1
|
Rajeshkannan, Mahilkar A, Saini S. GAL Regulon in the Yeast S. cerevisiae is Highly Evolvable via Acquisition in the Coding Regions of the Regulatory Elements of the Network. Front Mol Biosci 2022; 9:801011. [PMID: 35372523 PMCID: PMC8964464 DOI: 10.3389/fmolb.2022.801011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
GAL network in the yeast S. cerevisiae is one of the most well-characterized regulatory network. Expression of GAL genes is contingent on exposure to galactose, and an appropriate combination of the alleles of the regulatory genes GAL3, GAL1, GAL80, and GAL4. The presence of multiple regulators in the GAL network makes it unique, as compared to the many sugar utilization networks studied in bacteria. For example, utilization of lactose is controlled by a single regulator LacI, in E. coli's lac operon. Moreover, recent work has demonstrated that multiple alleles of these regulatory proteins are present in yeast isolated from ecological niches. In this work, we develop a mathematical model, and demonstrate via deterministic and stochastic runs of the model, that behavior/gene expression patterns of the cells (at a population level, and at a single-cell resolution) can be modulated by altering the binding affinities between the regulatory proteins. This adaptability is likely the key to explaining the multiple GAL regulatory alleles discovered in ecological isolates in recent years.
Collapse
Affiliation(s)
| | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Ma J. Detecting interactions between eukaryotic proteins in bacteria. Gene Expr 2018; 2:139-46. [PMID: 1633437 PMCID: PMC6057391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Few convenient genetic assays are available to study protein-protein interactions. This report describes a genetic scheme in E. coli to detect protein-protein interactions based on the concept of cooperative DNA binding of two interacting proteins. The yeast regulatory proteins GAL4 and GAL80, which are known to interact with each other, were used to test the scheme. A fusion protein, LexA-GAL80, was found to exert a cooperative effect on the DNA-binding activity of GAL4 as monitored by a bacterial repression assay.
Collapse
Affiliation(s)
- J Ma
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
3
|
Abstract
A wide variety of biological experiments rely on the ability to express an exogenous gene in a transgenic animal at a defined level and in a spatially and temporally controlled pattern. We describe major improvements of the methods available for achieving this objective in Drosophila melanogaster. We have systematically varied core promoters, UTRs, operator sequences, and transcriptional activating domains used to direct gene expression with the GAL4, LexA, and Split GAL4 transcription factors and the GAL80 transcriptional repressor. The use of site-specific integration allowed us to make quantitative comparisons between different constructs inserted at the same genomic location. We also characterized a set of PhiC31 integration sites for their ability to support transgene expression of both drivers and responders in the nervous system. The increased strength and reliability of these optimized reagents overcome many of the previous limitations of these methods and will facilitate genetic manipulations of greater complexity and sophistication.
Collapse
|
4
|
Melcher K. Mutational hypersensitivity of a gene regulatory protein: Saccharomyces cerevisiae Gal80p. Genetics 2005; 171:469-76. [PMID: 15998719 PMCID: PMC1456764 DOI: 10.1534/genetics.105.045237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of galactose catabolic (GAL) gene expression in Saccharomyces cerevisiae, Gal80p, interacts with the activator Gal4p and the signal transducer Gal3p and self-associates. Selection for loss of Gal80p inhibitor function yielded gal80 mutants at an extremely high rate. Out of these, 21 nonoverlapping point mutants were identified; each were due to a single-amino-acid exchange in conserved residues. Semiquantitative biochemical analysis of the corresponding mutant proteins revealed that each of the 21 amino acid alterations caused simultaneous defects in every single protein-protein interaction and in Gal80's structural integrity. Thus, Gal80 provides an unprecedented example for a protein's structural sensitivity to minimal sequence alterations.
Collapse
Affiliation(s)
- Karsten Melcher
- Institute of Microbiology, Biocenter Niederursel, Goethe University, Frankfurt, Germany.
| |
Collapse
|
5
|
Abstract
The Saccharomyces cerevisiae Gal80 protein has two binding partners: Gal4 and Gal3. In the absence of galactose, Gal80 binds to and inhibits the transcriptional activation domain (AD) of the GAL gene activator, Gal4, preventing GAL gene expression. Galactose triggers an association between Gal3 and Gal80, relieving Gal80 inhibition of Gal4. We selected for GAL80 mutants with impaired capacity of Gal80 to bind to Gal3 or Gal4AD. Most Gal80 variants selected for impaired binding to Gal4AD retained their capacity to bind to Gal3 and to self-associate, whereas most of those selected for impaired binding to Gal3 lost their ability to bind to Gal4AD and self-associate. Thus, some Gal80 amino acids are determinants for both the Gal80-Gal3 association and the Gal80 self-association, and Gal80 self-association may be required for binding to Gal4AD. We propose that the binding of Gal3 to the Gal80 monomer competes with Gal80 self-association, reducing the amount of the Gal80 dimer available for inhibition of Gal4.
