1
|
Bohm KA, Wyrick JJ. Damage mapping techniques and the light they have shed on canonical and atypical UV photoproducts. Front Genet 2023; 13:1102593. [PMID: 36704334 PMCID: PMC9871259 DOI: 10.3389/fgene.2022.1102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Ultraviolet (UV) light is a pervasive threat to the DNA of terrestrial organisms. UV light induces helix-distorting DNA lesions, primarily cyclobutane pyrimidine dimers (CPDs) that form between neighboring pyrimidine bases. Unrepaired CPD lesions cause cytosine-to-thymine (C>T) substitutions in dipyrimidine sequences, which is the predominant mutation class in skin cancer genomes. However, many driver mutations in melanoma (e.g., in the BRAF and NRAS oncogenes) do not fit this UV mutation signature. Recent studies have brought to light the intriguing hypothesis that these driver mutations may be induced by infrequent or atypical UV photoproducts, including pyrimidine 6-4 pyrimidone photoproducts (6-4PP) and thymine-adenine (TA) photoproducts. Here, we review innovative methods for mapping both canonical and atypical UV-induced photoproducts across the genome.
Collapse
Affiliation(s)
- Kaitlynne A. Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
2
|
Kim SH, Kim GH, Kemp MG, Choi JH. TREX1 degrades the 3' end of the small DNA oligonucleotide products of nucleotide excision repair in human cells. Nucleic Acids Res 2022; 50:3974-3984. [PMID: 35357486 PMCID: PMC9023299 DOI: 10.1093/nar/gkac214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 01/01/2023] Open
Abstract
The nucleotide excision repair (NER) machinery removes UV photoproducts from DNA in the form of small, excised damage-containing DNA oligonucleotides (sedDNAs) ∼30 nt in length. How cells process and degrade these byproducts of DNA repair is not known. Using a small scale RNA interference screen in UV-irradiated human cells, we identified TREX1 as a major regulator of sedDNA abundance. Knockdown of TREX1 increased the level of sedDNAs containing the two major UV photoproducts and their association with the NER proteins TFIIH and RPA. Overexpression of wild-type but not nuclease-inactive TREX1 significantly diminished sedDNA levels, and studies with purified recombinant TREX1 showed that the enzyme efficiently degrades DNA located 3′ of the UV photoproduct in the sedDNA. Knockdown or overexpression of TREX1 did not impact the overall rate of UV photoproduct removal from genomic DNA or cell survival, which indicates that TREX1 function in sedDNA degradation does not impact NER efficiency. Taken together, these results indicate a previously unknown role for TREX1 in promoting the degradation of the sedDNA products of the repair reaction. Because TREX1 mutations and inefficient DNA degradation impact inflammatory and immune signaling pathways, the regulation of sedDNA degradation by TREX1 may contribute to photosensitive skin disorders.
Collapse
Affiliation(s)
- Seon Hee Kim
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Geun Hoe Kim
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA.,Dayton Veterans Administration Medical Center, Dayton, OH 45428, USA
| | - Jun-Hyuk Choi
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| |
Collapse
|
3
|
Leung WY, Murray V. The influence of DNA methylation on the sequence specificity of UVB- and UVC-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112225. [PMID: 34090037 DOI: 10.1016/j.jphotobiol.2021.112225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Ultraviolet light (UV) is one of the most common DNA damaging agents in the human environment. This paper examined the influence of DNA methylation on the level of UVB- and UVC-induced DNA damage. A purified DNA sequence containing CpG dinucleotides was methylated with a CpG methylase. We employed the linear amplification technique and the end-labelling approach followed by capillary electrophoresis with laser-induced fluorescence to investigate the sequence specificity of UV-induced DNA damage. The linear amplification technique mainly detects cyclobutane pyrimidine dimer (CPD) adducts, while the end-labelling approach mainly detects 6-4 photoproduct (6-4PP) lesions. The levels of CPD and 6-4PP adducts detected in methylated/unmethylated labelled sequences were analysed. The comparison showed that 5-methyl-cytosine significantly reduced the level of both CPD and 6-4PP adducts after UVB (308 nm) and UVC (254 nm) irradiation compared with the non-methylated counterpart.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Khoe CV, Chung LH, Murray V. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:88-100. [PMID: 29698913 DOI: 10.1016/j.jphotobiol.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 04/14/2018] [Indexed: 01/17/2023]
Abstract
The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons.
Collapse
Affiliation(s)
- Clairine V Khoe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Leung WY, Chung LH, Kava HW, Murray V. RecBCD (Exonuclease V) is inhibited by DNA adducts produced by cisplatin and ultraviolet light. Biochem Biophys Res Commun 2018; 495:666-671. [PMID: 29129691 DOI: 10.1016/j.bbrc.2017.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
The presence of adducts on the DNA double-helix can have major consequences for the efficient functioning of DNA repair enzymes. E. coli RecBCD (exonuclease V) is involved in recombinational repair of double-strand breaks that are caused by defective DNA replication, DNA damaging agents and other factors. The holoenzyme possesses a bipolar helicase activity which helps unwind DNA from both 3'- and 5'-directions and is coupled with a potent exonuclease activity that is also capable of digesting DNA from both 3'- and 5'-ends. In this study, DNA sequences were damaged with cisplatin or UV followed by RecBCD treatment. DNA damaging agents such as cisplatin and UV induce the formation of intrastrand adducts in the DNA template. It was demonstrated that RecBCD degradation was inhibited by either cisplatin-damaged or UV-damaged DNA sequences. This is the first occasion that RecBCD has been demonstrated to be inhibited by DNA adducts induced by cisplatin or UV. In addition, we quantified the amounts of DNA remaining after RecBCD treatment and observed that the level of inhibition was concentration and dose dependent. A DNA-targeted 9-aminoacridinecarboxamide cisplatin analogue was also found to inhibit RecBCD activity.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hieronimus W Kava
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Kumar Vashishtha A, H. Konigsberg W. Effect of Different Divalent Cations on the Kinetics and Fidelity of DNA Polymerases. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.4.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Chung LH, Murray V. An extended sequence specificity for UV-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:133-142. [PMID: 29149689 DOI: 10.1016/j.jphotobiol.2017.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/26/2023]
Abstract
The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage.
