1
|
DiPeso L, Pendyala S, Huang HZ, Fowler DM, Hatch EM. Image-based identification and isolation of micronucleated cells to dissect cellular consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.04.539483. [PMID: 37205341 PMCID: PMC10187275 DOI: 10.1101/2023.05.04.539483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in isolating cells based on visual phenotypes have transformed our ability to identify the mechanisms and consequences of complex traits. Micronucleus (MN) formation is a frequent outcome of genome instability, triggers extensive changes in genome structure and signaling coincident with MN rupture, and is almost exclusively defined by visual analysis. Automated MN detection in microscopy images has proved challenging, limiting discovery of the mechanisms and consequences of MN. In this study we describe two new MN segmentation modules: a rapid model for classifying micronucleated cells and their rupture status (VCS MN), and a robust model for accurate MN segmentation (MNFinder) from a broad range of cell lines. As proof-of-concept, we define the transcriptome of non-transformed human cells with intact or ruptured MN after chromosome missegregation by combining VCS MN with photoactivation-based cell isolation and RNASeq. Surprisingly, we find that neither MN formation nor rupture triggers a strong unique transcriptional response. Instead, transcriptional changes appear correlated with small increases in aneuploidy in these cell classes. Our MN segmentation modules overcome a significant challenge with reproducible MN quantification, and, joined with visual cell sorting, enable the application of powerful functional genomics assays to a wide-range of questions in MN biology.
Collapse
Affiliation(s)
- Lucian DiPeso
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular & Cellular Biology, University of Washington, Seattle, WA, USA
| | | | - Heather Z Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Barrera LM, Ortiz LD, Grisales HDJ, Camargo M. Survival analysis and associated factors of highgrade glioma patients. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:191-206. [PMID: 39088535 PMCID: PMC11374120 DOI: 10.7705/biomedica.6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/18/2024] [Indexed: 08/03/2024]
Abstract
Introduction High-grade gliomas are the most common primary brain tumors in adults, and they usually have a quick fatal course. Average survival is 18 months, mainly, because of tumor resistance to Stupp protocol. Objective To determine high-grade glioma patient survival and the effect of persuasion variables on survival. Materials and methods We conducted a longitudinal descriptive study in which 80 untreated recently diagnosed high-grade glioma patients participated. A survey was conducted regarding their exposure to some risk factors, degree of genetic instability in peripheral blood using micronucleus quantification on binuclear lymphocytes, micronuclei in reticulocytes and sister-chromatid exchanges in lymphocytes. In the statistical analysis, this study constructed life tables, used the Kaplan-Meier, and the log-rank test, and in the multivariate analysis, a Cox proportional hazards model was constructed. Results Eighty patients' clinical, demographic and lifestyle characteristics were analyzed, as well as their survival rates and the average survival time is 784 days (interquartile range: 928). Factors like age, exposure at work to polycyclic hydrocarbons and the number of sister-chromatid exchanges in lymphocytes in the first sampling was significantly survivalrelated in the multivariate analysis. Conclusion We determined that only three of the analyzed variables have an important effect on survival time when it comes to high-grade glioma patients.
Collapse
Affiliation(s)
- Lina Marcela Barrera
- Grupo de Investigación en Ciencias Médicas, Escuela Ciencias de la Vida, Programa de Medicina, Universidad EIA, Medellín, Colombia
| | - Leon Darío Ortiz
- Instituto de Cancerología, Clínica Las Américas, Medellín, Colombia
| | - Hugo de Jesús Grisales
- Grupo de Investigación Demografía y Salud, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
3
|
Lynch AM, Howe J, Hildebrand D, Harvey JS, Burman M, Harte DSG, Chen L, Kmett C, Shi W, McHugh CF, Patel KK, Junnotula V, Kenny J, Haworth R, Wills JW. N-Nitrosodimethylamine investigations in Muta™Mouse define point-of-departure values and demonstrate less-than-additive somatic mutant frequency accumulations. Mutagenesis 2024; 39:96-118. [PMID: 38183622 DOI: 10.1093/mutage/geae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024] Open
Abstract
The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.
Collapse
Affiliation(s)
- Anthony M Lynch
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Jonathan Howe
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | | | - James S Harvey
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Mark Burman
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Danielle S G Harte
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Liangfu Chen
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Casey Kmett
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Wei Shi
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Charles F McHugh
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Kinnari K Patel
- BIB, GSK R&D, Upper Providence, Collegeville, PA, United States
| | | | - Julia Kenny
- TPPS, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | | | - John W Wills
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
4
|
Zhu X, Cao L, Liu Y, Tang X, Miao Y, Zhang J, Zhang L, Jia Z, Chen J. Genotoxicity of bisphenol AF in rats: Detrimental to male reproductive system and probable stronger micronucleus induction potency than BPA. J Appl Toxicol 2024; 44:428-444. [PMID: 37837293 DOI: 10.1002/jat.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Bisphenol AF (BPAF), as one of structural analogs of BPA, has been increasingly used in recent years. However, limited studies have suggested its adverse effects similar to or higher than BPA. In order to explore the general toxicity and genotoxicity of subacute exposure to BPAF, the novel 28-day multi-endpoint (Pig-a assay + micronucleus [MN] test + comet assay) genotoxicity evaluation platform was applied. Male rats were randomly distributed into seven main experimental groups and four satellite groups. The main experimental groups included BPAF-treated groups (0.5, 5, and 50 μg/kg·bw/d), BPA group (10 μg/kg·bw/d), two solvent control groups (PBS and 0.1% ethanol/99.9% oil), and one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw). The satellite groups included BPAF high-dose recovery group (BPAF-HR), oil recovery group (oil-R), ENU recovery group (ENU-R), and PBS recovery group (PBS-R). All groups received the agents orally via gavage for 28 consecutive days, and satellite groups were given a recovery period of 35 days. Among all histopathologically examined organs, testis and epididymis damage was noticed, which was further manifested as blood-testis barrier (BTB) junction protein (Connexin 43 and Occludin) destruction. BPAF can induce micronucleus production and DNA damage, but the genotoxic injury can be repaired after the recovery period. The expression of DNA repair gene OGG1 was downregulated by BPAF. To summarize, under the design of this experiment, male reproductive toxicity of BPAF was noticed, which is similar to that of BPA, but its ability to induce micronucleus production may be stronger than that of BPA.