Collapse
Affiliation(s)
- Vepkhia Pilauri
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | | | |
Collapse
|
6
|
Verma M, Bhat PJ, Bhartiya S, Venkatesh KV. A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 271:4064-74. [PMID: 15479235 DOI: 10.1111/j.1432-1033.2004.04344.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular regulation is a result of complex interactions arising from DNA-protein and protein-protein binding, autoregulation, and compartmentalization and shuttling of regulatory proteins. Experiments in molecular biology have identified these mechanisms recruited by a regulatory network. Mathematical models may be used to complement the knowledge-base provided by in vitro experimental methods. Interactions identified by in vitro experiments can lead to the hypothesis of multiple candidate models explaining the in vivo mechanism. The equilibrium dissociation constants for the various interactions and the total component concentration constitute constraints on the candidate models. In this work, we identify the most plausible in vivo network by comparing the output response to the experimental data. We demonstrate the methodology using the GAL system of Saccharomyces cerevisiae for which the steady-state analysis reveals that Gal3p neither dimerizes nor shuttles between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Malkhey Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | |
Collapse
|
7
|
Gardenour KR, Levy J, Lopes JM. Identification of novel dominant INO2 c mutants with an Opi- phenotype. Mol Microbiol 2004; 52:1271-80. [PMID: 15165231 DOI: 10.1111/j.1365-2958.2004.04069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The INO2 gene of Saccharomyces cerevisiae is required for derepression of the phospholipid biosynthetic genes in response to inositol depletion. Conversely, the OPI1 gene is required for repression in response to inositol supplementation. Results of an in vitro assay have led to a model in which Opi1p interacts with Ino2p. However, there is no in vivo evidence to support this model. Additionally, most of the previously isolated ino2 mutants offer little insight into this model. Here, we report the isolation of a new class of dominant mutations in the INO2 gene, which yield constitutive expression of a target gene (i.e. an Opi(-) mutant phenotype). Two mutations reside in a region of the Ino2p required for interaction with Opi1p in vitro. Three other mutations are at the amino-terminus in a transcriptional activation domain.
Collapse
Affiliation(s)
- Kyle R Gardenour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
8
|
Menezes RA, Amuel C, Engels R, Gengenbacher U, Labahn J, Hollenberg CP. Sites for interaction between Gal80p and Gal1p in Kluyveromyces lactis: structural model of galactokinase based on homology to the GHMP protein family. J Mol Biol 2003; 333:479-92. [PMID: 14556739 DOI: 10.1016/j.jmb.2003.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The induction of transcription of the galactose genes in yeast involves the galactose-dependent binding of ScGal3p (in Saccharomyces cerevisiae) or KlGal1p (in Kluyveromyces lactis) to Gal80p. This binding abrogates Gal80's inhibitory effect on the activation domain of Gal4p, which can then activate transcription. Here, we describe the isolation and characterization of new interaction mutants of K.lactis GAL1 and GAL80 using a two-hybrid screen. We present the first structural model for Gal1p to be based on the published crystal structures of other proteins belonging to the GHMP (galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) kinase family and our own X-ray diffraction data of Gal1p crystals at 3A resolution. The locations of the various mutations in the modelled Gal1p structure identify domains involved in the interaction with Gal80p and provide a structural explanation for the phenotype of constitutive GAL1 mutations.
Collapse
Affiliation(s)
- R A Menezes
- Institut für Mikrobiologie and Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Nakagawa K, Hisatake K, Imazawa Y, Ishiguro A, Matsumoto M, Pape L, Ishihama A, Nogi Y. The fission yeast RPA51 is a functional homolog of the budding yeast A49 subunit of RNA polymerase I and required for maximizing transcription of ribosomal DNA. Genes Genet Syst 2003; 78:199-209. [PMID: 12893961 DOI: 10.1266/ggs.78.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces cerevisiae A49 and mouse PAF53 are subunits specific to RNA polymerase I (Pol I) in eukaryotes. It has been known that Pol I without A49 or PAF53 maintains non-specific transcription activities but a molecular role(s) of A49 (and PAF53) remains totally unknown. We studied the fission yeast gene encoding a protein of 415 amino acids exhibiting 30% and 19% identities to A49 and PAF53, respectively. We designate the corresponding protein RPA51 and gene encoding it rpa51+ since the gene encodes a Pol I subunit and an apparent molecular mass of the protein is 51 kDa. rpa51+ is required for cell growth at lower but not at higher temperatures and is able to complement S. cerevisiae rpa49Delta mutation, indicating that RPA51 is a functionally-conserved subunit of Pol I between the budding yeast and the fission yeast. Deletion analysis of rpa51+ shows that only two-thirds of the C-terminal region are required for the function. Transcripts analysis in vivo and in vitro shows that RPA51 plays a general role for maximizing transcription of rDNA whereas it is dispensable for non-specific transcription. We also found that RPA51 associates significantly with Pol I in the stationary phase, suggesting that Pol I inactivation in the stationary phase of yeast does not result from the RPA51 dissociation.
Collapse
Affiliation(s)
- Kaori Nakagawa
- Department of Molecular Biology, Saitama Medical School, Iruma-Gun, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Timson DJ, Ross HC, Reece RJ. Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry. Biochem J 2002; 363:515-20. [PMID: 11964151 PMCID: PMC1222503 DOI: 10.1042/0264-6021:3630515] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genes encoding the enzymes required for galactose metabolism in Saccharomyces cerevisiae are controlled at the level of transcription by a genetic switch consisting of three proteins: a transcriptional activator, Gal4p; a transcriptional repressor, Gal80p; and a ligand sensor, Gal3p. The switch is turned on in the presence of two small molecule ligands, galactose and ATP. Gal3p shows a high degree of sequence identity with Gal1p, the yeast galactokinase. We have mapped the interaction between Gal80p and Gal3p, which only occurs in the presence of both ligands, using protease protection experiments and have shown that this involves amino acid residue 331 of Gal80p. Gel-filtration experiments indicate that Gal3p, or the galactokinase Gal1p, interact directly with Gal80p to form a complex with 1:1 stoichiometry.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
11
|
Abstract
Plant fructokinases are the gateway to fructose metabolism. Here, we discuss the properties of published plant fructokinases and compare the available protein sequences. In addition, we speculate on the possible function of fructokinases as sugar sensors. A proposal is presented to clarify the confusing fructokinase nomenclature. Only a few plant fructokinase genes have been cloned but the recent isolations of two such genes in tomato and three in Arabidopsis have given this research an important impulse.
