1
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
2
|
Ooka M, Lynch C, Xia M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int J Mol Sci 2020; 21:ijms21218182. [PMID: 33142951 PMCID: PMC7663506 DOI: 10.3390/ijms21218182] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
Collapse
|
3
|
Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update 2020; 26:43-57. [PMID: 31822904 DOI: 10.1093/humupd/dmz043] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology, Uskudar University School of Medicine, Istanbul, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Kutluk Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
5
|
Ibrahim MA, Yasui M, Saha LK, Sasanuma H, Honma M, Takeda S. Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:602-610. [PMID: 32243652 PMCID: PMC7384079 DOI: 10.1002/em.22371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/17/2023]
Abstract
The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.
Collapse
Affiliation(s)
| | - Manabu Yasui
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Liton Kumar Saha
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroyuki Sasanuma
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| | - Masamitsu Honma
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Shunichi Takeda
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| |
Collapse
|
6
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
7
|
Hasselgren C, Ahlberg E, Akahori Y, Amberg A, Anger LT, Atienzar F, Auerbach S, Beilke L, Bellion P, Benigni R, Bercu J, Booth ED, Bower D, Brigo A, Cammerer Z, Cronin MTD, Crooks I, Cross KP, Custer L, Dobo K, Doktorova T, Faulkner D, Ford KA, Fortin MC, Frericks M, Gad-McDonald SE, Gellatly N, Gerets H, Gervais V, Glowienke S, Van Gompel J, Harvey JS, Hillegass J, Honma M, Hsieh JH, Hsu CW, Barton-Maclaren TS, Johnson C, Jolly R, Jones D, Kemper R, Kenyon MO, Kruhlak NL, Kulkarni SA, Kümmerer K, Leavitt P, Masten S, Miller S, Moudgal C, Muster W, Paulino A, Lo Piparo E, Powley M, Quigley DP, Reddy MV, Richarz AN, Schilter B, Snyder RD, Stavitskaya L, Stidl R, Szabo DT, Teasdale A, Tice RR, Trejo-Martin A, Vuorinen A, Wall BA, Watts P, White AT, Wichard J, Witt KL, Woolley A, Woolley D, Zwickl C, Myatt GJ. Genetic toxicology in silico protocol. Regul Toxicol Pharmacol 2019; 107:104403. [PMID: 31195068 PMCID: PMC7485926 DOI: 10.1016/j.yrtph.2019.104403] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 01/23/2023]
Abstract
In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.
Collapse
Affiliation(s)
| | - Ernst Ahlberg
- Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, 1-4-25 Kouraku, Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926, Frankfurt am Main, Germany
| | - Lennart T Anger
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926, Frankfurt am Main, Germany
| | - Franck Atienzar
- UCB BioPharma SPRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | | | | | - Joel Bercu
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, USA
| | - Ewan D Booth
- Syngenta, Product Safety Department, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Dave Bower
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Zoryana Cammerer
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ian Crooks
- British American Tobacco, Research and Development, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Kevin P Cross
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | - Laura Custer
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Krista Dobo
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Tatyana Doktorova
- Douglas Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, CH-4057, Basel / Basel-Stadt, Switzerland
| | - David Faulkner
- Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A-1161A, Berkeley, CA, 947020, USA
| | - Kevin A Ford
- Global Blood Therapeutics, 171 Oyster Point Boulevard, South San Francisco, CA, 94080, USA
| | - Marie C Fortin
- Jazz Pharmaceuticals, Inc., 200 Princeton South Corporate Center, Suite 180, Ewing, NJ, 08628, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08855, USA
| | | | | | - Nichola Gellatly
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Helga Gerets
- UCB BioPharma SPRL, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | | | - Susanne Glowienke
- Novartis Pharma AG, Pre-Clinical Safety, Werk Klybeck, CH, 4057, Basel, Switzerland
| | - Jacky Van Gompel
- Janssen Pharmaceutical Companies of Johnson & Johnson, 2340, Beerse, Belgium
| | - James S Harvey
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Jedd Hillegass
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Chia-Wen Hsu
- FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | | | | | - Robert Jolly
- Toxicology Division, Eli Lilly and Company, Indianapolis, IN, USA
| | - David Jones
- Medicines and Healthcare Products Regulatory Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Ray Kemper
- Vertex Pharmaceuticals Inc., Predictive and Investigative Safety Assessment, 50 Northern Ave, Boston, MA, USA
| | - Michelle O Kenyon
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Naomi L Kruhlak
- FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Sunil A Kulkarni
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Klaus Kümmerer
- Institute for Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13.311b, 21335, Lüneburg, Germany
| | - Penny Leavitt
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ, 08903, USA
| | - Scott Masten
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Scott Miller
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| | | | - Wolfgang Muster
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | | | - Mark Powley
- Merck Research Laboratories, West Point, PA, 19486, USA
| | | | | | | | | | - Ronald D Snyder
- RDS Consulting Services, 2936 Wooded Vista Ct, Mason, OH, 45040, USA
| | | | | | | | | | | | | | | | - Brian A Wall
- Colgate-Palmolive Company, Piscataway, NJ, 08854, USA
| | - Pete Watts
- Bibra, Cantium House, Railway Approach, Wallington, Surrey, SM6 0DZ, UK
| | - Angela T White
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Joerg Wichard
- Bayer AG, Pharmaceuticals Division, Investigational Toxicology, Muellerstr. 178, D-13353, Berlin, Germany
| | - Kristine L Witt
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC, 27709, USA
| | - Adam Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN, 46229, USA
| | - Glenn J Myatt
- Leadscope, Inc, 1393 Dublin Rd, Columbus, OH, 43215, USA
| |
Collapse
|
8
|
Hsieh JH, Smith-Roe SL, Huang R, Sedykh A, Shockley KR, Auerbach SS, Merrick BA, Xia M, Tice RR, Witt KL. Identifying Compounds with Genotoxicity Potential Using Tox21 High-Throughput Screening Assays. Chem Res Toxicol 2019; 32:1384-1401. [PMID: 31243984 DOI: 10.1021/acs.chemrestox.9b00053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10 000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions , Research Triangle Park , North Carolina 27709 , United States
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Alexander Sedykh
- Sciome, LLC , Research Triangle Park , North Carolina 27709 , United States
| | - Keith R Shockley
- Division of Intramural Research , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Scott S Auerbach
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - B Alex Merrick
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Raymond R Tice
- RTice Consulting , Hillsborough , North Carolina 27278 , United States
| | - Kristine L Witt
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
9
|
Huang R, Grishagin I, Wang Y, Zhao T, Greene J, Obenauer JC, Ngan D, Nguyen DT, Guha R, Jadhav A, Southall N, Simeonov A, Austin CP. The NCATS BioPlanet - An Integrated Platform for Exploring the Universe of Cellular Signaling Pathways for Toxicology, Systems Biology, and Chemical Genomics. Front Pharmacol 2019; 10:445. [PMID: 31133849 PMCID: PMC6524730 DOI: 10.3389/fphar.2019.00445] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Chemical genomics aims to comprehensively define, and ultimately predict, the effects of small molecule compounds on biological systems. Chemical activity profiling approaches must consider chemical effects on all pathways operative in mammalian cells. To enable a strategic and maximally efficient chemical profiling of pathway space, we have created the NCATS BioPlanet, a comprehensive integrated pathway resource that incorporates the universe of 1,658 human pathways sourced from publicly available, manually curated sources, which have been subjected to thorough redundancy and consistency cross-evaluation. BioPlanet supports interactive browsing, retrieval, and analysis of pathways, exploration of pathway connections, and pathway search by gene targets, category, and availability of corresponding bioactivity assay, as well as visualization of pathways on a 3-dimensional globe, in which the distance between any two pathways is proportional to their degree of gene component overlap. Using this resource, we propose a strategy to identify a minimal set of 362 biological assays that can interrogate the universe of human pathways. The NCATS BioPlanet is a public resource, which will be continually expanded and updated, for systems biology, toxicology, and chemical genomics, available at http://tripod.nih.gov/bioplanet/.