Collapse
Affiliation(s)
- Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Vashishtha AK, Wang J, Konigsberg WH. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J Biol Chem 2016; 291:20869-20875. [PMID: 27462081 DOI: 10.1074/jbc.r116.742494] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Divalent metal ions are essential components of DNA polymerases both for catalysis of the nucleotidyl transfer reaction and for base excision. They occupy two sites, A and B, for DNA synthesis. Recently, a third metal ion was shown to be essential for phosphoryl transfer reaction. The metal ion in the A site is coordinated by the carboxylate of two highly conserved acidic residues, water molecules, and the 3'-hydroxyl group of the primer so that the A metal is in an octahedral complex. Its catalytic function is to lower the pKa of the hydroxyl group, making it a highly effective nucleophile that can attack the α phosphorous atom of the incoming dNTP. The metal ion in the B site is coordinated by the same two carboxylates that are affixed to the A metal ion as well as the non-bridging oxygen atoms of the incoming dNTP. The carboxyl oxygen of an adjacent peptide bond serves as the sixth ligand that completes the octahedral coordination geometry of the B metal ion. Similarly, two metal ions are required for proofreading; one helps to lower the pKa of the attacking water molecule, and the other helps to stabilize the transition state for nucleotide excision. The role of different divalent cations are discussed in relation to these two activities as well as their influence on base selectivity and misincorporation by DNA polymerases. Some, but not all, of the effects of these different metal ions can be rationalized based on their intrinsic properties, which are tabulated in this review.
Collapse
Affiliation(s)
- Ashwani Kumar Vashishtha
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| | - Jimin Wang
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | - William H Konigsberg
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| |
Collapse
|
9
|
Abstract
Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such as Arabidopsis and rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate that Arabidopsis removes CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26-27 nucleotides are removed by incising ∼20 phosphodiester bonds 5' and 5 phosphodiester bonds 3' to the photoproduct.
Collapse
|
10
|
Finch AS, Davis WB, Rokita SE. Accumulation of the cyclobutane thymine dimer in defined sequences of free and nucleosomal DNA. Photochem Photobiol Sci 2014; 12:1474-82. [PMID: 23801267 DOI: 10.1039/c3pp50147g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photochemical cyclobutane dimerization of adjacent thymines generates the major lesion in DNA caused by exposure to sunlight. Not all nucleotide sequences and structures are equally susceptible to this reaction or its potential to create mutations. Photostationary levels of the cyclobutane thymine dimer have now been quantified in homogenous samples of DNA reconstituted into nucleosome core particles to examine the basis for previous observations that such structures could induce a periodicity in dimer yield when libraries of heterogeneous sequences were used. Initial rate studies did not reveal a similar periodicity when a homogenous core particle was analyzed, but this approach examined only formation of this photochemically reversible cyclobutane dimer. Photostationary levels result from competition between dimerization and reversion and, as described in this study, still express none of the periodicity within two alternative core particles that was evident in heterogeneous samples. Such periodicity likely arises from only a limited set of sequences and structural environments that are not present in the homogeneous and well-characterized assemblies available to date.
Collapse
Affiliation(s)
- Amethist S Finch
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
11
|
Edwards DN, Machwe A, Wang Z, Orren DK. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change. PLoS One 2014; 9:e80664. [PMID: 24454683 PMCID: PMC3891601 DOI: 10.1371/journal.pone.0080664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.
Collapse
Affiliation(s)
- Deanna N. Edwards
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Amrita Machwe
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Zhigang Wang
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - David K. Orren
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hu J, Choi JH, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A. Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. J Biol Chem 2013; 288:20918-20926. [PMID: 23749995 DOI: 10.1074/jbc.m113.482257] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.
Collapse
Affiliation(s)
- Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Jun-Hyuk Choi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and; the Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea
| | - Shobhan Gaddameedhi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Michael G Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Joyce T Reardon
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|
13
|
Murray V, Nguyen TV, Chen JK. The use of automated sequencing techniques to investigate the sequence selectivity of DNA-damaging agents. Chem Biol Drug Des 2012; 80:1-8. [PMID: 22416919 DOI: 10.1111/j.1747-0285.2012.01379.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this review, the use of automated DNA sequencing techniques to determine the sequence specificity of compounds that interact with DNA is discussed. The sequence specificity of a DNA-damaging agent is an essential element in determining the cellular mechanism of action of a drug. A number of DNA-damaging compounds are mutagenic, carcinogenic, as well as being widely used as cancer chemotherapeutic agents. The distribution of lesions in a sequence of DNA can give vital clues in the determination of the precise mechanism of interaction of the agent with DNA. The DNA sequence specificity of a number of DNA-damaging agents has been delineated using automated DNA sequencing technology, and these studies are discussed in this review. The current state-of-the-art methodology involves capillary electrophoresis with laser-induced fluorescence detection usually on an Applied Biosystems ABI 3730 capillary sequencer. This current technique has higher resolution, greater sensitivity, higher precision, more rapid separation times, is safer and easier to perform than previous methods. The two main methods to determine the DNA sequence selectivity of compounds that interact with DNA are described: end labelling and the polymerase stop assay. The interaction of the antitumour drug, bleomycin, with DNA is utilized to illustrate the recent technological advances.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
14
|
Nguyen TV, Murray V. Human telomeric DNA sequences are a major target for the antitumour drug bleomycin. J Biol Inorg Chem 2011; 17:1-9. [PMID: 21761251 DOI: 10.1007/s00775-011-0818-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
The DNA sequence specificity of the cancer chemotherapeutic agent bleomycin was examined in a human telomeric DNA sequence and compared with that of non-telomeric sequences. The target DNA sequence contained 17 repeats of the human telomeric sequence and other primary sites of bleomycin cleavage. The 377-base-pair target DNA was fluorescently labelled at the 3'-end, damaged with bleomycin and electrophoresed in an ABI 3730 automated capillary sequencer to determine the intensity and sequence specificity of bleomycin damage. The results revealed that bleomycin cleaved primarily at 5'-GT in the telomeric sequence 5'-GGGTTA. Maxam-Gilbert chemical sequencing reactions were utilised as DNA size markers to determine the precise sites of bleomycin cleavage. The telomeric region contained strong sites of bleomycin cleavage and constituted 57% of the 30 most intense bleomycin damage sites in the DNA sequence examined. These data indicated that telomeric DNA sequences are a major site for bleomycin damage.
