1
|
Rollo F, Martins GD, Gouveia AG, Ithurbide S, Servant P, Romão CV, Moe E. Insights into the role of three Endonuclease III enzymes for oxidative stress resistance in the extremely radiation resistant bacterium Deinococcus radiodurans. Front Microbiol 2023; 14:1266785. [PMID: 37771704 PMCID: PMC10523315 DOI: 10.3389/fmicb.2023.1266785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two.
Collapse
Affiliation(s)
- Filipe Rollo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Guilherme D. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Sharma M, Nair DT. Pfprex from
Plasmodium falciparum
can bypass oxidative stress‐induced DNA lesions. FEBS J 2022; 289:5218-5240. [DOI: 10.1111/febs.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Minakshi Sharma
- Regional Centre for Biotechnology Faridabad India
- Kalinga Institute of Industrial Technology Bhubaneshwar India
| | | |
Collapse
|
3
|
Biochemical and functional characterization of an endonuclease III from Thermococcus barophilus Ch5. World J Microbiol Biotechnol 2022; 38:145. [PMID: 35750964 DOI: 10.1007/s11274-022-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that is essential to excise thymine glycol (Tg) from DNA. Although EndoIII is widespread in bacteria, eukarya and Archaea, our understanding on archaeal EndoIII function remains relatively incomplete due to the limited reports. Herein, we characterized an EndoIII from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-EndoIII) biochemically, demonstrating that the enzyme can excise Tg from dsDNA and display maximum activity at 50 ~ 70 °C and at pH 6.0 ~ 9.0 without the requirement of a divalent metal ion. Importantly, Tba-EndoIII differs from other reported archaeal EndoIII homologues in thermostability and salt requirement. As observed in other EndoIII homologues, the conserved residues D155 and H157 in Helix-hairpin-Helix motif of Tba-EndoIII are essential for Tg excision. Intriguingly, we first dissected that the conserved residues C215 and C221 in the Fe-S cluster loop in Tba-EndoIII are involved in intermediate formation and Tg excision. Additionally, we first revealed that the conserved residue L48 is flexible for intermediate formation and AP cleavage, but plays no detectable role in Tg excision. Overall, our work has revealed additional archaeal EndoIII function and catalytic mechanism.
Collapse
|
4
|
Zhang L, Wang L, Wu L, Jiang D, Tang C, Wu Y, Wu M, Chen M. Biochemical characterization and mutational studies of a thermostable endonuclease III from Sulfolobus islandicus REY15A. Int J Biol Macromol 2021; 193:856-865. [PMID: 34743941 DOI: 10.1016/j.ijbiomac.2021.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Endonuclease III (EndoIII), which is ubiquitous in bacteria, Archaea and eukaryotes, plays an important role in excising thymine glycol (Tg) from DNA. Herein, we present evidence that an EndoIII from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-EndoIII) is capable of removing Tg from DNA at high temperature. Biochemical data show that the optimal temperature and pH of Sis-EndoIII are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the recombinant Sis-EndoIII retains relative weak activity without a divalent metal ion, and displays maximum activity in the presence of Mg2+ or Ca2+. Additionally, we first revealed the activation energy (Ea) of 39.7 ± 4.2 kcal/mol for Sis-EndoIII to remove Tg from dsDNA. As a bifunctional glycosylase, Sis-EndoIII possesses AP lyase activity in addition to glycosylase activity. Additionally, a covalent intermediate is formed between Sis-EndoIII and Tg-containing dsDNA. Mutational studies demonstrate that residues D50, K133 and D151 in Sis-EndoIII are responsible for removal of Tg from dsDNA and K133 and D151 are essential for formation of the covalent intermediate. To our knowledge, it is the first report of Tg excision by crenarchaeal EndoIII, thus augmenting our understanding on archaeal EndoIII function.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Lei Wang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Leilei Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Chengxuan Tang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Ying Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
5
|
Baddock H, Newman J, Yosaatmadja Y, Bielinski M, Schofield C, Gileadi O, McHugh P. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res 2021; 49:9294-9309. [PMID: 34387694 PMCID: PMC8450094 DOI: 10.1093/nar/gkab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
The SNM1 nucleases which help maintain genome integrity are members of the metallo-β-lactamase (MBL) structural superfamily. Their conserved MBL-β-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | | | - Marcin Bielinski
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| |
Collapse
|
6
|
Hoff CA, Schmidt SS, Hackert BJ, Worley TK, Courcelle J, Courcelle CT. Events associated with DNA replication disruption are not observed in hydrogen peroxide-treated Escherichia coli. G3-GENES GENOMES GENETICS 2021; 11:6137848. [PMID: 33591320 PMCID: PMC8759817 DOI: 10.1093/g3journal/jkab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