Collapse
Affiliation(s)
- Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | | | - Yuhong Wang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Tongan Zhao
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jon Greene
- Rancho BioSciences, San Diego, CA, United States
| | | | - Deborah Ngan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Dac-Trung Nguyen
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Rajarshi Guha
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ajit Jadhav
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Noel Southall
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Christopher P Austin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Bryce SM, Bernacki DT, Smith-Roe SL, Witt KL, Bemis JC, Dertinger SD. Investigating the Generalizability of the MultiFlow ® DNA Damage Assay and Several Companion Machine Learning Models With a Set of 103 Diverse Test Chemicals. Toxicol Sci 2018; 162:146-166. [PMID: 29106658 PMCID: PMC6059150 DOI: 10.1093/toxsci/kfx235] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in vitro MultiFlow DNA Damage assay multiplexes p53, γH2AX, phospho-histone H3, and polyploidization biomarkers into 1 flow cytometric analysis (Bryce, S. M., Bernacki, D. T., Bemis, J. C., and Dertinger, S. D. (2016). Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach. Environ. Mol. Mutagen. 57, 171-189). The work reported herein evaluated the generalizability of the method, as well as several data analytics strategies, to a range of chemical classes not studied previously. TK6 cells were exposed to each of 103 diverse chemicals, 86 of which were supplied by the National Toxicology Program (NTP) and selected based upon responses in genetic damage assays conducted under the Tox21 program. Exposures occurred for 24 h over a range of concentrations, and cell aliquots were removed at 4 and 24 h for analysis. Multiplexed response data were evaluated using 3 machine learning models designed to predict genotoxic mode of action based on data from a training set of 85 previously studied chemicals. Of 54 chemicals with sufficient information to make an a priori call on genotoxic potential, the prediction models' accuracies were 79.6% (random forest), 88.9% (logistic regression), and 90.7% (artificial neural network). A majority vote ensemble of the 3 models provided 92.6% accuracy. Forty-nine NTP chemicals were not adequately tested (maximum concentration did not approach assay's cytotoxicity limit) and/or had insufficient conventional genotoxicity data to allow their genotoxic potential to be defined. For these chemicals MultiFlow data will be useful in future research and hypothesis testing. Collectively, the results suggest the MultiFlow assay and associated data analysis strategies are broadly generalizable, demonstrating high predictability when applied to new chemicals and classes of compounds.
Collapse
Affiliation(s)
| | | | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
11
|
Sykora P, Witt KL, Revanna P, Smith-Roe SL, Dismukes J, Lloyd DG, Engelward BP, Sobol RW. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep 2018; 8:2771. [PMID: 29426857 PMCID: PMC5807538 DOI: 10.1038/s41598-018-20995-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/29/2018] [Indexed: 11/23/2022] Open
Abstract
Methods for quantifying DNA damage, as well as repair of that damage, in a high-throughput format are lacking. Single cell gel electrophoresis (SCGE; comet assay) is a widely-used method due to its technical simplicity and sensitivity, but the standard comet assay has limitations in reproducibility and throughput. We have advanced the SCGE assay by creating a 96-well hardware platform coupled with dedicated data processing software (CometChip Platform). Based on the original cometchip approach, the CometChip Platform increases capacity ~200 times over the traditional slide-based SCGE protocol, with excellent reproducibility. We tested this platform in several applications, demonstrating a broad range of potential uses including the routine identification of DNA damaging agents, using a 74-compound library provided by the National Toxicology Program. Additionally, we demonstrated how this tool can be used to evaluate human populations by analysis of peripheral blood mononuclear cells to characterize susceptibility to genotoxic exposures, with implications for epidemiological studies. In summary, we demonstrated a high level of reproducibility and quantitative capacity for the CometChip Platform, making it suitable for high-throughput screening to identify and characterize genotoxic agents in large compound libraries, as well as for human epidemiological studies of genetic diversity relating to DNA damage and repair.
Collapse
Affiliation(s)
- Peter Sykora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pooja Revanna
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jonathan Dismukes
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Bevin P Engelward
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
| |
Collapse
|
12
|
Nishihara K, Shahane SA, Xia M. Determination of Histone H2AX Phosphorylation in DT40 Cells. Methods Mol Biol 2018; 1473:71-6. [PMID: 27518625 DOI: 10.1007/978-1-4939-6346-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Visualization of DNA damage response protein recruitment to DNA damage sites enables measurement of the DNA damage. DNA double-strand breaks (DSBs) and blocked replication forks induce the phosphorylation of H2AX at serine 139 (γH2AX), and accumulate γH2AX which can then be detected as foci. The detection of γH2AX foci by immunostaining with antibodies that recognize γH2AX is an indicator of DSBs presence. This chapter describes the measurement of γH2AX immunostaining using a high-content imaging platform in chicken DT40 B-lymphocyte cell lines.