Collapse
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Second People's Hospital of Yibin City, Yibin, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital of Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
6
|
Smith‐Roe SL, Garantziotis S, Church RL, Bemis JC, Torous DK, Shepard KG, Hobbs CA, Waidyanatha S, Mutlu E, Shockley KR, Kissling GE, McBride SJ, Xie G, Cristy T, Pierfelice J, Witt KL. A cross-sectional clinical study in women to investigate possible genotoxicity and hematological abnormalities related to the use of black cohosh botanical dietary supplements. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:389-399. [PMID: 36323641 PMCID: PMC10018809 DOI: 10.1002/em.22516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Black cohosh (BC; Actaea racemosa L.), a top-selling botanical dietary supplement, is marketed to women primarily to ameliorate a variety of gynecological symptoms. Due to widespread usage, limited safety information, and sporadic reports of hepatotoxicity, the Division of the National Toxicology Program (DNTP) initially evaluated BC extract in female rats and mice. Following administration of up to 1000 mg/kg/day BC extract by gavage for 90 days, dose-related increases in micronucleated peripheral blood erythrocytes were observed, along with a nonregenerative macrocytic anemia resembling megaloblastic anemia in humans. Because both micronuclei and megaloblastic anemia may signal disruption of folate metabolism, and inadequate folate levels in early pregnancy can adversely affect neurodevelopment, the DNTP conducted a pilot cross-sectional study comparing erythrocyte micronucleus frequencies, folate and B12 levels, and a variety of hematological and clinical chemistry parameters between women who used BC and BC-naïve women. Twenty-three women were enrolled in the BC-exposed group and 28 in the BC-naïve group. Use of any brand of BC-only supplement for at least 3 months was required for inclusion in the BC-exposed group. Supplements were analyzed for chemical composition to allow cross-product comparisons. All participants were healthy, with no known exposures (e.g., x-rays, certain medications) that could influence study endpoints. Findings revealed no increased micronucleus frequencies and no hematological abnormalities in women who used BC supplements. Although reassuring, a larger, prospective study with fewer confounders (e.g., BC product diversity and duration of use) providing greater power to detect subtle effects would increase confidence in these findings.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Stavros Garantziotis
- Clinical Research Branch, Division of Intramural ResearchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Rebecca L. Church
- Clinical Research Branch, Division of Intramural ResearchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | | | | | - Kim G. Shepard
- Genetic and Molecular Toxicology ProgramIntegrated Laboratory Systems, LLC (an Inotiv Company)Research Triangle ParkNorth CarolinaUSA
| | - Cheryl A. Hobbs
- Genetic and Molecular Toxicology ProgramIntegrated Laboratory Systems, LLC (an Inotiv Company)Research Triangle ParkNorth CarolinaUSA
| | - Suramya Waidyanatha
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Esra Mutlu
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Keith R. Shockley
- Biostatistics and Computational Biology BranchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Grace E. Kissling
- Biostatistics and Computational Biology BranchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Sandra J. McBride
- Social and Scientific Systems, Inc.A DLH Holdings CorpDurhamNorth CarolinaUSA
| | - Guanhua Xie
- Social and Scientific Systems, Inc.A DLH Holdings CorpDurhamNorth CarolinaUSA
| | | | | | - Kristine L. Witt
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
7
|
Zhu X, Zeng Z, Chen Y, Li R, Tang X, Zhu X, Huo J, Liu Y, Zhang L, Chen J. Genotoxicity of three mycotoxin contaminants of rice: 28-day multi-endpoint assessment in rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 867:503369. [PMID: 34266625 DOI: 10.1016/j.mrgentox.2021.503369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Deoxynivalenol (DON), zearalenone (ZEN), and fumonisin B1 (FB1), as the main mycotoxins contaminating rice, often coexist in food. Thus, we have measured the genotoxicity of the three rice fungal contaminants, singly and in different combinations, with a 28-day multi-endpoint (Pig-a assay + in vivo micronucleus [MN] test + comet assay) genotoxicity platform. Male Sprague-Dawley rats received the agents orally via gavage for 28 consecutive days, before performing the abovementioned tests. Results indicated that low dose of a single mycotoxin did not show significant genotoxicity. However, some of these mycotoxins in combination induced significant genotoxicity in the peripheral blood and tissues, at sacrifice. In the peripheral blood, the binary combination of DON and FB1 significantly induced MN. In the liver, ZEN might aggravate the DNA-damaging effects of DON and FB1. Therefore, the genotoxicity of sub-chronic exposure to mycotoxins in combination cannot be ignored.
Collapse
Affiliation(s)
- Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhu Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yiyi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ruirui Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xuejiao Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jiao Huo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yunjie Liu
- Graduate Department, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
No evidence for genotoxicity in mice due to exposure to intermediate-frequency magnetic fields used for wireless power-transfer systems. Mutat Res 2021; 863-864:503310. [PMID: 33678242 DOI: 10.1016/j.mrgentox.2021.503310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Time varying magnetic fields (MFs) are used for the wireless power-transfer (WPT) technology. Especially, 85 kHz band MFs, which are included in the intermediate frequency (IF) band (300 Hz - 10 MHz), are commonly used WPT system for charging electric vehicles. Those applications of WPT technology have elicited public concern about health effects of IF-MF. However, existing data from health risk assessments are insufficient and additional data are needed. We assessed the genotoxic effects of IF-MF exposure on erythroid differentiation in mice. A high-intensity IF-MF mouse exposure system was constructed to induce an average whole-body electric field of 54.1 V/m. Blood samples were obtained from male mice before and after a 2-week IF-MF exposure (1 h/day, total: 10 h); X-irradiated mice were used as positive controls. We analyzed the blood samples with the micronucleus (MN) test and the Pig-a mutation assay. No significant differences were seen between IF-MF-exposed and sham-exposed mice in the frequencies of either MN or Pig-a mutations in mature erythrocytes and reticulocytes. IF-MF exposure did not induce genotoxicity in vivo under the study conditions (2.36× the basic restriction for occupational exposure, 22.9 V/m, in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines). The absence of significant biological effects due to IF-MF exposure supports the practical application of this technology.
