1
|
Ahadi H, Shokrzadeh M, Hosseini-Khah Z, Ghassemi Barghi N, Ghasemian M, Emami S. Conversion of antibacterial quinolone drug levofloxacin to potent cytotoxic agents. J Biochem Mol Toxicol 2023:e23334. [PMID: 36843476 DOI: 10.1002/jbt.23334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Levofloxacin, the optical S-(-) isomer of ofloxacin, is a broad-spectrum antibacterial agent widely used to control various infections caused by Gram-positive and Gram-negative bacteria. While the COOH group is necessary for antibacterial activity, its modification can offer anticancer activity to the fluoroquinolone framework. Therefore, several levofloxacin carboxamides 11a-j and 12 containing 5-substituted-1,3,4-thiadiazole residue were synthesized and screened in vitro for their anticancer activity. The in vitro MTT viability assay revealed that the most compounds had significant activity against cancer cells MCF-7, A549, and SKOV3. In particular, the 3-chloro- and 4-fluoro- benzyl derivatives (11b and 11h), with IC50 values of 1.69-4.76 μM were as potent as or better than doxorubicin. It should be noted that the mother quinolone levofloxacin showed no activity on the tested cancer cell lines. The SAR analysis demonstrated that the 3-chloro or 4-fluoro substituent on the S-benzyl moiety had positive effect on the activity. Further in vitro evaluations of the most promising compounds 11b and 11h by flow cytometric analysis and comet test revealed the ability of compounds in the induction of apoptosis and blockage of the cell proliferation at the G1-phase by nuclear fragmentation and DNA degradation in cancer cells. The obtained results demonstrated that the alteration of 6-COOH functional group in the levofloxacin structure and conjugation with a proper heterocyclic pharmacophore is a good strategy to obtain new anticancer agents.
Collapse
Affiliation(s)
- Hamideh Ahadi
- Department of Medicinal Chemistry, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi Barghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Vicar T, Gumulec J, Kolar R, Kopecna O, Pagacova E, Falkova I, Falk M. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J 2022; 19:6465-6480. [PMID: 34976305 PMCID: PMC8668444 DOI: 10.1016/j.csbj.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.
Collapse
Key Words
- 53BP1, P53-binding protein 1
- Biodosimetry
- CNN, convolutional neural network
- Confocal Microscopy
- Convolutional Neural Network
- DNA Damage and Repair
- DSB, DNA double-strand break
- Deep Learning
- FOV, field of view
- GUI, graphical user interface
- IRIF, ionizing radiation-induced (repair) foci
- Image Analysis
- Ionizing Radiation-Induced Foci (IRIFs)
- MSER, maximally stable extremal region (algorithm)
- Morphometry
- NHDFs, normal human dermal fibroblasts
- RAD51, DNA repair protein RAD51 homolog 1
- U-87, U-87 glioblastoma cell line
- γH2AX, histone H2AX phosphorylated at serine 139
Collapse
Affiliation(s)
- Tomas Vicar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic.,Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Radim Kolar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Olga Kopecna
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Eva Pagacova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Iva Falkova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| |
Collapse
|
3
|
Vidali MS, Dailianis S, Vlastos D, Georgiadis P. PCB cause global DNA hypomethylation of human peripheral blood monocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103696. [PMID: 34171487 DOI: 10.1016/j.etap.2021.103696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We have recently reported significant associations between exposure to polychlorinated biphenyls (PCB) and alterations on genome-wide methylation of leukocyte DNA of healthy volunteers and provided evidence in support of an etiological link between the observed CpG methylation variations and chronic lymphocytic leukemia. The present study aimed to elucidate the effects of PCB in human lymphocytes' methylome in vitro. Therefore, U937 cells and human peripheral blood monocytes (PBMC) were exposed in vitro to the dioxin-like PCB-118, the non-dioxin-like PCB-153, and hexachlorobenzene (HCB) and thorough cytotoxicity, genotoxicity and global CpG methylation analyses were performed. All compounds currently tested did not show any consistent significant genotoxicity at all exposure periods and concentrations used. On the contrary, extensive dose-dependent hypomethylation was observed, even at low concentrations, in stimulated PBMC treated with PCB-118 and PCB-153 as well as a small but statistically significant hypomethylation in HCB-treated stimulated cells.