Collapse
Affiliation(s)
- J V Pego
- Dept of Biology, Minho University, Gualtar campus, 4710-057 Braga, Portugal
| | | |
Collapse
|
12
|
Pego JV, Kortstee AJ, Huijser C, Smeekens SC. Photosynthesis, sugars and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:407-16. [PMID: 10938849 DOI: 10.1093/jexbot/51.suppl_1.407] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and signalling. An overview of these strategies has been included. Sugar-mediated regulation of gene expression is thought to require the hexokinase (HXK) protein. It has previously been shown that one such sugar, mannose, is capable of blocking germination in Arabidopsis. This inhibition is also mediated by HXK and occurs in the low millimolar concentration range. Here, the use of germination on mannose as an effective screening strategy for putative sugar sensing and signalling mutants is reported. T-DNA- and EMS-mutagenized collections were used to isolate 31 mannose-insensitive germination (mig) mutants. With the use of these mutants, a comparison between this screen and other existing sugar-sensing screens is presented.
Collapse
Affiliation(s)
- J V Pego
- University of Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ohishi-Shofuda T, Suzuki Y, Yano K, Sakurai H, Fukasawa T. Transcription initiation mediated by initiator binding protein in Saccharomyces cerevisiae. Biochem Biophys Res Commun 1999; 255:157-63. [PMID: 10082672 DOI: 10.1006/bbrc.1999.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many instances of the initiator element in the core promoter of protein-coding genes have been reported in mammalian cells and their viruses, but only one has been reported in the yeast Saccharomyces cerevisiae at the GAL80 gene. The initiator element of GAL80 directs transcription by itself and interacts with a nuclear protein designated yeast initiator binding factor (yIF). Here we show that yIF in a partially purified sample binds the sequence from -18 to +10 of GAL80. By employing a selected and amplified binding procedure, we have determined the preferred sequence for yIF binding to be -2 CACTN +3 (N indicates any nucleotide). Binding affinity of selected sequences to yIF correlated with their initiator-directed transcription in vivo, suggesting that the yIF-initiator interaction mediates transcription from the initiator in yeast. We also suggest that sequences flanking the preferred sequence affect both yIF binding and initiator activity.
Collapse
Affiliation(s)
- T Ohishi-Shofuda
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | |
Collapse
|
15
|
Platt A, Reece RJ. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 1998; 17:4086-91. [PMID: 9670023 PMCID: PMC1170741 DOI: 10.1093/emboj/17.14.4086] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Saccharomyces cerevisiae responds to galactose as the sole source of carbon by activating the GAL genes encoding the enzymes of the Leloir pathway. Here, we show in vitro that the switch from repressed to activated gene expression involves the interplay of three proteins [an activator (Gal4p), a repressor (Gal80p) and an inducer (Gal3p)] and two small molecules (galactose and ATP). We also show that the galactose- and ATP-dependent interaction between Gal3p and Gal80p occurs without disruption of the Gal80p-Gal4p interaction. Thus, Gal3p-mediated activation of transcription occurs via the formation of a tripartite protein complex.
Collapse
Affiliation(s)
- A Platt
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
16
|
Zheng W, Xu HE, Johnston SA. The cysteine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast. J Biol Chem 1997; 272:30350-5. [PMID: 9374524 DOI: 10.1074/jbc.272.48.30350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bleomycin hydrolase is a cysteine peptidase discovered through its ability to detoxify the anti-cancer glycopeptide, bleomycin. Although found in all tissues in mammals and in both eukaryotes and prokaryotes, the normal cellular function of this peptidase is not known. We had previously reported the purification of bleomycin hydrolase from yeast based on its unexpected ability to bind DNA. Recently we collaborated in solving the crystal structure of this protein, revealing a hexameric ring organization. We now report that the molecular characterization of the gene encoding yeast bleomycin hydrolase is also surprising. The transcription of the gene is regulated by galactose. Furthermore, this regulation is conveyed by a binding site for the Gal4 regulatory protein in its promoter, prompting the designation of this gene as GAL6. Gal6p also appears to have a negative effect on the GAL system as a deletion of the gene leads to a 2-5-fold higher expression of the GAL1, GAL2, GAL7, and MEL1 genes. The GAL6 deletion does not affect the expression of another inducible gene, HSP26. Neither the peptidase nor the nucleic acid binding activity of Gal6p as assayed is apparently required to convey this regulation, implying yet another function for this new member of the GAL regulon.
Collapse
Affiliation(s)
- W Zheng
- Departments of Medicine and Biochemistry, Graduate Program in Biochemistry and Molecular Biology, University of Texas-Southwestern Medical Center, Dallas, Texas 75235-8573, USA.
| | | | | |
Collapse
|
17
|
Blank TE, Woods MP, Lebo CM, Xin P, Hopper JE. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:2566-75. [PMID: 9111326 PMCID: PMC232106 DOI: 10.1128/mcb.17.5.2566] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gal4p-mediated activation of galactose gene expression in Saccharomyces cerevisiae normally requires both galactose and the activity of Gal3p. Recent evidence suggests that in cells exposed to galactose, Gal3p binds to and inhibits Ga180p, an inhibitor of the transcriptional activator Gal4p. Here, we report on the isolation and characterization of novel mutant forms of Gal3p that can induce Gal4p activity independently of galactose. Five mutant GAL3(c) alleles were isolated by using a selection demanding constitutive expression of a GAL1 promoter-driven HIS3 gene. This constitutive effect is not due to overproduction of Gal3p. The level of constitutive GAL gene expression in cells bearing different GAL3(c) alleles varies over more than a fourfold range and increases in response to galactose. Utilizing glutathione S-transferase-Gal3p fusions, we determined that the mutant Gal3p proteins show altered Gal80p-binding characteristics. The Gal3p mutant proteins differ in their requirements for galactose and ATP for their Gal80p-binding ability. The behavior of the novel Gal3p proteins provides strong support for a model wherein galactose causes an alteration in Gal3p that increases either its ability to bind to Gal80p or its access to Gal80p. With the Gal3p-Gal80p interaction being a critical step in the induction process, the Gal3p proteins constitute an important new reagent for studying the induction mechanism through both in vivo and in vitro methods.