Collapse
Affiliation(s)
- Trung V Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
15
|
Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG, Xu H, Zhang L, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. Damage-induced localized hypermutability. Cell Cycle 2011; 10:1073-85. [PMID: 21406975 DOI: 10.4161/cc.10.7.15319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.
Collapse
Affiliation(s)
- Lauranell H Burch
- National Institute of Environmental Health Sciences, Research Triangle Park, NC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang Y, Gordenin DA, Resnick MA. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair (Amst) 2010; 9:914-21. [PMID: 20663718 DOI: 10.1016/j.dnarep.2010.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/13/2010] [Accepted: 06/14/2010] [Indexed: 11/17/2022]
Abstract
Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA.
Collapse
Affiliation(s)
- Yong Yang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | | | | |
Collapse
|
17
|
Abstract
The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased “intrinsic exposure” of nucleosome-associated DNA lesions in chromatin to repair proteins.
Collapse
Affiliation(s)
- Ming-Rui Duan
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
18
|
Douki T, Laporte G, Cadet J. Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Res 2003; 31:3134-42. [PMID: 12799441 PMCID: PMC162242 DOI: 10.1093/nar/gkg408] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Far-UV irradiation of DNA leads to the dimerization of pyrimidine bases, resulting in the formation of cyclobutane type dimers and (6-4) photoproducts. In the dry state, an additional thymine dimeric photolesion, the spore photoproduct, is also generated. While most photoproducts are expected to be produced between adjacent pyrimidines, little attention has been paid to lesions involving bases located on different DNA strands. Using HPLC- mass spectrometry analysis of enzymatically digested DNA, we observed that, in the dry state, inter-strand dimeric photoproducts represented 30% of the total yield of dimeric thymine lesions. The major inter-strand damage was found to be the spore photoproduct. Formation of inter-strand lesions in significant yield could be obtained in solution upon modification of the DNA conformation as the result of the addition of large amounts of ethanol. In both cases, DNA is in the A-form, which is characterized by a high compaction, likely to favor inter-strand photoreactions. Since the latter DNA conformation is also predominant in bacterial spores, the formation and repair of dimeric photoproducts involving thymine bases located on different DNA strands may thus be relevant in terms of deleterious effects of UV radiation to the latter microorganisms.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire 'Lésions des Acides Nucléiques', Service de Chimie Inorganique et Biologique, FRE 2600, CEA/DSM/Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
19
|
Douki T, Cadet J. Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2003; 2:433-6. [PMID: 12760543 DOI: 10.1039/b300173c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Far-UV irradiation of DNA leads to the formation of several types of dimeric lesions between adjacent pyrimidine bases including cyclobutane dimers, (6-4) photoproducts and Dewar valence isomers In the dry state, an additional specific thymine lesion, the spore photoproduct, is produced. We designed an HPLC-tandem mass spectrometry assay for the detection of the latter lesion. This technique that does not require radio-labelling of DNA allowed the simultaneous quantification of the spore photoproduct and other pyrimidine dimeric photoproducts. Using this approach, the complete distribution of bipyrimidine lesions within UVC-irradiated dry DNA was determined.
Collapse
Affiliation(s)
- Thierry Douki
- Laboratoire "Lésions des Acides Nucléiques", Service de Chimie Inorganique et Biologique, FRE 2600, CEA/DSM/Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, 38054 Grenoble 9, France.
| | | |
Collapse
|
20
|
Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:88-102. [PMID: 11684456 DOI: 10.1016/s1011-1344(01)00206-8] [Citation(s) in RCA: 604] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this survey, emphasis was placed on the main photoreactions of nucleic acid components, involving both direct and indirect effects. The main UVB- and UVA-induced DNA photoproducts, together with the mechanisms of their formation, are described. Information on the photoproduct distribution within cellular DNA is also provided, taking into account the limitations of the different analytical methods applied to monitor the formation of the DNA damage. Thus, the formation of the main DNA dimeric pyrimidine lesions produced by direct absorption of UVB photons was assessed using a powerful HPLC-tandem mass spectrometry assay. In addition, it was found that UVA photooxidation damage mostly involves the guanine residues of cellular DNA as the result of singlet oxygen generation by still unknown endogenous photosensitizers.
Collapse
Affiliation(s)
- J L Ravanat
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
21
|
Beylot B, Spassky A. Chemical probing shows that the intron-encoded endonuclease I-SceI distorts DNA through binding in monomeric form to its homing site. J Biol Chem 2001; 276:25243-53. [PMID: 11279183 DOI: 10.1074/jbc.m101200200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its small size (27.6 kDa), the group I intron-encoded I-SceI endonuclease initiates intron homing by recognizing and specifically cleaving a large intronless DNA sequence. Here, we used gel shift assays and footprinting experiments to analyze the interaction between I-SceI and its target. I-SceI was found to bind to its substrate in monomeric form. Footprinting using DNase I, hydroxyl radical, phenanthroline copper complexes, UV/DH-MePyPs photosensitizer, and base-modifying reagents revealed the asymmetric nature of the interaction and provided a first glimpse into the architecture of the complex. The protein interacts in the minor and major grooves and distorts DNA at three distinct sites: one at the intron insertion site and the other two, respectively, downstream (-8, -9) and upstream (+9, +10) from this site. The protein appears to stabilize the DNA curved around it by bridging the minor groove on one face of the helix. The scissile phosphates would lie on the outside of the bend, facing in the same direction relative to the DNA helical axis, as expected for an endonuclease that generates 3' overhangs. An internally consistent model is proposed in which the protein would take advantage of the concerted flexibility of the DNA sequence to induce a synergistic binding/kinking process, resulting in the correct positioning of the enzyme active site.