Collapse
Affiliation(s)
- Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece; Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinio, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece.
| |
Collapse
|
4
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
5
|
Nascimento FA, Silva DDME, Nunes HF, Parise MR. Evaluation of DNA damage and toxicological methodology development: A bibliometric study. Hum Exp Toxicol 2020; 39:870-880. [PMID: 32031416 DOI: 10.1177/0960327120903481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability is a risk to organism health detected by methods such as the comet assay (CA). It is a highly sensitive and versatile method to detect low levels of DNA damage in a wide range of cells from humans as well as from other species as compared to other methods with the same proposal. CA is a powerful DNA damage analysis tool and its applicability extends to the genotoxicity analysis of, that is, drugs and carcinogenic substances. This study analyzed papers employing CA in the Scopus database in order to assess its scientific importance, employability, and trends by evaluating: number of articles per year, total citations and per year, country of publication and their clusters, clusters of authors, most frequently abstracts terms, name of journal, affiliations, country of publication, subject area, relevant keywords compared to citation clusters, and impact factor (IF) CiteScore. It was retrieved 13,828 articles from 1990 to 2018, with a peak in 2014 and a decline from 2015 to 2018. Four author clusters from China, United States, India, and Brazil were identified, countries presenting the greatest number of publications. China presented the most recent scientific advances in the field. It was also detected nine clusters of themes, and a positive correlation between publications, citations, and the IF. There are full employability and versatility in the use of the method. Currently, there is an advance in Chinese scientific production on the subject, and there is greater use of the method on oxidative damage researches.
Collapse
Affiliation(s)
- F A Nascimento
- Laboratório de Mutagênese (LabMut), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - D de Melo E Silva
- Laboratório de Mutagênese (LabMut), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - H F Nunes
- Laboratório de Mutagênese (LabMut), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - M R Parise
- Laboratório de Mutagênese (LabMut), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
6
|
Cruz-Vallejo V, Ortíz-Muñiz R, Vallarino-Kelly T, Cervantes-Ríos E, Morales-Ramírez P. In vivo Characterization of the Radiosensitizing Effect of a Very Low Dose of BrdU in Murine Cells Exposed to Low-Dose Radiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:534-545. [PMID: 30851126 DOI: 10.1002/em.22284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to characterize the in vivo radiosensitizing effect of a very low dose of bromodeoxyuridine (BrdU) in mice exposed to low-dose radiation by establishing the following: (1) the radiosensitizing effect during DNA synthesis using single-cell gel electrophoresis (SCGE) in murine bone marrow cells, and (2) the number and timing of the mechanisms of genotoxicity and cytotoxicity, as well as the correlation of both end points, using flow cytometry analysis of the kinetics of micronucleus induction in reticulocytes. Groups of mice received intraperitoneal injections of 0.125 mg/g of BrdU 24 h prior to irradiation with 0.5 Gy of 60 Co gamma rays. DNA breaks measured using SCGE were determined at 30 min after exposure to radiation. The kinetics of micronucleated reticulocyte (MN-RET) induction was determined every 8 h after irradiation up to 72 h. The results from both experimental models indicated that low-level BrdU incorporation into DNA increased the sensitivity to 0.5 Gy of radiation, particularly in the S phase. The formation of micronuclei by gamma rays was produced at three different times using two main mechanisms. In the BrdU-substituted cells, the second mechanism was associated with a high cytotoxic effect that was absent in the irradiated BrdU-unsubstituted cells. The third mechanism, in which micronucleus formation was increased in irradiated substituted cells compared with the irradiated nonsubstituted control cells, was also related to an increase in cytotoxicity. Environ. Mol. Mutagen. 60:534-545, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Virginia Cruz-Vallejo
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Rocío Ortíz-Muñiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Teresita Vallarino-Kelly
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
| | - Elsa Cervantes-Ríos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Pedro Morales-Ramírez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
| |
Collapse
|
7
|
Fuccelli R, Rosignoli P, Servili M, Veneziani G, Taticchi A, Fabiani R. Genotoxicity of heterocyclic amines (HCAs) on freshly isolated human peripheral blood mononuclear cells (PBMC) and prevention by phenolic extracts derived from olive, olive oil and olive leaves. Food Chem Toxicol 2018; 122:234-241. [PMID: 30321573 DOI: 10.1016/j.fct.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023]
Abstract
In this study we investigated the genotoxic potential of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, (PhIP); 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline, (IQ); 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline, (MeIQx) and 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (DiMeIQx) on human freshly isolated peripheral blood mononuclear cells (PBMC) by the comet assay. The preventive ability of three different phenolic extracts derived from olive (O-PE), virgin olive oil (OO-PE) and olive leaf (OL-PE) on PhIP induced DNA damage was also investigated. PhIP and IQ induced a significant DNA damage at the lowest concentration tested (100 μM), while the genotoxic effect of MeIQx and DiMeIQx become apparent only in the presence of DNA repair inhibitors Cytosine b-D-arabinofuranoside and Hydroxyurea (AraC/HU). The inclusion of metabolic activation (S9-mix) in the culture medium increased the genotoxicity of all HCAs tested. All three phenolic extracts showed an evident DNA damage preventive activity in a very low concentration range (0.1-1.0 μM of phenols) which could be easily reached in human tissues "in vivo" under a regular intake of virgin olive oil. These data further support the observation that consumption of olive and virgin olive oil may prevent the initiation step of carcinogenesis. The leaf waste could be an economic and simple source of phenolic compounds to be used as food additives or supplements.