Collapse
Affiliation(s)
- T E Blank
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Transcription factors inherited during meiosis play a crucial role directing subsequent gene activity. Factors of maternal origin have been shown to influence the pattern of early zygotic transcription during Drosophila and Xenopus embryogenesis. Nevertheless, little is known regarding the meiotic inheritance of the vast majority of transcription factors. In the case of yeast meiosis, for example, it is not yet known whether any of the multitude of transcription factors expressed in the diploid are transmitted to haploid spores in functional form. Here we use a GAL1-STE4 reporter whose activity is detectable in single living cells to identify a transcription factor inherited during sporulation in Saccharomyces cerevisiae. We show that functional Gal80S repressor is meiotically inherited at levels reflecting its expression in the diploid parent.
Collapse
Affiliation(s)
- A D Keller
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
19
|
Yano K, Fukasawa T. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:1721-6. [PMID: 9050845 PMCID: PMC19983 DOI: 10.1073/pnas.94.5.1721] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1996] [Accepted: 12/23/1996] [Indexed: 02/03/2023] Open
Abstract
When galactose is added to logarithmically growing culture of the yeast Saccharomyces cerevisiae, a set of genes encoding galactose-metabolizing enzymes (GAL genes) starts to be transcribed within a few minutes. This rapid induction involves a serial interplay of Gal3p, Gal80p, and Gal4p. Recent experiments have indicated that a direct interaction between Gal3p and Gal80p plays a pivotal role in an early step of GAL induction. Here we demonstrate that complex of Gal3p and Gal80p, otherwise unstable, is stabilized in the presence of 0.1 mM galactose and 0.5 mM ATP. The requirement for galactose and ATP for stable complex formation is also observed by using highly purified Gal3p and Gal80p from yeast. We further show that thus formed Gal3p/Gal80p complex can easily be dissociated when it is washed with buffer lacking galactose. Finally, we show that mutant proteins encoded by GAL80S or GAL80DE21, which confer galactose-uninducible phenotype, fail to interact with Gal3p. These results strongly suggest that Gal3p functions as the sensor and transducer of galactose signal in the induction pathway of Gal4p-activated genes.
Collapse
Affiliation(s)
- K Yano
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | | |
Collapse
|
20
|
Suzuki-Fujimoto T, Fukuma M, Yano KI, Sakurai H, Vonika A, Johnston SA, Fukasawa T. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol Cell Biol 1996; 16:2504-8. [PMID: 8628318 PMCID: PMC231239 DOI: 10.1128/mcb.16.5.2504] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The GAL3 gene plays a critical role in galactose induction of the GAL genes that encode galactose- metabolizing enzymes in Saccharomyces cerevisiae. Defects in GAL3 result in a long delay in GAL gene induction, and overproduction of Gal3p causes constitutive expression of GAL. Here we demonstrate that concomitant overproduction of the negative regulator, Gal80p, and Gal3p suppresses this constitutive GAL expression. This interplay between Gal80p and Gal3p is direct, as tagged Gal3p coimmunoprecipitated with Gal80p. The amount of coprecipitated Gal80p increased when GAL80 yeast cells were grown in the presence of galactose. When both GAL80 and GAL3 were overexpressed, the amount of coprecipitated Gal80p was not affected by galactose. Tagged gal3 mutant proteins bound to purified Gal80p, but only poorly in comparison with the wild type, suggesting that formation of the Gal80p-Gal3p complex depends on the normal function of Gal3p. Gal3p appeared larger in Western blots (immunoblots) than predicted by the published nucleic acid sequence. Reexamination of the DNA sequence of GAL3 revealed several mistakes, including an extension at the 3' end of another predicted 97 amino acids.
Collapse
Affiliation(s)
- T Suzuki-Fujimoto
- Department of Microbiology, Keio University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
22
|
Two alternative pathways of transcription initiation in the yeast negative regulatory gene GAL80. Mol Cell Biol 1994. [PMID: 7935399 DOI: 10.1128/mcb.14.10.6819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast GAL80 gene, encoding a negative regulatory protein of galactose-inducible genes, shows both constitutive and galactose-inducible expression. The inducible transcription is under the control of Gal4p, a common activator for the galactose-inducible genes, which binds to an upstream activation sequence, called UASG, spanning between -105 and -89 in the 5'-flanking region of GAL80. Here we demonstrate that the constitutive transcription started at +1, whereas the inducible transcription occurs from a set of downstream sites at +37, +47, +56, and +67. Both transcriptions were enhanced 10-fold by another UAS, whose 5' boundary is located between -195 and -185. Gal4p stimulated transcription, which depends on the TATA box located at -20, from all the downstream sites. By contrast, the constitutive transcription depended on a small region of less than 16 bp long encompassing the +1 site, which directed transcription even in the absence of both the TATA box and the UASs. When a fragment covering that region was inserted immediately upstream of the open reading frame of HIS3, the resulting gene fusion, if introduced into a his3 yeast strain, supported growth on histidine-lacking medium. We detected by gel retardation assay a protein specifically interacting with this fragment. All the transcriptions observed in the in vivo experiments were faithfully reproduced in a cell-free transcription system. From these results, we suggest that initiation of GAL80 transcription involves two alternative pathways; one is initiator dependent, and the other is Gal4p regulated and TATA dependent.