Collapse
Affiliation(s)
- B Beylot
- Laboratoire de Physique et Chimie Biomoléculaires, Institut Curie, Rue des Saint-Pères, Paris, France
| | | |
Collapse
|
22
|
UV damage to nucleic acid components. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
23
|
Pehrson JR, Litwin S, Myers CB, Cohen LH. Pyrimidine dimer formation as a probe of nucleosome core and linker structure in situ. Methods 1999; 19:447-56. [PMID: 10579940 DOI: 10.1006/meth.1999.0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The photoinduced dimerization of adjacent pyrimidines in DNA is influenced in predictable ways by DNA conformation. A method is described for determining patterns of pyrimidine dimer formation under conditions in which the chromatin is minimally perturbed. The relation of such patterns to the conformation of nucleosomal core DNA and linker DNA, as well as the interaction of histone H1 with nucleosomal DNA, is presented. Such data indicate that sharp bends in the path of DNA seen in crystals of isolated nucleosome core particles are also present in intact chromatin. They also indicate that most of the linker has very little curvature except for a small bend at its junction with the nucleosome core. The linker path inferred from such experiments supports models in which the chromatin fiber consists of a zigzag chain of nucleosomes.
Collapse
Affiliation(s)
- J R Pehrson
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
24
|
Murray V. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:367-415. [PMID: 10506836 DOI: 10.1016/s0079-6603(08)60727-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Collapse
Affiliation(s)
- V Murray
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Avery AM, Kaur B, Taylor JS, Mello JA, Essigmann JM, Doetsch PW. Substrate specificity of ultraviolet DNA endonuclease (UVDE/Uve1p) from Schizosaccharomyces pombe. Nucleic Acids Res 1999; 27:2256-64. [PMID: 10325412 PMCID: PMC148789 DOI: 10.1093/nar/27.11.2256] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Schizosaccharomyces pombe ultraviolet DNA endonuclease (UVDE or Uve1p) has been shown to cleave 5' to UV light-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). This endonuclease is believed to function in the initial step in an alternative excision repair pathway for the removal of DNA damage caused by exposure to UV light. An active truncated form of this protein, Delta228-Uve1p, has been successfully overexpressed, affinity purified and partially characterized. In the present study we present data from a detailed substrate specificity trial. We have determined that the substrate range of Uve1p is much greater than was originally believed. We demonstrate that this DNA damage repair protein is capable of recognizing an array of UV-induced DNA photoproducts (cis-syn-, trans-syn I- and trans-syn II CPDs, 6-4PP and Dewar isomers) that cause varying degrees of distortion in a duplex DNA molecule. We also demonstrate that Uve1p recognizes non-UV-induced DNA damage, such as platinum-DNA GG diadducts, uracil, dihydrouracil and abasic sites. This is the first time that a single DNA repair endonuclease with the ability to recognize such a diverse range of lesions has been described. This study suggests that Uve1p and the alternative excision repair pathway may participate broadly in the repair of DNA damage.
Collapse
Affiliation(s)
- A M Avery
- Department of Biochemistry, Graduate Program in Biochemistry, Cell and Developmental Biology, Division of Cancer Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ogrünç M, Becker DF, Ragsdale SW, Sancar A. Nucleotide excision repair in the third kingdom. J Bacteriol 1998; 180:5796-8. [PMID: 9791138 PMCID: PMC107647 DOI: 10.1128/jb.180.21.5796-5798.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Accepted: 08/24/1998] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair, a general repair mechanism for removing DNA damage, is initiated by dual incisions bracketing the lesion. In procaryotes, the dual incisions result in excision of the damage in 12- to 13-nucleotide-long oligomers, and in eucaryotes they result in excision of the damage in the form of 24- to 32-nucleotide-long oligomers. We wished to find out if Archaea perform excision repair. Using cell extracts from Methanobacterium thermoautotrophicum, we found that this organism removes UV-induced (6-4) photoproducts in the form of 10- to 11-mers by incising the sixth to seventh phosphodiester bond 5' to the damage and the fourth phosphodiester bond 3' to the damage.
Collapse
Affiliation(s)
- M Ogrünç
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
27
|
Marzilli LA, Wang D, Kobertz WR, Essigmann JM, Vouros P. Mass spectral identification and positional mapping of aflatoxin B1-guanine adducts in oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1998; 9:676-682. [PMID: 9879377 DOI: 10.1016/s1044-0305(98)00039-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The biological consequences of a carcinogen-DNA adduct are defined by the structure of the lesion and its position within the genome. Electrospray ionization ion trap mass spectrometry (ESI-ITMS) is shown here to be a sensitive and rapid approach capable of defining both of these parameters. Three isomeric oligonucleotides of the sequence 5'-CCGGAGGCC modified by the potent human carcinogen aflatoxin B1 (AFB1) at different guanines were analyzed by ESI-ITMS. All three samples possessed the same molecular ion confirming the presence of an intact aflatoxin moiety in each oligonucleotide. In addition, each sample displayed a characteristic fragmentation pattern that permitted unambiguous identification of the site of modification within the sequence. Furthermore, an AFB1-modified oligonucleotide was converted under alkaline conditions to its more stable formamidopyrimidine (FAPY) derivative. Analysis of this sample revealed the presence of a molecular ion corresponding to the presence of the FAPY adduct and a distinctive fragmentation pattern that paralleled the known chemical stability of the FAPY metabolite. This approach should be of general use in the determination of not only the nature and site of covalent modifications, but also the chemical stability of DNA adducts.