Collapse
|
9
|
D'Agostini F, La Maestra S. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:195-240. [PMID: 34611757 DOI: 10.1007/398_2021_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater and marine water bodies receive chemical contaminants from industrial, agricultural, urban, and domestic wastes. Eco-genotoxicity assays are useful tools to assess the cumulative genotoxicity of these pollutants. Fish are suitable indicators for biomonitoring of mutagenic and carcinogenic pollution.In this review, we present a complete overview of the studies performed so far using the micronucleus test in peripheral erythrocytes of fish exposed to polluted water. We have listed all the species of fish used and the geographical distribution of the investigations. We have analyzed and discussed all technical aspects of using this test in fish, as well as the advantages and disadvantages of the different experimental protocols. We have reported the results of all studies. This assay has become, for years, one of the simplest, fastest, and most cost-effective for assessing genotoxic risk in aquatic environments. However, there are still several factors influencing the variability of the results. Therefore, we have given indications and suggestions to achieve a standardization of experimental procedures and ensure uniformity of future investigations.
Collapse
|
10
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
11
|
Walker VE, Walker DM, Ghanayem BI, Douglas GR. Analysis of Biomarkers of DNA Damage and Mutagenicity in Mice Exposed to Acrylonitrile. Chem Res Toxicol 2020; 33:1623-1632. [PMID: 32529832 DOI: 10.1021/acs.chemrestox.0c00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male lacZ transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.5 (wild-type mice only), 10, 20, or 60 (CYP2E1-null mice only) mg/kg body weight by gavage for 6 weeks (5 days/week) produced no elevations in the frequencies of micronucleated erythrocytes, but induced significant dose-dependent increases in DNA damage, detected by the alkaline (pH >13) Comet assay, in one target tissue (forestomach) and one nontarget tissue (liver) of wild-type mice only. ACN exposures by gavage also caused significant dose-related elevations in the frequencies of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) reporter gene of T-lymphocytes from spleens of wild-type mice; however, Hprt mutant frequencies were significantly increased in CYP2E1-null mice only at a high dose of ACN (60 mg/kg) that is lethal to wild-type mice. Similarly, drinking water exposures of lacZ transgenic mice to 0, 100, 500, or 750 ppm ACN for 4 weeks caused significant dose-dependent elevations in Hprt mutant frequencies in splenic T-cells; however, these ACN exposures did not increase the frequency of lacZ transgene mutations above spontaneous background levels in several tissues from the same animals. Together, the Comet assay and Hprt mutant frequency data from these studies indicate that oxidative metabolism of ACN by CYP2E1 to CEO is central to the induction of the majority of DNA damage and mutations in ACN-exposed mice, but ACN itself also may contribute to the carcinogenic modes of action via mechanisms involving direct and/or indirect DNA reactivity.
Collapse
Affiliation(s)
- Vernon E Walker
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States.,Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405, United States.,The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States
| | - Dale M Walker
- The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States.,Experimental Pathology Laboratories, Sterling, Virginia 20167, United States
| | - Burhan I Ghanayem
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
12
|
Micronucleus Assay: The State of Art, and Future Directions. Int J Mol Sci 2020; 21:ijms21041534. [PMID: 32102335 PMCID: PMC7073234 DOI: 10.3390/ijms21041534] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.
Collapse
|
13
|
Hasselgren C, Ahlberg E, Akahori Y, Amberg A, Anger LT, Atienzar F, Auerbach S, Beilke L, Bellion P, Benigni R, Bercu J, Booth ED, Bower D, Brigo A, Cammerer Z, Cronin MTD, Crooks I, Cross KP, Custer L, Dobo K, Doktorova T, Faulkner D, Ford KA, Fortin MC, Frericks M, Gad-McDonald SE, Gellatly N, Gerets H, Gervais V, Glowienke S, Van Gompel J, Harvey JS, Hillegass J, Honma M, Hsieh JH, Hsu CW, Barton-Maclaren TS, Johnson C, Jolly R, Jones D, Kemper R, Kenyon MO, Kruhlak NL, Kulkarni SA, Kümmerer K, Leavitt P, Masten S, Miller S, Moudgal C, Muster W, Paulino A, Lo Piparo E, Powley M, Quigley DP, Reddy MV, Richarz AN, Schilter B, Snyder RD, Stavitskaya L, Stidl R, Szabo DT, Teasdale A, Tice RR, Trejo-Martin A, Vuorinen A, Wall BA, Watts P, White AT, Wichard J, Witt KL, Woolley A, Woolley D, Zwickl C, Myatt GJ. Genetic toxicology in silico protocol. Regul Toxicol Pharmacol 2019; 107:104403. [PMID: 31195068 PMCID: PMC7485926 DOI: 10.1016/j.yrtph.2019.104403] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 01/23/2023]
Abstract
In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.