Collapse
|
23
|
Sakurai H, Ohishi T, Fukasawa T. Two alternative pathways of transcription initiation in the yeast negative regulatory gene GAL80. Mol Cell Biol 1994; 14:6819-28. [PMID: 7935399 PMCID: PMC359212 DOI: 10.1128/mcb.14.10.6819-6828.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The yeast GAL80 gene, encoding a negative regulatory protein of galactose-inducible genes, shows both constitutive and galactose-inducible expression. The inducible transcription is under the control of Gal4p, a common activator for the galactose-inducible genes, which binds to an upstream activation sequence, called UASG, spanning between -105 and -89 in the 5'-flanking region of GAL80. Here we demonstrate that the constitutive transcription started at +1, whereas the inducible transcription occurs from a set of downstream sites at +37, +47, +56, and +67. Both transcriptions were enhanced 10-fold by another UAS, whose 5' boundary is located between -195 and -185. Gal4p stimulated transcription, which depends on the TATA box located at -20, from all the downstream sites. By contrast, the constitutive transcription depended on a small region of less than 16 bp long encompassing the +1 site, which directed transcription even in the absence of both the TATA box and the UASs. When a fragment covering that region was inserted immediately upstream of the open reading frame of HIS3, the resulting gene fusion, if introduced into a his3 yeast strain, supported growth on histidine-lacking medium. We detected by gel retardation assay a protein specifically interacting with this fragment. All the transcriptions observed in the in vivo experiments were faithfully reproduced in a cell-free transcription system. From these results, we suggest that initiation of GAL80 transcription involves two alternative pathways; one is initiator dependent, and the other is Gal4p regulated and TATA dependent.
Collapse
Affiliation(s)
- H Sakurai
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Sakurai H, Ohishi T, Amakasu H, Fukasawa T. Yeast GAL11 protein stimulates basal transcription in a gene-specific manner by a mechanism distinct from that by DNA-bound activators. FEBS Lett 1994; 351:176-80. [PMID: 8082760 DOI: 10.1016/0014-5793(94)80098-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The GAL11 gene encodes an auxiliary transcription factor required for full expression of many, if not all, genes of the yeast Saccharomyces cerevisiae. We have recently shown that GAL11-encoded protein (Gal11p) enhances basal transcription from the CYC1 promoter in a cell-free transcription system [(1993) Proc. Natl. Acad. Sci. USA 90, 8382-8386]. Here we indicate that Gal11p stimulates basal transcription in a gene-specific manner in vitro. We further suggest that the mechanism underlying the transcriptional stimulation by Gal11p is distinct from that by DNA-bound activators, since Gal11p stimulated transcription in a reaction system where activators were unable to enhance transcription due to the lack of intermediary factors.
Collapse
Affiliation(s)
- H Sakurai
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol 1994. [PMID: 8246973 DOI: 10.1128/mcb.13.12.7566] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulation by Gal80. Gal80 in turn not only controls Lac9 activity but also has a moderate influence on its rate of synthesis. Thus, a feedback control mechanism exists between the positive and negative regulators. By mutating the Lac9 binding sites of the GAL80 promoter, we could show that induction of GAL80 is required to prevent activation of the lactose/galactose regulon in glycerol or glucose plus galactose, whereas the noninduced level of Gal80 is sufficient to completely block Lac9 function in glucose.
Collapse
|
26
|
Zenke FT, Zachariae W, Lunkes A, Breunig KD. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol 1993; 13:7566-76. [PMID: 8246973 PMCID: PMC364828 DOI: 10.1128/mcb.13.12.7566-7576.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulation by Gal80. Gal80 in turn not only controls Lac9 activity but also has a moderate influence on its rate of synthesis. Thus, a feedback control mechanism exists between the positive and negative regulators. By mutating the Lac9 binding sites of the GAL80 promoter, we could show that induction of GAL80 is required to prevent activation of the lactose/galactose regulon in glycerol or glucose plus galactose, whereas the noninduced level of Gal80 is sufficient to completely block Lac9 function in glucose.
Collapse
Affiliation(s)
- F T Zenke
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
27
|
Lohr D. Chromatin structure and regulation of the eukaryotic regulatory gene GAL80. Proc Natl Acad Sci U S A 1993; 90:10628-32. [PMID: 8248154 PMCID: PMC47830 DOI: 10.1073/pnas.90.22.10628] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The chromatin structure around the 5' end of the yeast regulatory gene GAL80 has been determined. The chromatin organization is very similar to that on the 5' regions of the GAL1-10 structural genes: a constitutive hypersensitive region containing the upstream activating sequence (UAS) element, and nucleosomes around this hypersensitive region. The downstream nucleosome, which is a positioned nucleosome, covers the TATA and transcription start sites. The nucleosome upstream of the hypersensitive region undergoes significant change when cells are grown in galactose, where GAL80 gene expression is induced to maximal levels. The change may be related to the induction process. GAL4 protein binds strongly to the GAL80 UAS in galactose-grown cells, less strongly in glycerol-grown cells, and not at all in glucose-grown cells. These data and published gene expression data are used to develop a model for the regulation of the GAL80 regulatory gene.
Collapse
Affiliation(s)
- D Lohr
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604
| |
Collapse
|
28
|
Yun SJ, Hiraoka Y, Nishizawa M, Takio K, Titani K, Nogi Y, Fukasawa T. Purification and characterization of the yeast negative regulatory protein GAL80. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Affiliation(s)
- J M Verdier
- Département de Biologie (SBCH), Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
30
|
GAL4 protein: purification, association with GAL80 protein, and conserved domain structure. Mol Cell Biol 1990. [PMID: 2188103 DOI: 10.1128/mcb.10.6.2916] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the yeast Saccharomyces cerevisiae GAL4 protein under its own (galactose-inducible) control gave 5 to 10 times the level of protein observed when the GAL4 gene was on a high-copy plasmid. Purification of GAL4 by a procedure including affinity chromatography on a GAL4-binding DNA column yielded not only GAL4 but also a second protein, shown to be GAL80 by its reaction with an antipeptide antibody. Sequence comparisons of GAL4 and other members of a family of proteins sharing homologous cysteine finger motifs identified an additional region of homology in the middle of these proteins shown by genetic analysis to be important for GAL4 function. GAL4 could be cleaved proteolytically at the boundary of the conserved region, defining internal and carboxy-terminal folded domains.