Collapse
Affiliation(s)
- Kana Nishihara
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Sampada A Shahane
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Barata D, Spennati G, Correia C, Ribeiro N, Harink B, van Blitterswijk C, Habibovic P, van Rijt S. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology. Biomed Microdevices 2017; 19:81. [PMID: 28884359 PMCID: PMC5589786 DOI: 10.1007/s10544-017-0222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Giulia Spennati
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Cristina Correia
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Nelson Ribeiro
- Instituto de Engenharia Mecânica, Laboratório Associado de Energia, Transportes e Aeronáutica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
14
|
Witt KL, Hsieh JH, Smith-Roe SL, Xia M, Huang R, Auerbach SS, Hur J, Tice RR. Assessment of the DNA damaging potential of environmental chemicals using a quantitative high-throughput screening approach to measure p53 activation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:494-507. [PMID: 28714573 PMCID: PMC5555817 DOI: 10.1002/em.22112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 05/08/2023]
Abstract
Genotoxicity potential is a critical component of any comprehensive toxicological profile. Compounds that induce DNA or chromosomal damage often activate p53, a transcription factor essential to cell cycle regulation. Thus, within the US Tox21 Program, we screened a library of ∼10,000 (∼8,300 unique) environmental compounds and drugs for activation of the p53-signaling pathway using a quantitative high-throughput screening assay employing HCT-116 cells (p53+/+ ) containing a stably integrated β-lactamase reporter gene under control of the p53 response element (p53RE). Cells were exposed (-S9) for 16 hr at 15 concentrations (generally 1.2 nM to 92 μM) three times, independently. Excluding compounds that failed analytical chemistry analysis or were suspected of inducing assay interference, 365 (4.7%) of 7,849 unique compounds were concluded to activate p53. As part of an in-depth characterization of our results, we first compared them with results from traditional in vitro genotoxicity assays (bacterial mutation, chromosomal aberration); ∼15% of known, direct-acting genotoxicants in our library activated the p53RE. Mining the Comparative Toxicogenomics Database revealed that these p53 actives were significantly associated with increased expression of p53 downstream genes involved in DNA damage responses. Furthermore, 53 chemical substructures associated with genotoxicity were enriched in certain classes of p53 actives, for example, anthracyclines (antineoplastics) and vinca alkaloids (tubulin disruptors). Interestingly, the tubulin disruptors manifested unusual nonmonotonic concentration response curves suggesting activity through a unique p53 regulatory mechanism. Through the analysis of our results, we aim to define a role for this assay as one component of a comprehensive toxicological characterization of large compound libraries. Environ. Mol. Mutagen. 58:494-507, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kristine L. Witt
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC
- Corresponding author: Kristine L. Witt, NIEHS/DNTP, 919-541-2761,
| | | | - Stephanie L. Smith-Roe
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC
| | - Menghang Xia
- National Institutes of Health Center for Advancing Translational Sciences, Bethesda, MD
| | - Ruili Huang
- National Institutes of Health Center for Advancing Translational Sciences, Bethesda, MD
| | - Scott S. Auerbach
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND
| | - Raymond R. Tice
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC
| |
Collapse
|
15
|
Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. The Next Generation of Risk Assessment Multi-Year Study-Highlights of Findings, Applications to Risk Assessment, and Future Directions. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1671-1682. [PMID: 27091369 PMCID: PMC5089888 DOI: 10.1289/ehp233] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.
Collapse
Affiliation(s)
- Ila Cote
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
- Address correspondence to I. Cote, U.S. Environmental Protection Agency, Region 8, Room 8152, 1595 Wynkoop St., Denver, CO 80202-1129 USA. Telephone: (202) 288-9539. E-mail:
| | | | - Gerald T. Ankley
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Stanley Barone
- Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, District of Columbia, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Frederic Y. Bois
- Unité Modèles pour l’Écotoxicologie et la Toxicologie, Institut National de l’Environnement Industriel et des Risques, Verneuil en Halatte, France
| | - Lyle D. Burgoon
- U.S. Army Engineer Research and Development Center, Research Triangle Park, North Carolina, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael DeVito
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Robert B. Devlin
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Dale Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | - Derek Knight
- European Chemicals Agency, Annankatu, Helsinki, Finland
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason Lambert
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Elizabeth Anne Maull
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Donna Mendrick
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Chirag Jagdish Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Gerald Poje
- Grant Consulting Group, Washington, District of Columbia, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paul A. Schulte
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kristina A. Thayer
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Raymond R. Tice
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - John J. Vandenberg
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| | - Daniel L. Villeneuve
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Scott Wesselkamper
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Maurice Whelan
- Systems Toxicology Unit, European Commission Joint Research Centre, Ispra, Italy
| | - Christine Whittaker
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Ronald White
- Center for Effective Government, Washington, District of Columbia, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Oakland, California, USA
| | - Jay Zhao
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Robert S. DeWoskin
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| |
Collapse
|
16
|
Abstract
Visualization of micronuclei induction by chemicals and drugs enables measurement of possible compound genotoxicity. A loss of entire chromosome or a fragment of chromosome can lead to formation of micronuclei (MNi). The in vitro micronucleus assay can be conducted using nuclear dyes with high-content imaging platforms. This chapter describes the cytochalasin block method of measuring micronuclei in CHO-K1 cell lines.
Collapse
|