UV irradiation induces pyrimidine dimers that block polymerases and disrupt the replisome. Restoring replication depends on the recF pathway proteins which process and maintain the replication fork DNA to allow the lesion to be repaired before replication resumes. Oxidative DNA lesions, such as those induced by hydrogen peroxide (H2O2), are often thought to require similar processing events, yet far less is known about how cells process oxidative damage during replication. Here we show that replication is not disrupted by H2O2-induced DNA damage in vivo. Following an initial inhibition, replication resumes in the absence of either lesion removal or RecF-processing. Restoring DNA synthesis depends on the presence of manganese in the medium, which we show is required for replication, but not repair to occur. The results demonstrate that replication is enzymatically inactivated, rather than physically disrupted by H2O2-induced DNA damage; indicate that inactivation is likely caused by oxidation of an iron-dependent replication or replication-associated protein that requires manganese to restore activity and synthesis; and address a long standing paradox as to why oxidative glycosylase mutants are defective in repair, yet not hypersensitive to H2O2. The oxygen-sensitive pausing may represent an adaptation that prevents replication from occurring under potentially lethal or mutagenic conditions.
Collapse
Affiliation(s)
- Chettar A Hoff
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Sierra S Schmidt
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Brandy J Hackert
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Travis K Worley
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR97201, USA
| | | |
Collapse
|
7
|
Plant organellar DNA polymerases bypass thymine glycol using two conserved lysine residues. Biochem J 2020; 477:1049-1059. [PMID: 32108856 DOI: 10.1042/bcj20200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in any other DNAPs. Plant organellar DNAPs from Arabidopsis thaliana (AtPolIA and AtPolIB) are translesion synthesis (TLS) DNAPs able to bypass abasic sites, a lesion that poses a strong block to replicative polymerases. Besides abasic sites, reactive oxidative species and ionizing radiation react with thymine resulting in thymine glycol (Tg), a DNA adduct that is also a strong block to replication. Here, we report that AtPolIA and AtPolIB bypass Tg by inserting an adenine opposite the lesion and efficiently extend from a Tg-A base pair. The TLS ability of AtPolIB is mapped to two conserved lysine residues: K593 and K866. Residue K593 is situated in insertion 1 and K866 is in insertion 3. With basis on the location of both insertions on a structural model of AtPolIIB, we hypothesize that the two positively charged residues interact to form a clamp around the primer-template. In contrast with nuclear and bacterial replication, where lesion bypass involves an interplay between TLS and replicative DNA polymerases, we postulate that plant organellar DNAPs evolved to exert replicative and TLS activities.
Collapse
|
8
|
Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci 2020. [DOI: 10.1007/s12038-020-00055-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Sarre A, Stelter M, Rollo F, De Bonis S, Seck A, Hognon C, Ravanat JL, Monari A, Dehez F, Moe E, Timmins J. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair (Amst) 2019; 78:45-59. [DOI: 10.1016/j.dnarep.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
10
|
Dai L, Xia J, Sahin O, Zhang Q. Identification of a nth-Like Gene Encoding an Endonuclease III in Campylobacter jejuni. Front Microbiol 2019; 10:698. [PMID: 31024487 PMCID: PMC6467930 DOI: 10.3389/fmicb.2019.00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/20/2019] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerobic pathogen, C. jejuni is subjected to DNA damages caused by various stresses such as reactive oxygen species (ROS) and UV radiations. The base excision repair (BER) system plays an important role in preventing mutations associated with oxidative DNA damage, but the system remains poorly characterized in Campylobacter. In this study, a BER homolog encoded by cj0595c (named nth) in C. jejuni was analyzed for endonuclease III activity and for its role in maintaining genomic stability. It was found that inactivation of nth resulted in elevated frequencies of spontaneous fluoroquinolone-resistant (FQR) and oxidative stress resistant (OXR) mutants, compared with the wild-type strain in C. jejuni. Sequencing analysis of the FQR and OXR mutants revealed that the elevated mutation rates were associated with C → T or G → A transition in gyrA (FQR mutants) or perR (for OXR mutants). In an in vitro assay, a purified recombinant C. jejuni Nth protein demonstrated endonuclease III activity that recognized and excised the thymine glycol (Tg) base from a double stranded DNA. These findings indicate that Nth functions as a BER repair enzyme in C. jejuni and is important for the repair of DNA damage, protecting the bacteria from stresses encountered within a host and in the environment.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jing Xia