Collapse
|
31
|
Young JL, Jarai G, Fu YH, Marzluf GA. Nucleotide sequence and analysis of NMR, a negative-acting regulatory gene in the nitrogen circuit of Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:120-8. [PMID: 2146484 DOI: 10.1007/bf00283032] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Neurospora the expression of a set of unlinked structural genes, which allows utilization of various nitrogen-containing compounds, is controlled by the positive-acting nit-2 gene and the negative-acting nmr gene. The nucleotide sequence of the nmr gene has been determined and a long open reading frame which encodes a putative protein of 54854 daltons has been identified. A full-length cDNA clone was obtained and its the sequence revealed that the nmr gene contains no introns. The transcriptional start and stop sites have been mapped by S1 nuclease and primer extension. Site-directed mutagenesis was used to introduce stop codons at various locations in the nmr coding region. Transformation assays showed that the proteins lacking up to 16% of the carboxyl-terminus were still functional. Homology searches showed that the nmr protein is homologous to the yeast arginine regulatory gene AR-GRII.
Collapse
Affiliation(s)
- J L Young
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
32
|
Chasman DI, Kornberg RD. GAL4 protein: purification, association with GAL80 protein, and conserved domain structure. Mol Cell Biol 1990; 10:2916-23. [PMID: 2188103 PMCID: PMC360654 DOI: 10.1128/mcb.10.6.2916-2923.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of the yeast Saccharomyces cerevisiae GAL4 protein under its own (galactose-inducible) control gave 5 to 10 times the level of protein observed when the GAL4 gene was on a high-copy plasmid. Purification of GAL4 by a procedure including affinity chromatography on a GAL4-binding DNA column yielded not only GAL4 but also a second protein, shown to be GAL80 by its reaction with an antipeptide antibody. Sequence comparisons of GAL4 and other members of a family of proteins sharing homologous cysteine finger motifs identified an additional region of homology in the middle of these proteins shown by genetic analysis to be important for GAL4 function. GAL4 could be cleaved proteolytically at the boundary of the conserved region, defining internal and carboxy-terminal folded domains.
Collapse
Affiliation(s)
- D I Chasman
- Department of Cell Biology, Stanford University School of Medicine, California 94305-5400
| | | |
Collapse
|
33
|
Salmeron JM, Leuther KK, Johnston SA. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein. Genetics 1990; 125:21-7. [PMID: 2187743 PMCID: PMC1204005 DOI: 10.1093/genetics/125.1.21] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carboxy-terminal 28 amino acids of the Saccharomyces cerevisiae transcriptional activator protein GAL4 execute two functions--transcriptional activation and interaction with the negative regulatory protein, GAL80. Here we demonstrate that these two functions are separable by single amino acid changes within this region. We determined the sequences of four GAL4C-mutations, and characterized the abilities of the encoded GAL4C proteins to activate transcription of the galactose/melibiose regulon in the presence of GAL80 and superrepressible GAL80S alleles. One of the GAL4C mutations can be compensated by a specific GAL80S mutation, resulting in a wild-type phenotype. These results support the idea that while the GAL4 activation function tolerates at least minor alterations in the GAL4 carboxyl terminus, the GAL80-interactive function is highly sequence-specific and sensitive even to single amino acid alterations. They also argue that the GAL80S mutations affect the affinity of GAL80 for GAL4, and not the ability of GAL80 to bind inducer.
Collapse
Affiliation(s)
- J M Salmeron
- Department of Botany, Duke University, Durham, North Carolina 27706
| | | | | |
Collapse
|
34
|
Parthun MR, Jaehning JA. Purification and characterization of the yeast transcriptional activator GAL4. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40217-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Abstract
This review briefly surveys the literature on the nature, regulation, genetics, and molecular biology of the major energy-yielding pathways in yeasts, with emphasis on Saccharomyces cerevisiae. While sugar metabolism has received the lion's share of attention from workers in this field because of its bearing on the production of ethanol and other metabolites, more attention is now being paid to ethanol metabolism and the regulation of aerobic metabolism by fermentable and nonfermentable substrates. The utility of yeast as a highly manipulable organism and the discovery that yeast metabolic pathways are subject to the same types of control as those of higher cells open up many opportunities in such diverse areas as molecular evolution and cancer research.
Collapse
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla
| |
Collapse
|
36
|
Identification of a yeast protein with properties similar to those of the immunoglobulin heavy-chain enhancer-binding protein NF-muE3. Mol Cell Biol 1989. [PMID: 2511431 DOI: 10.1128/mcb.9.10.4535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that Saccharomyces cerevisiae cells possess a 33-41-kilodalton protein with DNA-binding properties remarkably similar to those of the immunoglobulin enhancer-binding protein NF-muE3. We further show that the muE3-binding site functions as an upstream activating sequence in yeast cells, stimulating transcription from a truncated CYC1 promoter. These data suggest that the yeast protein, designated YEB-3, and NF-muE3 are functionally related and perhaps evolutionarily conserved.