Collapse
Affiliation(s)
| | - Ernst Ahlberg
- Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, 1-4-25 Kouraku, Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926, Frankfurt am Main, Germany
| | - Lennart T Anger
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926, Frankfurt am Main, Germany
| | - Franck Atienzar
- UCB BioPharma SPRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | | | | | - Joel Bercu
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, USA
| | - Ewan D Booth
- Syngenta, Product Safety Department, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Dave Bower
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Zoryana Cammerer
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ian Crooks
- British American Tobacco, Research and Development, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Kevin P Cross
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | - Laura Custer
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Krista Dobo
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Tatyana Doktorova
- Douglas Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, CH-4057, Basel / Basel-Stadt, Switzerland
| | - David Faulkner
- Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A-1161A, Berkeley, CA, 947020, USA
| | - Kevin A Ford
- Global Blood Therapeutics, 171 Oyster Point Boulevard, South San Francisco, CA, 94080, USA
| | - Marie C Fortin
- Jazz Pharmaceuticals, Inc., 200 Princeton South Corporate Center, Suite 180, Ewing, NJ, 08628, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08855, USA
| | | | | | - Nichola Gellatly
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Helga Gerets
- UCB BioPharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | | | - Susanne Glowienke
- Novartis Pharma AG, Pre-Clinical Safety, Werk Klybeck, CH, 4057, Basel, Switzerland
| | - Jacky Van Gompel
- Janssen Pharmaceutical Companies of Johnson & Johnson, 2340, Beerse, Belgium
| | - James S Harvey
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Jedd Hillegass
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Chia-Wen Hsu
- FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | | | | | - Robert Jolly
- Toxicology Division, Eli Lilly and Company, Indianapolis, IN, USA
| | - David Jones
- Medicines and Healthcare Products Regulatory Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Ray Kemper
- Vertex Pharmaceuticals Inc., Predictive and Investigative Safety Assessment, 50 Northern Ave, Boston, MA, USA
| | - Michelle O Kenyon
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Naomi L Kruhlak
- FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Sunil A Kulkarni
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Klaus Kümmerer
- Institute for Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13.311b, 21335, Lüneburg, Germany
| | - Penny Leavitt
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Scott Masten
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Scott Miller
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | | | - Wolfgang Muster
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | | | - Mark Powley
- Merck Research Laboratories, West Point, PA, 19486, USA
| | | | | | | | | | - Ronald D Snyder
- RDS Consulting Services, 2936 Wooded Vista Ct, Mason, OH, 45040, USA
| | | | | | | | | | | | | | | | - Brian A Wall
- Colgate-Palmolive Company, Piscataway, NJ, 08854, USA
| | - Pete Watts
- Bibra, Cantium House, Railway Approach, Wallington, Surrey, SM6 0DZ, UK
| | - Angela T White
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Joerg Wichard
- Bayer AG, Pharmaceuticals Division, Investigational Toxicology, Muellerstr. 178, D-13353, Berlin, Germany
| | - Kristine L Witt
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Adam Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN, 46229, USA
| | - Glenn J Myatt
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| |
Collapse
|
14
|
Flow cytometry in peripheral blood reticulocytes as a marker of chromosome instability in highgrade glioma patients. BIOMEDICA 2018; 38:379-387. [PMID: 30335243 DOI: 10.7705/biomedica.v38i4.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 03/01/2018] [Indexed: 11/21/2022]
Abstract
Introduction: The quantification of chromosomal instability is an important parameter to assess genotoxicity and radiosensitivity. Most conventional techniques require cell cultures or laborious microscopic analyses of chromosomes or nuclei. However, a flow cytometry that selects the reticulocytes has been developed as an alternative for in vivo studies, which expedites the analytical procedures and increases up to 20 times the number of target cells to be analyzed.
Objectives: To standardize the flow cytometry parameters for selecting and quantifying the micronucleated reticulocytesCD71+ (MN-RET) from freshly drawn peripheral blood and to quantify the frequency of this abnormal cell subpopulation as a measure of cytogenetic instability in populations of healthy volunteers (n =25), and patients (n=25), recently diagnosed with high-grade gliomas before the onset of treatment.
Materials and methods: Blood cells were methanol-fixed and labeled with anti-CD-71-PE for reticulocytes, antiCD-61-FITC for platelet exclusion, and propidium iodide for DNA detection in reticulocytes. The MN-RETCD71+ cell fraction was selected and quantified with an automatic flow cytometer.
Results: The standardization of cytometry parameters was described in detail, emphasizing the selection and quantification of the MN-RETCD71+ cellular fraction. The micronuclei basal level was established in healthy controls. In patients, a 5.2-fold increase before the onset of treatment was observed (p <0.05).
Conclusion: The data showed the usefulness of flow cytometry coupled with anti-CD-71-PE and anti-CD-61-FITC labeling in circulating reticulocytes as an efficient and high resolution method to quantify chromosome instability in vivo. Finally, possible reasons for the higher average of micronuclei in RETCD71+ cells from untreated high-grade glioma patients were discussed.
Collapse
|
15
|
Guérard M, Marchand C, Funk J, Christen F, Winter M, Zeller A. DNA Damage Response of 4-Chloro-Ortho-Toluidine in Various Rat Tissues. Toxicol Sci 2018; 163:516-524. [DOI: 10.1093/toxsci/kfy054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Melanie Guérard
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christine Marchand
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jürgen Funk
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Francois Christen
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Michael Winter
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andreas Zeller
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
16
|
Zeller A, Duran-Pacheco G, Guérard M. An appraisal of critical effect sizes for the benchmark dose approach to assess dose-response relationships in genetic toxicology. Arch Toxicol 2017; 91:3799-3807. [PMID: 28799093 DOI: 10.1007/s00204-017-2037-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
The benchmark dose (BMD) concept is increasingly utilized to analyze quantitative dose-response relationships in genetic toxicology. This methodology requires the user (i.e. the toxicologist) to a priori define a small increase over controls that is "acceptable" to be induced by a genotoxic test substance. The increase is called benchmark response (BMR) or critical effect size (CES), depending on the software used. To render the metrics calculated from the data of animals treated with the test substance applicable for risk assessment, the BMR or CES must represent biologically relevant changes of parameters measured in in vivo genotoxicity assays such as the Micronucleus, Comet, Transgenic rodent or Pig-a assay. Current recommendations for CES in genotoxicology are arbitrary (10% increase over mean vehicle controls) or based on limited, usually 5-6, data points (i.e. the standard deviation of the concurrent vehicle control group). We have, therefore, analyzed historical vehicle control data of standard in vivo genotoxicity test systems with statistical methods. Based on this evaluation, we illustrate limitations of the currently recommended CES values and propose a pragmatic approach that may contribute to better defining endpoint-specific CES values for BMD software like PROAST.