Collapse
Affiliation(s)
- L A Marzilli
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
28
|
Douki T, Zalizniak T, Cadet J. Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects. Photochem Photobiol 1997; 66:171-9. [PMID: 9277137 DOI: 10.1111/j.1751-1097.1997.tb08639.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone adducts represent the two major classes of far-UV-induced DNA photoproducts. Because of the lack of appropriate detection methods for each individual photoproduct, little is known about the effect of the sequence on their formation. In the present work, the photoproduct distribution obtained upon exposure of a series of dinucleoside monophosphates to 254 nm light was determined. In the latter model compounds, the presence of a cytosine, located at either the 5'- or the 3'-side of a thymine moiety, led to the preferential formation of (6-4) adducts, whereas the cis-syn cyclobutane dimer was the main thymine-thymine photoproduct. In contrast, the yield of dimeric photoproducts, and particularly of (6-4) photoadducts, was very low upon irradiation of the cytosine-cytosine dinucleoside monophosphate. However, substitution of cytosine by uracil led to an increase in the yield of (6-4) photoproduct. It was also shown that the presence of a phosphate group at the 5'- end of a thymine-thymine dinucleoside monophosphate does not modify the photoproduct distribution. As an extension of the studies on dinucleoside monophosphates, the trinucleotide TpdCpT was used as a more relevant DNA model. The yields of formation of the thymine-cytosine and cytosine-thymine (6-4) photoproducts were in a 5:1 ratio, very close to the value obtained upon photolysis of the related dinucleoside monophosphates. The characterization of the two TpdCpT (6-4) adducts was based on 1H NMR, UV and mass spectroscopy analyses. Additional evidence for the structures was inferred from the analysis of the enzymatic digestion products of the (6-4) adducts of TpdCpT with phosphodiesterases. The latter enzymes were shown to induce the quantitative release of the photoproduct as a modified dinucleoside monophosphate in a highly sequence-specific manner.
Collapse
Affiliation(s)
- T Douki
- Département de Recherche Fondamentale sur la Matière Condensée, SCIB/Laboratoire des Lésions des Acides Nucléiques, CEA/Grenoble, France
| | | | | |
Collapse
|
29
|
Clingen PH, Jeremy R, Davies H. Quantum yields of adenine photodimerization in poly (deoxyadenylic acid) and DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1997. [DOI: 10.1016/s1011-1344(96)07420-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Jen J, Mitchell DL, Cunningham RP, Smith CA, Taylor JS, Cleaver JE. Ultraviolet irradiation produces novel endonuclease III-sensitive cytosine photoproducts at dipyrimidine sites. Photochem Photobiol 1997; 65:323-9. [PMID: 9066307 DOI: 10.1111/j.1751-1097.1997.tb08565.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ultraviolet light irradiation of DNA in vitro and in vivo induces cyclobutane dimers, (6-4) pyrimidine-pyrimidone photoproducts and a variety of minor products. Using a defined DNA fragment, we have identified two classes of sites that can be cleaved by Escherichia coli endonuclease III: single cytosines whose heat lability corresponds to that of cytosine hydrates and more heat-stable dipyrimidines containing cytosine. The dipyrimidine products are induced at sites suggestive of (6-4) photoproducts but are not recognized as (6-4) photoproducts by radioimmunoassay. Use of oligonucleotides containing a single cyclobutane thymine dimer, a (6-4) photoproduct or the Dewar photoisomer of the (6-4) photoproduct also indicated that these products are not substrates for endonuclease III. We have therefore identified a minor UV photoproduct that has the same sequence specificity as the two major dipyrimidine photoproducts; it may be a minor isomer, a unique derivative or an oxidative lesion confined to dipyrimidine sites. Its biological significance is not yet known but may be masked by the preponderance of major products at the same sites. Its occurrence at the particular site in dipyrimidine sequences involved in the mutagenic action of UV photoproducts suggests that it may play a role in generating C to T transitions that are common UV-induced mutations.
Collapse
Affiliation(s)
- J Jen
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750, USA
| | | | | | | | | | | |
Collapse
|
31
|
Pfeifer GP. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem Photobiol 1997; 65:270-83. [PMID: 9066304 DOI: 10.1111/j.1751-1097.1997.tb08560.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclobutane pyrimidine dimers and (6-4) photoproducts are the two major classes of lesions produced in DNA by UVB and UVC irradiation. Their distribution along genes is nucleotide sequence-dependent. In vivo, the frequency of these lesions at specific sites is modulated by nucleosomes and other DNA binding proteins. Repair of UV photoproducts is dependent on the transcriptional status of the sequences to be repaired and on the chromatin environment. The formation of DNA photolesions by UV light is responsible for the induction of mutations and the development of skin cancer. To understand the mechanisms of UV mutagenesis, it is important to know how these lesions are formed, by which cellular pathways they are repaired and how they are dealt with by DNA polymerases.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
32
|
Guillo LA, Beylot B, Vigny P, Spassky A. Formation of cyclobutane thymine dimers from UVA photosensitization of pyridopsoralen monoadducted DNA. Photochem Photobiol 1996; 64:349-55. [PMID: 8760575 DOI: 10.1111/j.1751-1097.1996.tb02470.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present report provides evidence that thymine dimerization can be UVA photosensitized at a tetranucleotide, 5'-TATT-3', by a 7-methyl-pyrido(3,4-c)psoralen monoadduct in DNA. The efficiency of the photoprocess depends on the tetranucleotide flanking sequences. These results demonstrate that one DNA lesion can originate the contiguous formation of a second type of lesion and emphasize the sequence-specific response to interaction of drugs with DNA. Results are related to the sensitivity of DNA to 1,10-phenanthroline-cuprous ion complex nucleolytic activity and discussed in terms of the major role of local deformability of DNA in interaction with ligands.