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Okumura K, Nishihara S, Inoue YH. Genetic identification and characterization of three genes that prevent accumulation of oxidative DNA damage in Drosophila adult tissues. DNA Repair (Amst) 2019; 78:7-19. [PMID: 30947023 DOI: 10.1016/j.dnarep.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023]
Abstract
Reactive oxygen species generated in the process of energy production represent a major cause of oxidative DNA damage. Production of the oxidized guanine base, 8-oxo-guanine (8-oxoG), results in mismatched pairing with adenine and subsequently leads to G:C to T:A transversions after DNA replication. Our previous study demonstrated that Drosophila CG1795 encodes an ortholog of Ogg1, which is essential for the elimination of 8-oxoG. Moreover, the Drosophila ribosomal protein S3 (RpS3) possesses N-glycosylase activity that eliminates 8-oxoG in vitro. In this study, we show that RpS3 heterozygotes hyper-accumulate 8-oxoG in midgut cell nuclei after oxidant feeding, suggesting thatRpS3 is required for the elimination of 8-oxoG in Drosophila adults. We further showed that several muscle-aging phenotypes were significantly accelerated in RpS3 heterozygotes. Ogg1 is localized in the nucleus, while RpS3 is in the cytoplasm, closely associated with endoplasmic reticulum networks. Results of genetic analyses also suggest that these two proteins operate similarly but independently in the elimination of oxidized guanine bases from genomic DNA. Next, we obtained genetic evidence suggesting that CG42813 functions as the Drosophila ortholog of mammalian Mth1 in the elimination of oxidized dGTP (8-oxo-dGTP) from the nucleotide pool. Depletion of this gene significantly increased the number of DNA damage foci in the nuclei of Drosophila midgut cells. Furthermore, several aging-related phenotypes such as age-dependent loss of adult locomotor activities and accumulation of polyubiquitylated proteins in adult muscles were also significantly accelerated in CG42813-depleted flies. Lastly, we investigated the phenotype of adults depleted of CG9272, which encodes a protein with homology to mammalian Nth1 that is essential for the elimination of oxidized thymine. Excessive accumulation of oxidized bases was observed in the epithelial cell nuclei after oxidant feeding. In conclusion, three genes that prevent accumulation of oxidative DNA damage were identified in Drosophila.
Collapse
Affiliation(s)
- Kazuko Okumura
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Shunta Nishihara
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan.
| |
Collapse
|
12
|
Ramdzan ZM, Ginjala V, Pinder JB, Chung D, Donovan CM, Kaur S, Leduy L, Dellaire G, Ganesan S, Nepveu A. The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 2017; 8:19021-19038. [PMID: 28147323 PMCID: PMC5386666 DOI: 10.18632/oncotarget.14875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Ionizing radiation generates a broad spectrum of oxidative DNA lesions, including oxidized base products, abasic sites, single-strand breaks and double-strand breaks. The CUX1 protein was recently shown to function as an auxiliary factor that stimulates enzymatic activities of OGG1 through its CUT domains. In the present study, we investigated the requirement for CUX1 and OGG1 in the resistance to radiation. Cancer cell survival following ionizing radiation is reduced by CUX1 knockdown and increased by higher CUX1 expression. However, CUX1 knockdown is sufficient by itself to reduce viability in many cancer cell lines that exhibit high levels of reactive oxygen species (ROS). Consequently, clonogenic results expressed relative to that of non-irradiated cells indicate that CUX1 knockdown confers no or modest radiosensitivity to cancer cells with high ROS. A recombinant protein containing only two CUT domains is sufficient for rapid recruitment to DNA damage, acceleration of DNA repair and increased survival following radiation. In agreement with these findings, OGG1 knockdown and treatment of cells with OGG1 inhibitors sensitize cancer cells to radiation. Together, these results validate CUX1 and more specifically the CUT domains as therapeutic targets.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903, USA
| | - Jordan B Pinder
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Caroline M Donovan
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Simran Kaur
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903, USA
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
13
|
Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses. Appl Environ Microbiol 2016; 82:5144-52. [PMID: 27316964 PMCID: PMC4988193 DOI: 10.1128/aem.00719-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/09/2016] [Indexed: 12/16/2022] Open
Abstract
The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenesf2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity.