Collapse
Affiliation(s)
- Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Gonzalo Duran-Pacheco
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Melanie Guérard
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
17
|
Khattab M, Walker DM, Albertini RJ, Nicklas JA, Lundblad LK, Vacek PM, Walker VE. Frequencies of micronucleated reticulocytes, a dosimeter of DNA double-strand breaks, in infants receiving computed tomography or cardiac catheterization. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:8-18. [DOI: 10.1016/j.mrgentox.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022]
|
18
|
A mussel-inspired double-crosslinked tissue adhesive on rat mastectomy model: seroma prevention and in vivo biocompatibility. J Surg Res 2017; 215:173-182. [DOI: 10.1016/j.jss.2017.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
|
19
|
Thybaud V, Lorge E, Levy DD, van Benthem J, Douglas GR, Marchetti F, Moore MM, Schoeny R. Main issues addressed in the 2014-2015 revisions to the OECD Genetic Toxicology Test Guidelines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:284-295. [PMID: 28266061 DOI: 10.1002/em.22079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/10/2017] [Indexed: 05/23/2023]
Abstract
The Organization for Economic Cooperation and Development (OECD) recently revised the test guidelines (TGs) for genetic toxicology. This article describes the main issues addressed during the revision process, and the new and consistent recommendations made in the revised TGs for: (1) demonstration of laboratory proficiency; (2) generation and use of robust historical control data; (3) improvement of the statistical power of the tests; (4) selection of top concentration for in vitro assays; (5) consistent data interpretation and determination of whether the result is clearly positive, clearly negative or needs closer consideration; and, (6) consideration of 3R's for in vivo assay design. The revision process resulted in improved consistency among OECD TGs (including the newly developed ones) and more comprehensive recommendations for the conduct and the interpretation of the assays. Altogether, the recommendations made during the revision process should improve the efficiency, by which the data are generated, and the quality and reliability of test results. Environ. Mol. Mutagen. 58:284-295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Dan D Levy
- US Food and Drug Administration Center for Food Safety and Applied Nutrition, College Park, Maryland
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
20
|
Pruitt SC, Qin M, Wang J, Kunnev D, Freeland A. A Signature of Genomic Instability Resulting from Deficient Replication Licensing. PLoS Genet 2017; 13:e1006547. [PMID: 28045896 PMCID: PMC5242545 DOI: 10.1371/journal.pgen.1006547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/18/2017] [Accepted: 12/19/2016] [Indexed: 11/23/2022] Open
Abstract
Insufficient licensing of DNA replication origins has been shown to result in genome instability, stem cell deficiency, and cancers. However, it is unclear whether the DNA damage resulting from deficient replication licensing occurs generally or if specific sites are preferentially affected. To map locations of ongoing DNA damage in vivo, the DNAs present in red blood cell micronuclei were sequenced. Many micronuclei are the product of DNA breaks that leave acentromeric remnants that failed to segregate during mitosis and should reflect the locations of breaks. To validate the approach we show that micronuclear sequences identify known common fragile sites under conditions that induce breaks at these locations (hydroxyurea). In MCM2 deficient mice a different set of preferred breakage sites is identified that includes the tumor suppressor gene Tcf3, which is known to contribute to T-lymphocytic leukemias that arise in these mice, and the 45S rRNA gene repeats. Many RBC micronuclei result from double strand DNA breaks that give rise to acentromeric chromosomal fragments that fail to incorporate into nuclei during mitosis and consequently remain in the cell following enucleation. Here, RBC micronuclear DNA is sequenced (Mic-Seq) to define the locations of breaks genome-wide and this assay is used to study ongoing genome instability resulting from insufficient DNA replication origin licensing. Using a mouse model, we show that there is increased instability at discrete sites across the genome, which include genes that are recurrently deleted in the T-lymphocytic leukemias that eventually arise in these mice. Mic-Seq may provide an effective means of predicting locations that are susceptible to genetic damage and these predictions may have prognostic value.
Collapse
Affiliation(s)
- Steven C. Pruitt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| | - Maochun Qin
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Dimiter Kunnev
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| |
Collapse
|
21
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
22
|
Hayashi M. The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ 2016; 38:18. [PMID: 27733885 PMCID: PMC5045625 DOI: 10.1186/s41021-016-0044-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/04/2016] [Indexed: 12/03/2022] Open
Abstract
Genotoxicity is commonly evaluated during the chemical safety assessment together with other toxicological endpoints. The micronucleus test is always included in many genotoxic test guidelines for long time in many classes of chemicals, e.g., pharmaceutical chemicals, agricultural chemicals, food additives. Although the trend of the safety assessment of chemicals faces to animal welfare and in vitro systems are more welcome than the in vivo systems, the in vivo test systems are paid more attention in the field of genotoxicity because of its weight of evidence. In this review, I will summarize the following points: 1) historical consideration of the test development, 2) characteristics of the test including advantages and limitations, 3) new approaches considering to the animal welfare.