Collapse
|
37
|
Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80. Mol Cell Biol 1989. [PMID: 2550790 DOI: 10.1128/mcb.9.7.2950] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptional activation mediated by the GAL4 regulatory protein is repressed in the absence of galactose by the binding of the GAL80 protein, an interaction that requires the carboxy-terminal 28 amino acids of GAL4. The homolog of GAL4 from Kluyveromyces lactis, LAC9, activates transcription in S. cerevisiae and is highly similar to GAL4 in its carboxyl terminus but is not repressed by wild-type levels of GAL80 protein. Here we show that GAL80 does repress LAC9-activated transcription in S. cerevisiae if overproduced. We sought to determine the molecular basis for the difference in the responses of the LAC9 and GAL4 proteins to GAL80. Our results indicate that this difference is due primarily to the fact that under wild-type conditions, the level of LAC9 protein in S. cerevisiae is much higher than that of GAL4, which suggests that LAC9 escapes GAL80-mediated repression by titration of GAL80 protein in vivo. The difference in response to GAL80 is not due to amino acid sequence differences between the LAC9 and GAL4 carboxyl termini. We discuss the implications of these results for the mechanism of galactose metabolism regulation in S. cerevisiae and K. lactis.
Collapse
|
38
|
Functional domains of a negative regulatory protein, GAL80, of Saccharomyces cerevisiae. Mol Cell Biol 1989. [PMID: 2506435 DOI: 10.1128/mcb.9.7.3009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the functional domains of a transcriptional repressor encoded by the GAL80 gene of Saccharomyces cerevisiae, we constructed various deletion and insertion mutations in the GAL80 coding region and determined the ability of these mutations to repress synthesis of galactose-metabolizing enzymes as well as the capacity of the mutant proteins to respond to the inducer. Two regions, from amino acids 1 to 321 and from amino acids 341 to 423, in the total sequence of 435 amino acids were required for repression. The internal region from amino acids 321 to 340 played a role in the response to the inducer. The 12 amino acids at the carboxy terminus were dispensable for normal functioning of the GAL80 protein. Using indirect immunofluorescence and subcellular fractionation techniques, we also found that two distinct regions (amino acids 1 to 109 and 342 to 405) within the putative repression domain were capable of directing cytoplasmically synthesized Escherichia coli beta-galactosidase to the yeast nucleus. In addition, three gal80 mutations were mapped at amino acid residues 183, 298, and 310 in the domain required for repression. On the basis of these results, we suggest that the GAL80 protein consists of a repression domain located in two separate regions (amino acid residues 1 to 321 and 341 to 423) that are interrupted by an inducer interaction domain (residues 322 to 340) and two nuclear localization domains (1 to 109 and 342 to 405) that overlap the repression domains.
Collapse
|
39
|
Beckmann H, Kadesch T. Identification of a yeast protein with properties similar to those of the immunoglobulin heavy-chain enhancer-binding protein NF-muE3. Mol Cell Biol 1989; 9:4535-40. [PMID: 2511431 PMCID: PMC362539 DOI: 10.1128/mcb.9.10.4535-4540.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We demonstrate that Saccharomyces cerevisiae cells possess a 33-41-kilodalton protein with DNA-binding properties remarkably similar to those of the immunoglobulin enhancer-binding protein NF-muE3. We further show that the muE3-binding site functions as an upstream activating sequence in yeast cells, stimulating transcription from a truncated CYC1 promoter. These data suggest that the yeast protein, designated YEB-3, and NF-muE3 are functionally related and perhaps evolutionarily conserved.
Collapse
Affiliation(s)
- H Beckmann
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6072
| | | |
Collapse
|
40
|
Salmeron JM, Langdon SD, Johnston SA. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80. Mol Cell Biol 1989; 9:2950-6. [PMID: 2550790 PMCID: PMC362763 DOI: 10.1128/mcb.9.7.2950-2956.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae, transcriptional activation mediated by the GAL4 regulatory protein is repressed in the absence of galactose by the binding of the GAL80 protein, an interaction that requires the carboxy-terminal 28 amino acids of GAL4. The homolog of GAL4 from Kluyveromyces lactis, LAC9, activates transcription in S. cerevisiae and is highly similar to GAL4 in its carboxyl terminus but is not repressed by wild-type levels of GAL80 protein. Here we show that GAL80 does repress LAC9-activated transcription in S. cerevisiae if overproduced. We sought to determine the molecular basis for the difference in the responses of the LAC9 and GAL4 proteins to GAL80. Our results indicate that this difference is due primarily to the fact that under wild-type conditions, the level of LAC9 protein in S. cerevisiae is much higher than that of GAL4, which suggests that LAC9 escapes GAL80-mediated repression by titration of GAL80 protein in vivo. The difference in response to GAL80 is not due to amino acid sequence differences between the LAC9 and GAL4 carboxyl termini. We discuss the implications of these results for the mechanism of galactose metabolism regulation in S. cerevisiae and K. lactis.
Collapse
Affiliation(s)
- J M Salmeron
- Department of Botany, Duke University, Durham, North Carolina 27706
| | | | | |
Collapse
|
41
|
Nogi Y, Fukasawa T. Functional domains of a negative regulatory protein, GAL80, of Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:3009-17. [PMID: 2506435 PMCID: PMC362769 DOI: 10.1128/mcb.9.7.3009-3017.1989] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To study the functional domains of a transcriptional repressor encoded by the GAL80 gene of Saccharomyces cerevisiae, we constructed various deletion and insertion mutations in the GAL80 coding region and determined the ability of these mutations to repress synthesis of galactose-metabolizing enzymes as well as the capacity of the mutant proteins to respond to the inducer. Two regions, from amino acids 1 to 321 and from amino acids 341 to 423, in the total sequence of 435 amino acids were required for repression. The internal region from amino acids 321 to 340 played a role in the response to the inducer. The 12 amino acids at the carboxy terminus were dispensable for normal functioning of the GAL80 protein. Using indirect immunofluorescence and subcellular fractionation techniques, we also found that two distinct regions (amino acids 1 to 109 and 342 to 405) within the putative repression domain were capable of directing cytoplasmically synthesized Escherichia coli beta-galactosidase to the yeast nucleus. In addition, three gal80 mutations were mapped at amino acid residues 183, 298, and 310 in the domain required for repression. On the basis of these results, we suggest that the GAL80 protein consists of a repression domain located in two separate regions (amino acid residues 1 to 321 and 341 to 423) that are interrupted by an inducer interaction domain (residues 322 to 340) and two nuclear localization domains (1 to 109 and 342 to 405) that overlap the repression domains.