Collapse
Affiliation(s)
- L A Guillo
- Departmento de Bioquimica, Universidade de Sao Paulo, Brazil
| | | | | | | |
Collapse
|
33
|
Welsh J, Rampino N, McClelland M, Perucho M. Nucleic acid fingerprinting by PCR-based methods: applications to problems in aging and mutagenesis. Mutat Res 1995; 338:215-29. [PMID: 7565877 DOI: 10.1016/0921-8734(95)00026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There are many methods of inference in common use in biology that are based on population sampling, including such diverse areas as sampling organisms to determine the population structure of an ecosystem, sampling a set of DNA sequences to infer evolutionary history, sampling genetic loci to build a genetic map, sampling differentially expressed genes to find phenotypic markers, and many others. Recently developed PCR-based methods for nucleic acid fingerprinting can be used as sampling tools with general applicability in molecular biology, evolution and genetics. These methods include arbitrarily primed PCR (AP-PCR; Welsh and McClelland, 1990) and random amplified polymorphic DNA (RAPD; Williams et al., 1990) for the fingerprinting of DNA, and RNA arbitrarily primed PCR (RAP-PCR; Welsh et al., 1992a) and differential display (DD; Liang and Pardee, 1992) for the fingerprinting of RNA. Novel ways of looking at genetic control are facilitated by the high data-acquisition capabilities of the fingerprinting methods. In this article, we review some of the applications of DNA fingerprinting to the study of mutagenesis, and of RNA fingerprinting to the study of normal and abnormal signal transduction. We propose that these fingerprinting approaches may also have applications in the study of senescence and aging.
Collapse
Affiliation(s)
- J Welsh
- California Institute of Biological Research, La Jolla 92037, USA
| | | | | | | |
Collapse
|
34
|
Pehrson JR. Probing the Conformation of Nucleosome Linker DNA in Situ with Pyrimidine Dimer Formation. J Biol Chem 1995. [DOI: 10.1016/s0021-9258(18)90157-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Guillo LA, Blais J, Vigny P, Spassky A. Selective DNA thymine dimerization during UVA irradiation in the presence of a saturated pyridopsoralen. Photochem Photobiol 1995; 61:331-5. [PMID: 7740076 DOI: 10.1111/j.1751-1097.1995.tb08617.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been recently shown that UVA (320-400 nm) irradiation of DNA in the presence of pyridopsoralens induces the formation of thymine cyclobutane dimers in addition to monoadducts. In this work, we measured the potency of a saturated pyridopsoralen to photosensitize DNA, despite its inability to covalently attach to DNA. First, from spectroscopic fluorescence measurements, we have shown that both analogs, saturated and unsaturated pyridopsoralens, namely 4',5'-dihydro-7-methyl-pyrido[3,4-c]psoralen (DH-MePyPs) and 7-methylpyrido[3,4-c]psoralen, exhibit a similar global affinity for DNA. Secondly, we demonstrated, by footprinting experiments, that exposure of a DNA sequence to 365 nm UV radiation in the presence of DH-MePyPs results in selective cyclobutane thymine dimerization. Thymines located in the immediate proximity of the 5'-TA-3' step are exclusively affected and the frequency of this photoprocess depends on flanking sequences. We thus probe a selective thymine dimer photosensitizer. Results are discussed in terms of drug affinity and physical properties of the helix at the binding site.
Collapse
Affiliation(s)
- L A Guillo
- Laboratoire de Physique et Chimie Biomoléculaires, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
36
|
Abstract
Reductively-activated mitomycin C (MC) presents a high specificity to the 5'-CG site and to a lesser extent the 5'-GG site. However, its affinity is different for each 5'-CG site. This was evidenced by using the 3'-5' exonuclease activity of T4 DNA polymerase on a short DNA fragment exposed to MC, which was gradually activated by several Na2S2O4 additions. The time-delayed appearance of some exonuclease digestion stop sites (corresponding to MC-monofunctional adducts) suggests that MC discriminates between very fine structural variations. The feature of the stop sites suggests a good fit of MC in the DNA groove, in the case of the major alkylation sites, but not in the case of a minor 5'-TG alkylation site. Furthermore, it is evidenced by the use of the chemical probe hydroxylamine (HA) that MC-monoalkylation of 5'-CG (or 5'-GG) does not induce notable local structural disturbance of the DNA double helix, as opposed to alkylation of the 5'-TG site of minor specificity, which leads to significant local DNA distortion. This suggests that the 'in vivo' effect of MC is related, not only to amount of alkylated sites (essentially 5'-CG sites), but also to possible local DNA deformations (at minor alkylation sites).
Collapse
Affiliation(s)
- B Jollès
- Laboratoire de Physique et Chimie Biomoléculaires (C.N.R.S. URA 198), Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
37
|
Rampino NJ, Bohr VA. Rapid gene-specific repair of cisplatin lesions at the human DUG/DHFR locus comprising the divergent upstream gene and dihydrofolate reductase gene during early G1 phase of the cell cycle assayed by using the exonucleolytic activity of T4 DNA polymerase. Proc Natl Acad Sci U S A 1994; 91:10977-81. [PMID: 7971995 PMCID: PMC45149 DOI: 10.1073/pnas.91.23.10977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel assay to detect strand-specific DNA repair after cellular exposure to cisplatin at IC50 levels, is used to measure rapid repair in the divergent upstream gene (DUG), a human MutS homolog, and in the bidirectional promoter for dihydrofolate reductase gene (DHFR) and the contiguous upstream DUG. Single-stranded DNA capable of hybridizing to gene-specific probes is generated enzymatically by the 3'-5' exonuclease activity of T4 DNA polymerase. The presence of cisplatin lesions inhibit the exonucleolytic activity of T4 DNA polymerase and block the formation of single-stranded DNA. This decreases the amount of complementary sequence produced when assayed by gene-specific probe hybridization. With the progression of repair, increasing quantities of single-stranded DNA become available for probe hybridization. This assay was applied to human A2780 ovarian carcinoma cells treated with cisplatin at the beginning of G1 phase. A dose-response experiment showed that the assay was applicable down to cisplatin concentrations of 2.5 microM. To assay for strand-specific gene repair, the synchronized cells were treated with cisplatin and then allowed time to repair in drug-free medium. Extensive removal of cisplatin lesions after 2 hr of cellular repair during early G1 phase in the DUG and the DUG/DHFR promoter was measured, with no evidence of repair in the unexpressed delta-globin gene. The extent of preferential DNA repair was much more distinct than has been observed previously at high-drug dosage in asynchronous cells.