Collapse
Affiliation(s)
- Makoto Hayashi
- makoto international consulting (mic), Kami-imaizumi, Ebina, Kanagawa 243-0431 Japan
| |
Collapse
|
23
|
Le Bihanic F, Di Bucchianico S, Karlsson HL, Dreij K. In vivo
micronucleus screening in zebrafish by flow cytometry. Mutagenesis 2016; 31:643-653. [DOI: 10.1093/mutage/gew032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Kotova N, Hebert N, Härnwall EL, Vare D, Mazurier C, Douay L, Jenssen D, Grawé J. A novel micronucleus in vitro assay utilizing human hematopoietic stem cells. Toxicol In Vitro 2015. [PMID: 26208286 DOI: 10.1016/j.tiv.2015.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of micronucleated reticulocytes in the bone marrow is a sensitive indicator of chromosomal damage. Therefore, the micronucleus assay in rodents is widely used in genotoxicity and carcinogenicity testing. A test system based on cultured human primary cells could potentially provide better prediction compared to animal tests, increasing patient safety while also implementing the 3Rs principle, i.e. replace, reduce and refine. Hereby, we describe the development of an in vitro micronucleus assay based on animal-free ex vivo culture of human red blood cells from hematopoietic stem cells. To validate the method, five clastogens with direct action, three clastogens requiring metabolic activation, four aneugenic and three non-genotoxic compounds have been tested. Also, different metabolic systems have been applied. Flow cytometry was used for detection and enumeration of micronuclei. Altogether, the results were in agreement with the published data and indicated that a sensitive and cost effective in vitro assay to assess genotoxicity with a potential to high-throughput screening has been developed.
Collapse
Affiliation(s)
- N Kotova
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden.
| | - N Hebert
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France
| | - E-L Härnwall
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - D Vare
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - C Mazurier
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France
| | - L Douay
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France; AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - D Jenssen
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - J Grawé
- Dept. of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
25
|
Yauk CL, Aardema MJ, Benthem JV, Bishop JB, Dearfield KL, DeMarini DM, Dubrova YE, Honma M, Lupski JR, Marchetti F, Meistrich ML, Pacchierotti F, Stewart J, Waters MD, Douglas GR. Approaches for identifying germ cell mutagens: Report of the 2013 IWGT workshop on germ cell assays(☆). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:36-54. [PMID: 25953399 DOI: 10.1016/j.mrgentox.2015.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/06/2023]
Abstract
This workshop reviewed the current science to inform and recommend the best evidence-based approaches on the use of germ cell genotoxicity tests. The workshop questions and key outcomes were as follows. (1) Do genotoxicity and mutagenicity assays in somatic cells predict germ cell effects? Limited data suggest that somatic cell tests detect most germ cell mutagens, but there are strong concerns that dictate caution in drawing conclusions. (2) Should germ cell tests be done, and when? If there is evidence that a chemical or its metabolite(s) will not reach target germ cells or gonadal tissue, it is not necessary to conduct germ cell tests, notwithstanding somatic outcomes. However, it was recommended that negative somatic cell mutagens with clear evidence for gonadal exposure and evidence of toxicity in germ cells could be considered for germ cell mutagenicity testing. For somatic mutagens that are known to reach the gonadal compartments and expose germ cells, the chemical could be assumed to be a germ cell mutagen without further testing. Nevertheless, germ cell mutagenicity testing would be needed for quantitative risk assessment. (3) What new assays should be implemented and how? There is an immediate need for research on the application of whole genome sequencing in heritable mutation analysis in humans and animals, and integration of germ cell assays with somatic cell genotoxicity tests. Focus should be on environmental exposures that can cause de novo mutations, particularly newly recognized types of genomic changes. Mutational events, which may occur by exposure of germ cells during embryonic development, should also be investigated. Finally, where there are indications of germ cell toxicity in repeat dose or reproductive toxicology tests, consideration should be given to leveraging those studies to inform of possible germ cell genotoxicity.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | | | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jack B Bishop
- National Institute of Environmental Health Sciences, NC, USA
| | | | | | | | | | - James R Lupski
- Department of Molecular and Human Genetics, and Department of Pediatrics, Baylor College of Medicine, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | | | - Francesca Pacchierotti
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
| | | | | | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Balmus G, Karp NA, Ng BL, Jackson SP, Adams DJ, McIntyre RE. A high-throughput in vivo micronucleus assay for genome instability screening in mice. Nat Protoc 2015; 10:205-15. [PMID: 25551665 PMCID: PMC4806852 DOI: 10.1038/nprot.2015.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe a sensitive, robust, high-throughput method for quantifying the formation of micronuclei, markers of genome instability, in mouse erythrocytes. Micronuclei are whole chromosomes or chromosome segments that have been separated from the nucleus. Other methods of detection rely on labor-intensive, microscopy-based techniques. Here we describe a 2-d, 96-well plate-based flow cytometric method of micronucleus scoring that is simple enough for a research technician experienced in flow cytometry to perform. The assay detects low levels of genome instability that cannot be readily identified by classic phenotyping, using 25 μl of blood. By using this assay, we have screened >10,000 blood samples and discovered novel genes that contribute to vertebrate genome maintenance, as well as novel disease models and mechanisms of genome instability disorders. We discuss experimental design considerations, including statistical power calculation, we provide troubleshooting tips and we discuss factors that contribute to a false-positive increase in the number of micronucleated red blood cells and to experimental variability.
Collapse
Affiliation(s)
- Gabriel Balmus
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Maintenance of Genome Stability; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Natasha A Karp
- Mouse Genetics Project; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Bee Ling Ng
- Cytometry Core Facility; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Maintenance of Genome Stability; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Adams
- Experimental Cancer Genetics; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rebecca E McIntyre
- Experimental Cancer Genetics; The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
27
|
Manning G, Taylor K, Finnon P, Lemon JA, Boreham DR, Badie C. Quantifying murine bone marrow and blood radiation dose response following (18)F-FDG PET with DNA damage biomarkers. Mutat Res 2014; 770:29-36. [PMID: 25771867 DOI: 10.1016/j.mrfmmm.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3-5 mice were randomly assigned to 10 groups, each receiving either a different activity of (18)F-FDG: 0-37MBq or whole body irradiated with corresponding doses of 0-300mGy X-rays. Blood samples were collected at 24h and at 43h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes. Blood and bone marrow dose estimates were calculated from injected activities of (18)F-FDG and were based on a recommended ICRP model. Doses to the bone marrow corresponding to 33.43mGy and above for internal (18)F-FDG exposure and to 25mGy and above for external X-ray exposure, showed significant increases in radiation-induced MN-RET formation relative to controls (P<0.05). Regression analysis showed that both types of exposure produced a linear response with linear regression analysis giving R(2) of 0.992 and 0.999 for respectively internal and external exposure. No significant difference between the two data sets was found with a P-value of 0.493. In vivo gene expression dose-responses at 24h for Bbc3 and Cdkn1 were similar for (18)F-FDG and X-ray exposures, with significant modifications occurring for doses over 300mGy for Bbc3 and at the lower dose of 150mGy for Cdkn1a. Both leucocyte gene expression and quantification of MN-RET are highly sensitive biomarkers for reliable estimation of the low doses delivered in vivo to, respectively, blood and bone marrow, following (18)F-FDG PET.