Collapse
|
14
|
Minetti CASA, Remeta DP, Iden CR, Johnson F, Grollman AP, Breslauer KJ. Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences. Biopolymers 2016; 103:491-508. [PMID: 25991500 DOI: 10.1002/bip.22680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/08/2022]
Abstract
The magnitude and nature of lesion-induced energetic perturbations empirically correlate with mutagenicity/cytotoxicity profiles and can be predictive of lesion outcomes during polymerase-mediated replication in vitro. In this study, we assess the sequence and counterbase-dependent energetic impact of the Thymine glycol (Tg) lesion on a family of deoxyoligonucleotide duplexes. Tg damage arises from thymine and methyl-cytosine exposure to oxidizing agents or radiation-generated free-radicals. The Tg lesion blocks polymerase-mediated DNA replication in vitro and the unrepaired site elicits cytotoxic lethal consequences in vivo. Our combined calorimetric and spectroscopic characterization correlates Tg -induced energetic perturbations with biological and structural properties. Specifically, we incorporate a 5R-Tg isomer centered within the tridecanucleotide sequence 5'-GCGTACXCATGCG-3' (X = Tg or T) which is hybridized with the corresponding complementary sequence 5'-CGCATGNGTACGC-3' (N = A, G, T, C) to generate families of Tg -damaged (Tg ·N) and lesion-free (T·N) duplexes. We demonstrate that the magnitude and nature of the Tg destabilizing impact is dependent on counterbase identity (i.e., A ∼ G < T < C). The observation that a Tg lesion is less destabilizing when positioned opposite purines suggests that favorable counterbase stacking interactions may partially compensate lesion-induced perturbations. Moreover, the destabilizing energies of Tg ·N duplexes parallel their respective lesion-free T·N mismatch counterparts (i.e., G < T < C). Elucidation of Tg-induced destabilization relative to the corresponding undamaged mismatch energetics allows resolution of lesion-specific and sequence-dependent impacts. The Tg-induced energetic perturbations are consistent with its replication blocking properties and may serve as differential recognition elements for discrimination by the cellular repair machinery.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854
| | - Charles R Iden
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Francis Johnson
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Arthur P Grollman
- Department of Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, NJ, 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| |
Collapse
|
15
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
16
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
17
|
Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci U S A 2013; 110:14314-9. [PMID: 23940330 DOI: 10.1073/pnas.1306752110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.
Collapse
|
18
|
Vallabhaneni H, O'Callaghan N, Sidorova J, Liu Y. Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genet 2013; 9:e1003639. [PMID: 23874233 PMCID: PMC3715427 DOI: 10.1371/journal.pgen.1003639] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/03/2013] [Indexed: 02/07/2023] Open
Abstract
Telomeres are chromosome end structures and are essential for maintenance of genome stability. Highly repetitive telomere sequences appear to be susceptible to oxidative stress-induced damage. Oxidation may therefore have a severe impact on telomere integrity and function. A wide spectrum of oxidative pyrimidine-derivatives has been reported, including thymine glycol (Tg), that are primarily removed by a DNA glycosylase, Endonuclease III-like protein 1 (Nth1). Here, we investigate the effect of Nth1 deficiency on telomere integrity in mice. Nth1 null (Nth1(-/-) ) mouse tissues and primary MEFs harbor higher levels of Endonuclease III-sensitive DNA lesions at telomeric repeats, in comparison to a non-telomeric locus. Furthermore, oxidative DNA damage induced by acute exposure to an oxidant is repaired slowly at telomeres in Nth1(-/-) MEFs. Although telomere length is not affected in the hematopoietic tissues of Nth1(-/-) adult mice, telomeres suffer from attrition and increased recombination and DNA damage foci formation in Nth1(-/-) bone marrow cells that are stimulated ex vivo in the presence of 20% oxygen. Nth1 deficiency also enhances telomere fragility in mice. Lastly, in a telomerase null background, Nth1(-/-) bone marrow cells undergo severe telomere loss at some chromosome ends and cell apoptosis upon replicative stress. These results suggest that Nth1 plays an important role in telomere maintenance and base repair against oxidative stress-induced base modifications. The fact that telomerase deficiency can exacerbate telomere shortening in Nth1 deficient mouse cells supports that base excision repair cooperates with telomerase to maintain telomere integrity.