts of Punjab (India) were evaluated using Comet assay. Sixty workers who showed DNA damage were selected for follow up at 5-6 months after the first sampling during a low or null spraying period. RESULTS: Significant differences were found in DNA damage between freshly exposed workers and controls and freshly exposed and followed up cases. There was significant increase in the comet parameters viz. mean comet tail length and frequency of cells showing migration in exposed workers as compared to controls (72.22 ± 20.76 vs. 46.92 ± 8.17, P<0.001; 31.79 vs. 5.77, P<0.001). In the second samples, followed up cases showed significant decrease in frequency of damaged cells as compared to freshly exposed workers of first sampling (P<0.05). The confounding factors such as variable duration of pesticide exposure, age, smoking, drinking and dietary habits etc which were expected to modulate the damage, were instead found to have no significant effect on DNA fragmentation. CONCLUSION: The evidence of a genetic hazard related to exposure resulting from the intensive use of pesticides stresses the need for educational programs for agricultural workers to reduce the use of chemicals in agriculture.
Collapse
Affiliation(s)
- Raminderjeet Kaur
- Department of Human Biology, Punjabi University, Patiala-147 002, Punjab, India
| | | | | |
Collapse
|
11
|
Kaushik R, Khaliq F, Subramaneyaan M, Ahmed RS. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers. Hum Exp Toxicol 2012; 31:1083-91. [DOI: 10.1177/0960327112450899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV1), forced vital capacity (FVC), FEV1/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.
Collapse
Affiliation(s)
- R Kaushik
- Department of Physiology, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| | - F Khaliq
- Department of Physiology, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| | - M Subramaneyaan
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| | - RS Ahmed
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat Res 2012; 736:130-7. [PMID: 22450146 DOI: 10.1016/j.mrfmmm.2012.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these proteins in DNA damage processing via DNA damage signalling.
Collapse
|
13
|
Vitamin C levels in blood are influenced by polymorphisms in glutathione S-transferases. Eur J Nutr 2010; 50:437-46. [DOI: 10.1007/s00394-010-0147-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
14
|
The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Interact 2010; 188:334-9. [PMID: 20637748 DOI: 10.1016/j.cbi.2010.07.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 01/16/2023]
Abstract
Although we have greatly benefited from the use of traditional epidemiological approaches in linking environmental exposure to human disease, we are still lacking knowledge in to how such exposure participates in disease development. However, molecular epidemiological studies have provided us with evidence linking oxidative stress with the pathogenesis of human disease and in particular carcinogenesis. To this end, oxidative stress-based biomarkers have proved to be essential in revealing how oxidative stress may be mediating toxicity induced by many known carcinogenic environmental agents. Therefore, throughout this review article, we aim to address the current state of oxidative stress-based biomarker development with major emphasis pertaining to biomarkers of DNA, lipid and protein oxidation.
Collapse
|
15
|
Park E, Kyoung Park Y, Kim SM, Lee HJ, Kang MH. Susceptibility to Oxidative Stress is Greater in Korean Patients with Coronary Artery Disease than Healthy Subjects. J Clin Biochem Nutr 2009; 45:341-6. [PMID: 19902026 PMCID: PMC2771257 DOI: 10.3164/jcbn.09-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022] Open
Abstract
There are some evidences that the increased oxidative stress and thus increased oxidizability of lipoproteins and DNA can contribute to the development of certain human diseases, such as cardiovascular disease. To confirm the association of DNA damage with cardiovascular disease, we investigated susceptibility of DNA to oxidation in lymphocytes and oxidative stress related parameters in blood of patients with coronary artery disease (CAD). Subjects were consisted of 42 patients (27 men, 15 women) with documented CAD and 49 apparently healthy subjects (33 men, 16 women) as controls. Cellular DNA damage induced by 100 microM H(2)O(2) was measured using Comet assay and quantified by TL. There were no differences in age (61.4 +/- 1.7 years vs 62.0 +/- 2.2 years) between the two groups. All the findings were shown to be independent of either sex or smoking habit. The patients showed significantly higher TL (87.3 +/- 1.6 microm) compared to the control (79.3 +/- 1.7 microm, p<0.01). Plasma TRAP, vitamin C, gamma-tocopherol, and alpha-carotene levels in patients group were lower than those of control groups, while erythrocytic catalase activity increased in patients group. In conclusion, we observed that reduced overall antioxidant status was closely connected to higher susceptibility of DNA damage in CAD patients.
Collapse
Affiliation(s)
- Eunju Park
- Dept. of Food & Nutrition, Kyungnam University, Masan 631-701, Korea
| | - Yoo Kyoung Park
- Dept. of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 446-791, Korea
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 130-791, Korea
| | - Sang-Mi Kim
- Dept. of Food and Nutrition, College of Life Science & Nanotechnology, Daedeok Valley Campus, Hannam University, Daejeon, Korea
| | - Hye-Jin Lee
- Dept. of Food and Nutrition, College of Life Science & Nanotechnology, Daedeok Valley Campus, Hannam University, Daejeon, Korea
| | - Myung-Hee Kang
- Dept. of Food and Nutrition, College of Life Science & Nanotechnology, Daedeok Valley Campus, Hannam University, Daejeon, Korea
| |
Collapse
|
16
|
Azqueta A, Shaposhnikov S, Collins AR. DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutat Res 2008; 674:101-8. [PMID: 19041417 DOI: 10.1016/j.mrgentox.2008.10.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 10/29/2008] [Indexed: 01/01/2023]
Abstract
DNA oxidation, which can have potentially serious mutagenic consequences, commonly accompanies exposure to environmental mutagens. Oxidised bases can be measured chromatographically, but spurious oxidation during sample preparation leads to serious over-estimation of low levels of damage. A more reliable approach is to employ endonucleases specific for oxidised bases, to introduce breaks in cellular DNA that are then most commonly measured using the comet assay (alkaline single cell gel electrophoresis). The two enzymes in general use are formamidopyrimidine DNA glycosylase, which detects primarily 8-oxo-7,8-dihydroguanine (8-oxoGua), and endonuclease III which recognises oxidised pyrimidines. We give a brief account of the recommended experimental procedures, and then describe applications in various areas of environmental research. Cultured cell lines or white blood cells have been exposed to a range of environmental mutagens, including natural products, industrial chemicals, radiation and nanoparticles. In vivo exposure of animals and humans to pollutants is more challenging but can give particularly valuable information in relation to real life exposure. Possibly the most useful application is in biomonitoring of human population groups suffering actual exposure to environmental or occupational mutagens. Finally, the potential use of this technique to monitor effects of contaminants in the natural environment has yet to be fully exploited.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway.
| | | | | |
Collapse
|