Collapse
Affiliation(s)
- Grainne Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ, UK
| | - Kristina Taylor
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - Paul Finnon
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ, UK
| | - Jennifer A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - Douglas R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - Christophe Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ, UK.
| |
Collapse
|
28
|
Differences in micronucleus frequency and acrylamide adduct levels with hemoglobin between vegetarians and non-vegetarians. Eur J Nutr 2014; 54:1181-90. [DOI: 10.1007/s00394-014-0796-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
|
29
|
Inter-laboratory validation of the in-vivo flow cytometric micronucleus analysis method (MicroFlow®) in China. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:6-13. [PMID: 25308541 DOI: 10.1016/j.mrgentox.2014.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/23/2022]
Abstract
Although inter-laboratory validation efforts of the in-vivo micronucleus (MN) assay based on flow cytometry (FCM) have taken place in the EU and US, none have been organized in China. Therefore, an inter-laboratory study that included eight laboratories in China and one experienced reference laboratory in the US was coordinated to validate the in-vivo FCM MicroFlow(®) method to determine the frequency of micro-nucleated reticulocytes (MN-RETs) in rat blood. Assay reliability and reproducibility were evaluated with four known genotoxicants, and the results obtained with the FCM method were compared with the outcome of the traditional evaluation of bone-marrow micronuclei by use of microscopy. Each of the four chemicals was tested at three sites (two in China and the one US reference laboratory). After three consecutive daily exposures to a genotoxicant, blood and bone-marrow samples were obtained from rats 24h after the third dose. MN-RET frequencies were measured in 20,000 RET in blood by FCM, and micro-nucleated polychromatic erythrocyte (MN-PCE) frequencies were measured in 2,000 PCEs in bone marrow by microscopy. For both methods, each genotoxicant was shown to induce a statistically significant increase in the frequency of MN after treatment with at least one dose. Where more doses than one caused an increase, responses occurred in a dose-dependent manner. Spearman's correlation coefficient (rs) for FCM-based MN-RET vs microscopy-based MN-PCE measurements (eight experiments, 200 paired measurements) was 0.723, indicating a high degree of correspondence between methods and compartments. The rs value for replicate FCM MN-RET measurements performed at the eight collaborative laboratories was 0.940 (n=200), and between the eight FCM laboratories with the reference laboratory was 0.933 (n=200), suggesting that the automated method is very well transferable between laboratories. The FCM micronucleus analysis method is currently used in many countries worldwide, and these data support its use for evaluating the in-vivo genotoxic potential of test chemicals in China.
Collapse
|
30
|
Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis 2014; 29:279-87. [PMID: 24870562 DOI: 10.1093/mutage/geu016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[(18)F] fluoro-2-deoxy-D-glucose ((18)F-FDG), however little research has been conducted on the biological effects of (18)F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from (18)F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from (18)F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of (18)F-FDG, mice were injected with a range of activities of (18)F-FDG (0-14.80 MBq) or irradiated with Cs-137 γ-rays (0-100 mGy). The adaptive response was investigated 24h after the (18)F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the (18)F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq (18)F-FDG relative to controls (P < 0.019). A 0.74 MBq (18)F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical (18)F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. The (18)F-FDG RBE was <1.0, indicating that the mixed radiation quality and/or low dose rate from PET scans is less damaging than equivalent doses of gamma radiation.
Collapse
Affiliation(s)
- Kristina Taylor
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jennifer A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Douglas R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
31
|
Comparison of three-colour flow cytometry and slide-based microscopy for the scoring of micronucleated reticulocytes in rat bone-marrow and peripheral blood. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:12-7. [DOI: 10.1016/j.mrgentox.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/11/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
|
32
|
Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, Cunningham CK, Jones MY, Monroe WA, Howard PC, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2013; 8 Suppl 1:36-45. [DOI: 10.3109/17435390.2013.855827] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Javed A. Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Mason G. Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Rakhshinda Sadiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan,
| | - Candice K. Cunningham
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - M. Yvonne Jones
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - William A. Monroe
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Paul C. Howard
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| |
Collapse
|
33
|
Nörenberg A, Heinz S, Scheller K, Hewitt NJ, Braspenning J, Ott M. Optimization of upcyte® human hepatocytes for the in vitro micronucleus assay. Mutat Res 2013; 758:69-79. [PMID: 24140631 DOI: 10.1016/j.mrgentox.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/05/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
"Upcyte(®) human hepatocytes" have the unique property of combining proliferation with the expression of drug metabolising activities. In our current study, we evaluated whether these cells would be suitable for early in vitro micronucleus (MN) tests. A treatment period of 96 h without a recovery period was most reliable for detecting MN formation in upcyte(®) hepatocytes from Donor 740. The basal MN rate in upcyte(®) hepatocytes varied considerably between donors (7-28%); therefore, modifications to the assay medium were tested to determine whether they could decrease inherent MN formation. Optimal medium supplements were 10 ng/ml oncostatin M for the pre-culture and recovery periods and 25 ng/ml epidermal growth factor and 10 ng/ml oncostatin M for the treatment period. Using the optimised conditions and outcome criteria, the upcyte(®) hepatocyte MN assay could correctly identify directly acting (e.g. mitomycin C, etoposide) and metabolically activated genotoxins (e.g. benzo[a]pyrene, cyclophosphamide). "True negative" and "false positive" compounds were also correctly identified as negative. The basal %MN in upcyte(®) hepatocytes from Donor 740 treated with DMSO, cyclophosphamide or MMC, was essentially unaffected by the growth stage ranging from population doublings of 14-61, suggesting that billions of cells could be produced from a single donor for standardised drug toxicity testing. In conclusion, we have established and optimised an in vitro MN test by using upcyte(®) hepatocytes to correctly identify known direct and metabolically activated genotoxicants as well as "false positives" and true negative compounds. The almost unlimited supply of cells from a single donor and optimised test conditions increase reproducibility in early and more predictive in vitro MN tests.