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | | | - Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Nakao S, Zhang S, Vaara M, Syväoja JE, Lee MY, Tsurimoto T, Karran P, Oda S. Efficient long DNA gap-filling in a mammalian cell-free system: a potential new in vitro DNA replication assay. Biochimie 2013; 95:320-8. [PMID: 23063694 DOI: 10.1016/j.biochi.2012.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/27/2012] [Indexed: 11/22/2022]
Abstract
In vitro assay of mammalian DNA replication has been variously approached. Using gapped circular duplex substrates containing a 500-base single-stranded DNA region, we have constructed a mammalian cell-free system in which physiological DNA replication may be reproduced. Reaction of the gapped plasmid substrate with crude extracts of human HeLaS3 cells induces efficient DNA synthesis in vitro. The induced synthesis was strongly inhibited by aphidicolin and completely depended on dNTP added to the system. In cell extracts in which PCNA was depleted step-wise by immunoprecipitation, DNA synthesis was accordingly reduced. These data suggest that replicative DNA polymerases, particularly pol delta, may chiefly function in this system. Furthermore, DNA synthesis is made quantifiable in this system, which enables us to evaluate the efficiency of DNA replication induced. Our system sensitively and quantitatively detected the reduction of the DNA replication efficiency in the DNA substrates damaged by oxidation or UV cross-linking and in the presence of a potent chain terminator, ara-CTP. The quantitative assessment of mammalian DNA replication may provide various advantages not only in basic research but also in drug development.
Collapse
Affiliation(s)
- Seiki Nakao
- Cancer Genetics Laboratory, Clinical Research Institute, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin AR, Vasseur JJ, Smietana M. Boron and nucleic acid chemistries: merging the best of both worlds. Chem Soc Rev 2013; 42:5684-713. [DOI: 10.1039/c3cs60038f] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Dolinnaya NG, Kubareva EA, Romanova EA, Trikin RM, Oretskaya TS. Thymidine glycol: the effect on DNA molecular structure and enzymatic processing. Biochimie 2012; 95:134-47. [PMID: 23000318 DOI: 10.1016/j.biochi.2012.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/12/2012] [Indexed: 12/18/2022]
Abstract
Thymine glycol (Tg) in DNA is a biologically active oxidative damage caused by ionizing radiation or oxidative stress. Due to chirality of C5 and C6 atoms, Tg exists as a mixture of two pairs of cis and trans diastereomers: 5R cis-trans pair (5R,6S; 5R,6R) and 5S cis-trans pair (5S,6R; 5S,6S). Of all the modified pyrimidine lesions that have been studied to date, only thymine glycol represents a strong block to high-fidelity DNA polymerases in vitro and is lethal in vivo. Here we describe the preparation of thymine glycol-containing oligonucleotides and the influence of the oxidized residue on the structure of DNA in different sequence contexts, thymine glycol being paired with either adenine or guanine. The effect of thymine glycol on biochemical processing of DNA, such as biosynthesis, transcription and repair in vitro and in vivo, is also reviewed. Special attention is paid to stereochemistry and 5R cis-trans epimerization of Tg, and their relation to the structure of DNA double helix and enzyme-mediated DNA processing. Described here are the comparative structure and properties of other forms of pyrimidine base oxidation, as well as the role of Tg in tandem lesions.
Collapse
Affiliation(s)
- Nina G Dolinnaya
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
23
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
24
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
25
|
Aller P, Duclos S, Wallace SS, Doublié S. A crystallographic study of the role of sequence context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on the exonuclease complex. J Mol Biol 2011; 412:22-34. [PMID: 21781974 DOI: 10.1016/j.jmb.2011.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/27/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. & Doublié S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors-including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg-influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.