Collapse
Affiliation(s)
- N J Rampino
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | |
Collapse
|
38
|
Hentosh P, Grippo P. 2-Chloro-2'-deoxyadenosine monophosphate residues in DNA enhance susceptibility to 3'-->5' exonucleases. Biochem J 1994; 302 ( Pt 2):567-71. [PMID: 7916566 PMCID: PMC1137265 DOI: 10.1042/bj3020567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2-Chloro-2'-deoxyadenosine triphosphate, a purine nucleotide analogue and potent antileukaemic agent, was incorporated into double-stranded 36-mers in place of dATP to investigate the effects of 2-chloroadenine (ClAde) on DNA polymerase-associated 3'-->5' exonuclease activity. ClAde residues within one strand of duplex DNA did not inhibit exonuclease activity; on the contrary, ClAde-containing minus strands were digested to a greater extent than was control DNA in the absence of deoxyribonucleoside triphosphates by Escherichia coli Klenow fragment, yeast DNA polymerase II and T4 DNA polymerase. After a 30 min incubation with 5 units of Klenow fragment, approximately 65% of control DNA remained in DNA fragments of 26 bases or larger compared with only approximately 25% of ClAde-substituted substrates. Unsubstituted plus strands opposite a ClAde-containing strand were likewise digested more quickly by 3'-->5' exonuclease, but only in the vicinity of the ClAde sites. Approx. 63% of the plus strands from ClAde-containing oligomers were less than 24 bases in length after a 25 min digestion period with Klenow fragment compared with only approximately 32% of control DNA. Such results indicate that, unlike other base modifications such as pyrimidine dimers, methoxy psoralen adducts and certain nucleoside analogues, all of which inhibit or decrease the rate of strand degradation by 3'-->5' exonucleases, incorporated ClAde enhances strand degradation of duplex DNA.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, North Chicago, IL 60064
| | | |
Collapse
|
39
|
Bowman KK, Sidik K, Smith CA, Taylor JS, Doetsch PW, Freyer GA. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res 1994; 22:3026-32. [PMID: 8065916 PMCID: PMC310271 DOI: 10.1093/nar/22.15.3026] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have discovered a new DNA endonuclease in the fission yeast Schizosaccharomyces pombe which recognizes cyclobutane pyrimidine dimers and (6-4) pyrimidine-pyrimidone photoproducts. S. pombe DNA endonuclease (SPDE) catalyzes a single ATP-independent incision immediately 5' to the UV photoproduct and generates termini containing 3' hydroxyl and 5' phosphoryl groups. Based on these properties, we propose that SPDE may function in a DNA repair capacity, representing the initial recognition/cleavage step of a DNA excision repair pathway.
Collapse
Affiliation(s)
- K K Bowman
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322
| | | | | | | | | | | |
Collapse
|
40
|
Sung P, Watkins J, Prakash L, Prakash S. Negative superhelicity promotes ATP-dependent binding of yeast RAD3 protein to ultraviolet-damaged DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Rodolfo C, Lanza A, Tornaletti S, Fronza G, Pedrini AM. The ultimate carcinogen of 4-nitroquinoline 1-oxide does not react with Z-DNA and hyperreacts with B-Z junctions. Nucleic Acids Res 1994; 22:314-20. [PMID: 8127667 PMCID: PMC523582 DOI: 10.1093/nar/22.3.314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA secondary and tertiary structures are known to affect the reaction between the double helix and several damaging agents. We have previously shown that the tertiary structure of DNA influences the reactivity of 4-acetoxyaminoquinoline 1-oxide (Ac-4-HAQO), the ultimate carcinogen of 4-nitroquinoline 1-oxide (4-NQO), being more reactive with naturally supercoiled DNA than with relaxed DNA. The relative proportion of the three main stable adducts and of an unstable adduct, that resulted in strand scission and/or AP sites, was also affected by the degree of supercoiling of plasmid DNA. In this study we examined the influence of Z-DNA structure on the reactivity of Ac-4-HAQO by mapping the distribution of the two main Ac-4-HAQO adducts, C8-guanine and N2-guanine, along a (dC-dG)16 sequence inserted at the BamHI site of pBR322 plasmid DNA. This insert adopted the left-handed Z and right-handed B structure depending on the superhelical density of the plasmid. Sites of C8-guanine adduct formation were determined by hot piperidine cleavage of Ac-4-HAQO modified DNA, while N2-guanine adducts were mapped by the arrest of the 3'-5' exonuclease activity of T4 DNA polymerase. The results showed that Ac-4-HAQO did not react with guanine residues when the (dC-dG)16 sequence was in Z conformation, while hyperreactivity at the B-Z junction was observed. These results indicate that Ac-4-HAQO can probe the polymorphism of DNA at the nucleotide level.