Collapse
Affiliation(s)
- Raffaela Fuccelli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Gianluca Veneziani
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy.
| |
Collapse
|
8
|
Effects of Coptidis Rhizoma on Cell Cycle, DNA Damage, and Apoptosis in L929 Murine Fibroblast Cells. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Effects of Berberine on Cell Cycle, DNA, Reactive Oxygen Species, and Apoptosis in L929 Murine Fibroblast Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:796306. [PMID: 26508985 PMCID: PMC4609833 DOI: 10.1155/2015/796306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were cultured in vitro and treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis.
Collapse
|
10
|
Zuo WQ, Hu YJ, Yang Y, Zhao XY, Zhang YY, Kong W, Kong WJ. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model. J Neuroinflammation 2015; 12:105. [PMID: 26022358 PMCID: PMC4458026 DOI: 10.1186/s12974-015-0300-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 01/12/2023] Open
Abstract
Background With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Methods Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. Results LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Conclusions Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Collapse
Affiliation(s)
- Wen-Qi Zuo
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yu-Juan Hu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yang Yang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yuan-Yuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wei-Jia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
11
|
Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BHN, Ito ET, de Carvalho RF, de Souza EB, de Cassia Stocco R. Using the comet and micronucleus assays for genotoxicity studies: A review. Biomed Pharmacother 2015; 72:74-82. [DOI: 10.1016/j.biopha.2015.04.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
|
12
|
Brunborg G, Collins A, Graupner A, Gutzkow KB, Olsen AK. Reference cells and ploidy in the comet assay. Front Genet 2015; 6:61. [PMID: 25774164 PMCID: PMC4343028 DOI: 10.3389/fgene.2015.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/08/2015] [Indexed: 11/13/2022] Open
Abstract
In the comet assay single cells are analyzed with respect to their level of DNA damage. Discrimination of the individual cell or cell type based on DNA content, with concomitant scoring of the DNA damage, is useful since this may allow analysis of mixtures of cells. Different cells can then be characterized based on their ploidy, cell cycle stage, or genome size. We here describe two applications of such a cell type-specific comet assay: (i) Testicular cell suspensions, analyzed on the basis of their ploidy during spermatogenesis; and (ii) reference cells in the form of fish erythrocytes which can be included as internal standards to correct for inter-assay variations. With standard fluorochromes used in the comet assay, the total staining signal from each cell - whether damaged or undamaged - was found to be associated with the cell's DNA content. Analysis of the fluorescence intensity of single cells is straightforward since these data are available in scoring systems based on image analysis. The analysis of testicular cell suspensions provides information on cell type specific composition, susceptibility to genotoxicants, and DNA repair. Internal reference cells, either untreated or carrying defined numbers of lesions induced by ionizing radiation, are useful for investigation of experimental factors that can cause variation in comet assay results, and for routine inclusion in experiments to facilitate standardization of methods, and comparison of comet assay data obtained in different experiments or in different laboratories. They can also be used - in combination with a reference curve - to quantify the DNA lesions induced by a certain treatment. Fish cells of a range of genome sizes, both greater and smaller than human, are suitable for this purpose, and they are inexpensive.
Collapse
Affiliation(s)
- Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo Norway
| | - Anne Graupner
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo Norway
| | - Kristine B Gutzkow
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo Norway
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo Norway
| |
Collapse
|
13
|
Ventura L, Giovannini A, Savio M, Donà M, Macovei A, Buttafava A, Carbonera D, Balestrazzi A. Single Cell Gel Electrophoresis (Comet) assay with plants: research on DNA repair and ecogenotoxicity testing. CHEMOSPHERE 2013; 92:1-9. [PMID: 23557725 DOI: 10.1016/j.chemosphere.2013.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 05/24/2023]
Abstract
Single Cell Gel Electrophoresis is currently used to investigate the cell response to genotoxic agents as well as to several biotic and abiotic stresses that lead to oxidative DNA damage. Different versions of Single Cell Gel Electrophoresis have been developed in order to expand the range of DNA lesions that can be detected and guidelines for their use in genetic toxicology have been provided. Applications of Single Cell Gel Electrophoresis in plants are still limited, compared to animal systems. This technique is now emerging as a useful tool in assessing the potential of higher plants as stable sensors in ecosystems and source of information on the genotoxic impact of dangerous pollutants. Another interesting application of Single Cell Gel Electrophoresis deals with Mutation Breeding or the combined use of irradiation and in vitro culture technique to enhance genetic variability in elite plant genotypes. SCGE, in combination with in situ detection of Reactive Oxygen Species (ROS) induced by γ-rays and expression analysis of both DNA repair and antioxidant genes, can be used to gather information on the radiosensitivity level of the target plant genotypes.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|