Collapse
Affiliation(s)
- Pierre Aller
- Department of Microbiology andMolecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The majority of human cells do not multiply continuously but are quiescent or slow-replicating and devote a large part of their energy to transcription. When DNA damage in the transcribed strand of an active gene is bypassed by a RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process is known as transcriptional mutagenesis and, as discussed in this Perspective, could lead to the production of mutant proteins and might therefore be important in tumour development.
Collapse
Affiliation(s)
- Damien Brégeon
- Université Paris Sud-11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bât 400, F-91405 Orsay Cedex, France, Tel : +33 1 69 15 35 61, Fax : +33 1 69 15 46 29,
| | - Paul W. Doetsch
- Departments of Biochemistry and Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA, Tel : +1 (404) 727-0409, Fax : +1 (404) 727-2618,
| |
Collapse
|
27
|
Hogg M, Seki M, Wood RD, Doublié S, Wallace SS. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J Mol Biol 2011; 405:642-52. [PMID: 21050863 PMCID: PMC3025778 DOI: 10.1016/j.jmb.2010.10.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| | - Mineaki Seki
- Department of Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | - Richard D. Wood
- Department of Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
28
|
Belousova EA, Lavrik OI. DNA polymerases β and λ and their roles in DNA replication and repair. Mol Biol 2010. [DOI: 10.1134/s0026893310060014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Belousova EA, Maga G, Fan Y, Kubareva EA, Romanova EA, Lebedeva NA, Oretskaya TS, Lavrik OI. DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Biochemistry 2010; 49:4695-704. [PMID: 20423048 DOI: 10.1021/bi901792c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we investigated the ability of the human X-family DNA polymerases beta and lambda to bypass thymine glycol (Tg) in gapped DNA substrates with the damage located in a defined position of the template strand. Maximum velocities and the Michaelis constant values were determined to study DNA synthesis in the presence of either Mg(2+) or Mn(2+). Additionally, the influence of hRPA (human replication protein A) and hPCNA (human proliferating cell nuclear antigen) on TLS (translesion synthesis) activity of DNA polymerases beta and lambda was examined. The results show that (i) DNA polymerase lambda is able to catalyze DNA synthesis across Tg, (ii) the ability of DNA polymerase lambda to elongate from a base paired to a Tg lesion is influenced by the size of the DNA gap, (iii) hPCNA increases the fidelity of Tg bypass and does not influence normal DNA synthesis catalyzed by DNA polymerase lambda, (iv) DNA polymerase beta catalyzes the incorporation of all four dNTPs opposite Tg, and (v) hPCNA as well as hRPA has no specific effect on TLS in comparison with the normal DNA synthesis catalyzed by DNA polymerase beta. These results considerably extend our knowledge concerning the ability of specialized DNA polymerases to cope with a very common DNA lesion such as Tg.
Collapse
|
30
|
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 2010; 5:e8888. [PMID: 20126651 PMCID: PMC2811190 DOI: 10.1371/journal.pone.0008888] [Citation(s) in RCA: 536] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/28/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing. METHODOLOGY/PRINCIPAL FINDINGS We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CMS modification, especially when two CMS bases were either adjacent to one another or separated by 1-2 nucleotides. CONCLUSIONS We have confirmed that the widely used bisulfite sequencing technique does not distinguish between 5-mC and 5-hmC. Moreover, we show that CMS, the product of bisulfite conversion of 5-hmC, tends to stall DNA polymerases during PCR, suggesting that densely hydroxymethylated regions of DNA may be underrepresented in quantitative methylation analyses.
Collapse
|
31
|
Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst) 2009; 9:134-43. [PMID: 20005182 DOI: 10.1016/j.dnarep.2009.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/21/2009] [Accepted: 11/13/2009] [Indexed: 01/26/2023]
Abstract
Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent k(cat)/K(M) ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA.
