1
|
DNA Base Excision Repair Intermediates Influence Duplex-Quadruplex Equilibrium. Molecules 2023; 28:molecules28030970. [PMID: 36770637 PMCID: PMC9920732 DOI: 10.3390/molecules28030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Collapse
|
2
|
Kulkarni RS, Greenwood SN, Weiser BP. Assay design for analysis of human uracil DNA glycosylase. Methods Enzymol 2022; 679:343-362. [PMID: 36682870 DOI: 10.1016/bs.mie.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
Collapse
Affiliation(s)
- Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
3
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
4
|
Williams JD, Houserova D, Johnson BR, Dyniewski B, Berroyer A, French H, Barchie AA, Bilbrey DD, Demeis JD, Ghee KR, Hughes AG, Kreitz NW, McInnis CH, Pudner SC, Reeves MN, Stahly AN, Turcu A, Watters BC, Daly GT, Langley RJ, Gillespie MN, Prakash A, Larson ED, Kasukurthi MV, Huang J, Jinks-Robertson S, Borchert GM. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop 'G4 Kissing' interaction. Nucleic Acids Res 2020; 48:5907-5925. [PMID: 32383760 PMCID: PMC7293029 DOI: 10.1093/nar/gkaa357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Mammalian antibody switch regions (∼1500 bp) are composed of a series of closely neighboring G4-capable sequences. Whereas numerous structural and genome-wide analyses of roles for minimal G4s in transcriptional regulation have been reported, Long G4-capable regions (LG4s)-like those at antibody switch regions-remain virtually unexplored. Using a novel computational approach we have identified 301 LG4s in the human genome and find LG4s prone to mutation and significantly associated with chromosomal rearrangements in malignancy. Strikingly, 217 LG4s overlap annotated enhancers, and we find the promoters regulated by these enhancers markedly enriched in G4-capable sequences suggesting G4s facilitate promoter-enhancer interactions. Finally, and much to our surprise, we also find single-stranded loops of minimal G4s within individual LG4 loci are frequently highly complementary to one another with 178 LG4 loci averaging >35 internal loop:loop complements of >8 bp. As such, we hypothesized (then experimentally confirmed) that G4 loops within individual LG4 loci directly basepair with one another (similar to characterized stem-loop kissing interactions) forming a hitherto undescribed, higher-order, G4-based secondary structure we term a 'G4 Kiss or G4K'. In conclusion, LG4s adopt novel, higher-order, composite G4 structures directly contributing to the inherent instability, regulatory capacity, and maintenance of these conspicuous genomic regions.
Collapse
Affiliation(s)
- Jonathan D Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Bradley R Johnson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Brad Dyniewski
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Hannah French
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Addison A Barchie
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Dakota D Bilbrey
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jeffrey D Demeis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Kanesha R Ghee
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandra G Hughes
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Naden W Kreitz
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Cameron H McInnis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Susanna C Pudner
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Monica N Reeves
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ashlyn N Stahly
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ana Turcu
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Brianna C Watters
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Grant T Daly
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Mark N Gillespie
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mitchell Cancer Institute, Mobile, AL 36688, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007, USA
| | | | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|