Collapse
Affiliation(s)
- Y Nogi
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
42
|
Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1989. [PMID: 3062381 DOI: 10.1128/mcb.8.8.3439] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
|
43
|
GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol 1989. [PMID: 3062377 DOI: 10.1128/mcb.8.11.4991] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal function of the GAL11 gene is required for maximum production of the enzymes encoded by GAL1, GAL7, and GAL10 (collectively termed GAL1,7,10) in Saccharomyces cerevisiae. Strains bearing a gal11 mutation synthesize these enzymes at 10 to 30% of the wild-type level in the induced state. In a DNA-RNA hybridization experiment, the gal11 effect was shown to be exerted at the transcription level. Yeast cells bearing the gal11 mutation were shown to grow on glycerol plus lactate more slowly than the wild type. We isolated recombinant plasmids carrying the GAL11 gene by complementation of the gal11 mutation. When the GAL11 locus was disrupted by insertion of the URA3 gene, the resulting yeast cells (gal11::URA3) exhibited phenotypes almost identical to those of the gal11 strains, with respect to both galactose utilization and growth on nonfermentable carbon sources. Deficiency of Gal4, the major transcription activator for GAL1,7,10, was epistatic over the gal11 defect. The Gal11 deficiency lowered the expression of GAL2 but not that of MEL1 or GAL80; expression of these genes is also known to be dependent on GAL4 function. We determined the nucleotide sequence of GAL11, which is predicted to encode a 107-kilodalton protein with stretches of polyglutamine and poly(glutamine-alanine). An alpha-helix-beta-turn-alpha-helix structure was found in a distal part of the predicted amino acid sequence. A possible role of the GAL11 product in the regulation of galactose-inducible genes is discussed.
Collapse
|
44
|
Abstract
GAL80, an inhibitor of the yeast transcriptional activator GAL4, is converted into an activator by inserting an acidic activating sequence into it. This hybrid activator does not bind to DNA directly, but is brought to DNA by interacting with a derivative of GAL4 that interacts with both DNA and GAL80.
Collapse
Affiliation(s)
- J Ma
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
45
|
Suzuki Y, Nogi Y, Abe A, Fukasawa T. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:4991-9. [PMID: 3062377 PMCID: PMC365593 DOI: 10.1128/mcb.8.11.4991-4999.1988] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Normal function of the GAL11 gene is required for maximum production of the enzymes encoded by GAL1, GAL7, and GAL10 (collectively termed GAL1,7,10) in Saccharomyces cerevisiae. Strains bearing a gal11 mutation synthesize these enzymes at 10 to 30% of the wild-type level in the induced state. In a DNA-RNA hybridization experiment, the gal11 effect was shown to be exerted at the transcription level. Yeast cells bearing the gal11 mutation were shown to grow on glycerol plus lactate more slowly than the wild type. We isolated recombinant plasmids carrying the GAL11 gene by complementation of the gal11 mutation. When the GAL11 locus was disrupted by insertion of the URA3 gene, the resulting yeast cells (gal11::URA3) exhibited phenotypes almost identical to those of the gal11 strains, with respect to both galactose utilization and growth on nonfermentable carbon sources. Deficiency of Gal4, the major transcription activator for GAL1,7,10, was epistatic over the gal11 defect. The Gal11 deficiency lowered the expression of GAL2 but not that of MEL1 or GAL80; expression of these genes is also known to be dependent on GAL4 function. We determined the nucleotide sequence of GAL11, which is predicted to encode a 107-kilodalton protein with stretches of polyglutamine and poly(glutamine-alanine). An alpha-helix-beta-turn-alpha-helix structure was found in a distal part of the predicted amino acid sequence. A possible role of the GAL11 product in the regulation of galactose-inducible genes is discussed.
Collapse
Affiliation(s)
- Y Suzuki
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
46
|
Bajwa W, Torchia TE, Hopper JE. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1988; 8:3439-47. [PMID: 3062381 PMCID: PMC363581 DOI: 10.1128/mcb.8.8.3439-3447.1988] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
Affiliation(s)
- W Bajwa
- Department of Biological Chemistry, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
47
|
|
48
|
Affiliation(s)
- M Carlson
- Department of Genetics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
49
|
Abstract
We describe yeast transcriptional activators encoded by E. coli genomic DNA fragments fused to the coding sequence of the DNA-binding portion of GAL4. All of the new activating sequences that we have analyzed, like those of GAL4 and GCN4, are acidic; most of these sequences show no obvious sequence homology when compared with the identified activating regions of GAL4 and GCN4 or among themselves. We also describe a fusion protein that contains no yeast protein sequence but activates transcription in yeast.
Collapse
Affiliation(s)
- J Ma
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
50
|
Abstract
In wild-type yeast the action of the transcriptional activator GAL4 is inhibited by GAL80, and galactose relieves this inhibition. We show that deletion mutants of GAL4 lacking 30 amino acids of the carboxyl terminus activate transcription constitutively, whereas other deletion mutants bearing the carboxy-terminal 30 amino acids are inhibited by GAL80. Moreover, GAL4 fragments bearing these 30 amino acids, when expressed from a strong promoter on multicopy plasmids, free the endogenous GAL4 from inhibition by GAL80. These and other results suggest that GAL80 recognizes the carboxy-terminal 30 amino acids of GAL4, forming a complex that, though bound to DNA, does not activate transcription.
Collapse
|