Collapse
Affiliation(s)
- C Rodolfo
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Pavia, Italy
| | | | | | | | | |
Collapse
|
42
|
Hamilton KK, Lee K, Doetsch PW. Detection and characterization of eukaryotic enzymes that recognize oxidative DNA damage. Methods Enzymol 1994; 234:33-44. [PMID: 7808303 DOI: 10.1016/0076-6879(94)34074-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K K Hamilton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | |
Collapse
|
43
|
Augeri L, Hamilton KK, Martin AM, Yohannes P, Doetsch PW. Purification and properties of yeast redoxyendonuclease. Methods Enzymol 1994; 234:102-15. [PMID: 7808284 DOI: 10.1016/0076-6879(94)34081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- L Augeri
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
44
|
Abstract
We have investigated the 3'-5'-exonuclease activity of phage T7 DNA polymerase for its usefulness as an approach for the detection of lesions in DNA. Unlike the T4 DNA polymerase-exonuclease, which is commonly used to map the position and frequency of lesions in very small DNA fragments, T7 DNA polymerase-exonuclease is able to hydrolyse almost completely the large fragments from KpnI-restricted mammalian DNA. However, we found that the exonuclease was also able to hydrolyse DNA containing several kinds of lesions: cyclobutane pyrimidine dimers, thymine glycols, and mono-adducts of 4'-hydroxymethyl-4,5',8-trimethylpsoralen and 5'-methyl-isopsoralen. Modifications of the reaction conditions did not significantly alter the extent of hydrolysis. These properties distinguish the T7 DNA polymerase-exonuclease from the T4 DNA polymerase-exonuclease and make the T7 DNA polymerase-exonuclease unsuitable for detecting several types of lesions in DNA.
Collapse
Affiliation(s)
- D R Koehler
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
45
|
Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 1993; 57:163-74. [PMID: 8389052 DOI: 10.1111/j.1751-1097.1993.tb02273.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E Sage
- Institut Curie, Section de Biologie, CNRS URA 1292, Paris, France
| |
Collapse
|
46
|
DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53943-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Sage E, Cramb E, Glickman BW. The distribution of UV damage in the lacI gene of Escherichia coli: correlation with mutation spectrum. Mutat Res 1992; 269:285-99. [PMID: 1383713 DOI: 10.1016/0027-5107(92)90211-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have determined the UV (254 nm) damage distribution in the transcribed and non-transcribed strands of the i-d region of the Escherichia coli lacI gene. The locations of replication blocking lesions were revealed as termination sites of T7 DNA polymerase and/or T4 DNA polymerase 3'-5' exonuclease. Termination products, i.e. both cyclobutane pyrimidine dimers and 6-4 photoproducts, were resolved and analysed on an automated DNA sequencer. These two major photoproducts are not randomly distributed along the gene, but occur in clusters, in longer runs of pyrimidines. We also have compared the UV damage distribution with the previously reported UV-induced base substitutions in the same region. Mutational hotspots, in both repair-deficient and repair-proficient strains of E. coli, are all located in stretches of pyrimidines, and thus correlate well with the distribution of photolesions. One mutational hotspot in the wild-type strain may reflect the high frequency of closely opposed lesions. To explain the other mutational hotspots, we propose that the repair of UV lesions is impaired due to the local conformation of the DNA, which might deviate from the B-form. This hypothesis is supported by the excess of mutational hotspots in pyrimidine runs in the Uvr+ strain compared to Uvr-. Runs of pyrimidines thus represent both damage- and mutation-prone sequences following UV treatment.
Collapse
Affiliation(s)
- E Sage
- York University, Department of Biology, Ont., Canada
| | | | | |
Collapse
|
48
|
Huang JC, Svoboda DL, Reardon JT, Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A 1992; 89:3664-8. [PMID: 1314396 PMCID: PMC48929 DOI: 10.1073/pnas.89.8.3664] [Citation(s) in RCA: 331] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By using a human cell-free system capable of nucleotide excision repair, a synthetic substrate consisting of a plasmid containing four thymidine dimers at unique locations, and deoxyribonucleoside 5'-[alpha-thio]triphosphates for repair synthesis, we obtained DNA fragments containing repair patches with phosphorothioate linkages. Based on the resistance of these linkages to digestion by exonuclease III and their sensitivity to cleavage by I2, we were able to delineate the borders of the repair patch to single-nucleotide resolution and found an asymmetric patch with sharp boundaries. That the repair patch was produced by filling in a gap generated by an excision nuclease and not by nick-translation was confirmed by the finding that the thymidine dimer was released in a 27- to 29-nucleotide oligomer.
Collapse
Affiliation(s)
- J C Huang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | | | | | |
Collapse
|
49
|
Abstract
We have assessed the effects of DNA curvature on pyrimidine dimer (PD) formation by examining the pattern of PD formation in DNA held in a loop by lambda repressor. The loop region was composed of diverse DNA sequences such that potential PD sites occurred throughout the loop. PD formation in the loop occurred with peaks at approximately 10 base intervals, just 3' of where the bending of the DNA was inferred to be toward the major groove. This relationship between the peaks and the DNA curvature is essentially identical to that observed in the nucleosome. This indicates that DNA curvature is the major source of the periodicity of PD formation in the nucleosome, and supports an earlier model of the conformation of nucleosomal DNA based on PD formation. DNA loops containing diverse sequences should be of general value for assessing the effects of DNA curvature on DNA modification by other agents used to probe DNA-protein interactions and DNA conformation.
Collapse
Affiliation(s)
- J R Pehrson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
50
|
Munson BR, Fiel RJ. DNA intercalation and photosensitization by cationic meso substituted porphyrins. Nucleic Acids Res 1992; 20:1315-9. [PMID: 1561088 PMCID: PMC312176 DOI: 10.1093/nar/20.6.1315] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several cationic porphyrins are known to bind to DNA by intercalative and outside binding modes. This study identifies the cis and trans isomers of bis(N-methyl-4-phridiniumyl)diphenyl porphyrin as DNA intercalators based on evidence from a DNA topoisomerase I assay. Moreover, both isomers are shown to be potent photosensitizers of DNA, inducing multiple S1 nuclease sensitive breaks in the phosphodiester backbone. Porphyrin-induced photodamage in DNA was also shown to be quantitatively dependent upon ionic strength and to inhibit the action of restriction endonucleases. The results indicate that these porphyrins can be useful probes of DNA structure and have potential as DNA-targeted photosensitizers.
Collapse
Affiliation(s)
- B R Munson
- Experimental Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | |
Collapse
|