Collapse
|
34
|
LeBaron MJ, Schisler MR, Torous DK, Dertinger SD, Gollapudi BB. Influence of counting methodology on erythrocyte ratios in the mouse micronucleus test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:222-228. [PMID: 23224994 DOI: 10.1002/em.21754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/24/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
The mammalian erythrocyte micronucleus test is widely used to investigate the potential interaction of a test substance with chromosomes or mitotic apparatus of replicating erythroblasts. In addition to the primary endpoint, micronucleated erythrocyte frequency, the proportion of immature erythrocytes is measured to assess the influence of treatment on erythropoiesis. The guideline recommendation for an acceptable limit of the immature erythrocyte fraction of not < 20% of the controls was based on traditional scoring methods that consider RNA content. Flow-based sample analysis (e.g., MicroFlow®) characterizes a subpopulation of RNA-containing reticulocytes (RETs) based on CD71 (transferrin receptor) expression. As CD71+ cells represent a younger cohort of RETs, we hypothesized that this subpopulation may be more responsive than the RNA+ fraction for acute exposures. This study evaluated RET population in the peripheral blood of two strains of mice treated by oral gavage with three clastogens (cyclophosphamide, N-ethyl-N-nitrosourea, and methyl methanesulfonate). Although CD71+ frequencies correlated with RNA-based counts, the relative treatment-related reductions were substantially greater. Accordingly, when using the flow cytometry-based CD71+ values for scoring RETs in an acute treatment design, it is suggested that a target value ≥ 5% CD71+ reticulocytes (i.e., 95% depression in reticulocytes proportion) be considered as acceptable for a valid assay.
Collapse
Affiliation(s)
- Matthew J LeBaron
- Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan 48674, USA.
| | | | | | | | | |
Collapse
|
35
|
Harada A, Matsuzaki K, Takeiri A, Tanaka K, Mishima M. Fluorescent dye-based simple staining for in vivo micronucleus test with flow cytometer. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:85-90. [DOI: 10.1016/j.mrgentox.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
|
36
|
Sadiq R, Bhalli JA, Yan J, Woodruff RS, Pearce MG, Li Y, Mustafa T, Watanabe F, Pack LM, Biris AS, Khan QM, Chen T. Genotoxicity of TiO2 anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:65-72. [DOI: 10.1016/j.mrgentox.2012.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Mekenyan OG, Petkov PI, Kotov SV, Stoeva S, Kamenska VB, Dimitrov SD, Honma M, Hayashi M, Benigni R, Donner EM, Patlewicz G. Investigating the Relationship between in Vitro–in Vivo Genotoxicity: Derivation of Mechanistic QSAR Models for in Vivo Liver Genotoxicity and in Vivo Bone Marrow Micronucleus Formation Which Encompass Metabolism. Chem Res Toxicol 2012; 25:277-96. [DOI: 10.1021/tx200547s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ovanes G. Mekenyan
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Petko I. Petkov
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Stefan V. Kotov
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Stoyanka Stoeva
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Verginia B. Kamenska
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Sabcho D. Dimitrov
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | - Makoto Hayashi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
- Biosafety Research Center, Foods, Drugs and Pesticides, Iwata, Japan
| | - Romualdo Benigni
- Environment and Health Department, Istituto Superiore di Sanita', Rome, Italy
| | - E. Maria Donner
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark,
Delaware 19714-0050, United States
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark,
Delaware 19714-0050, United States
| |
Collapse
|
38
|
Kimoto T, Chikura S, Suzuki-Okada K, Kobayashi XM, Itano Y, Miura D, Kasahara Y. Effective use of the Pig-a gene mutation assay for mutagenicity screening: measuring CD59-deficient red blood cells in rats treated with genotoxic chemicals. J Toxicol Sci 2012; 37:943-55. [DOI: 10.2131/jts.37.943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Marchetti F, Rowan-Carroll A, Williams A, Polyzos A, Berndt-Weis ML, Yauk CL. Sidestream tobacco smoke is a male germ cell mutagen. Proc Natl Acad Sci U S A 2011; 108:12811-4. [PMID: 21768363 PMCID: PMC3150936 DOI: 10.1073/pnas.1106896108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Active cigarette smoking increases oxidative damage, DNA adducts, DNA strand breaks, chromosomal aberrations, and heritable mutations in sperm. However, little is known regarding the effects of second-hand smoke on the male germ line. We show here that short-term exposure to mainstream tobacco smoke or sidestream tobacco smoke (STS), the main component of second-hand smoke, induces mutations at an expanded simple tandem repeat locus (Ms6-hm) in mouse sperm. We further show that the response to STS is not linear and that, for both mainstream tobacco smoke and STS, doses that induced significant increases in expanded simple tandem repeat mutations in sperm did not increase the frequencies of micronucleated reticulocytes and erythrocytes in the bone marrow and blood of exposed mice. These data show that passive exposure to cigarette smoke can cause tandem repeat mutations in sperm under conditions that may not induce genetic damage in somatic cells. Although the relationship between noncoding tandem repeat instability and mutations in functional regions of the genome is unclear, our data suggest that paternal exposure to second-hand smoke may have reproductive consequences that go beyond the passive smoker.
Collapse
Affiliation(s)
- Francesco Marchetti
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Andrea Rowan-Carroll
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Aris Polyzos
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - M. Lynn Berndt-Weis
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L. Yauk
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9
| |
Collapse
|