Collapse
|
32
|
Brown KL, Roginskaya M, Zou Y, Altamirano A, Basu AK, Stone MP. Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5'-GTgG-3' sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Res 2009; 38:428-40. [PMID: 19892827 PMCID: PMC2811006 DOI: 10.1093/nar/gkp844] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The 5R thymine glycol (5R-Tg) DNA lesion exists as a mixture of cis-(5R,6S) and trans-(5R,6R) epimers; these modulate base excision repair. We examine the 7:3 cis-(5R,6S):trans-(5R,6R) mixture of epimers paired opposite adenine in the 5′-GTgG-3′ sequence with regard to nucleotide excision repair. Human XPA recognizes the lesion comparably to the C8-dG acetylaminoflourene (AAF) adduct, whereas XPC/HR23B recognition of Tg is superior. 5R-Tg is processed by the Escherichia coli UvrA and UvrABC proteins less efficiently than the C8-dG AAF adduct. For the cis-(5R, 6S) epimer Tg and A are inserted into the helix, remaining in the Watson–Crick alignment. The Tg N3H imine and A N6 amine protons undergo increased solvent exchange. Stacking between Tg and the 3′-neighbor G•C base pair is disrupted. The solvent accessible surface and T2 relaxation of Tg increases. Molecular dynamics calculations predict that the axial conformation of the Tg CH3 group is favored; propeller twisting of the Tg•A pair and hydrogen bonding between Tg OH6 and the N7 atom of the 3′-neighbor guanine alleviate steric clash with the 5′-neighbor base pair. Tg also destabilizes the 5′-neighbor G•C base pair. This may facilitate flipping both base pairs from the helix, enabling XPC/HR23B recognition prior to recruitment of XPA.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bellon S, Shikazono N, Cunniffe S, Lomax M, O'Neill P. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Res 2009; 37:4430-40. [PMID: 19468043 PMCID: PMC2715253 DOI: 10.1093/nar/gkp422] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have not been explored. Since thymine glycol (Tg) is non-mutagenic but a strong block to replicative polymerases, we have investigated whether clusters containing Tg are highly mutagenic or lead to potentially cytotoxic lesions, when closely opposed to either 8-oxoG or an AP site. Using a bacterial plasmid-based assay and repair assays using cell extracts or purified proteins, we have shown that DNA double-strand breaks (DSBs) arise when Tg is opposite to an AP site, either through attempted base excision repair or at replication. In contrast, 8-oxoG opposite to Tg in a cluster ‘protects’ against DSB formation but does enhance the mutation frequency at the site of 8-oxoG relative to that at a single 8-oxoG, due to the decisive role of endonucleases in the initial stages of processing Tg/8-oxoG clusters, removing Tg to give an intermediate with an abasic site or single-strand break.
Collapse
Affiliation(s)
- Sophie Bellon
- DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | |
Collapse
|
34
|
Yang F, Romanova E, Kubareva E, Dolinnaya N, Gajdos V, Burenina O, Fedotova E, Ellis JS, Oretskaya T, Hianik T, Thompson M. Detection of DNA damage: effect of thymidine glycol residues on the thermodynamic, substrate and interfacial acoustic properties of oligonucleotide duplexes. Analyst 2008; 134:41-51. [PMID: 19082173 DOI: 10.1039/b806604n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thymidine glycol residues in DNA are biologically active oxidative molecular damage sites caused by ionizing radiation and other factors. One or two thymidine glycol residues were incorporated in 19- to 31-mer DNA fragments during automatic oligonucleotide synthesis. These oligonucleotide models were used to estimate the effect of oxidized thymidines on the thermodynamic, substrate and interfacial acoustic properties of DNA. UV-monitoring melting data revealed that modified residues in place of thymidines destabilize the DNA double helix by 8-22 degrees C, depending on the number of lesions, the length of oligonucleotide duplexes and their GC-content. The diminished hybridizing capacity of modified oligonucleotides is presumably due to the loss of aromaticity and elevated hydrophilicity of thymine glycol in comparison to the thymine base. According to circular dichroism (CD) data, the modified DNA duplexes retain B-form geometry, and the thymidine glycol residue introduces only local perturbations limited to the lesion site. The rate of DNA hydrolysis by restriction endonucleases R.MvaI, R.Bst2UI, R.MspR9I and R.Bme1390I is significantly decreased as the thymidine glycol is located in the central position of the double-stranded recognition sequences 5'-CC / WGG-3' (W = A, T) or 5'-CC / NGG-3' (N = A, T, G, C) adjacent to the cleavage site. On the other hand, the catalytic properties of enzymes R.Psp6I and R.BstSCI recognizing the similar sequence are not changed dramatically, since their cleavage site is separated from the point of modification by several base-pairs. Data obtained by gel-electrophoretic analysis of radioactive DNA substrates were confirmed by direct spectrophotometric assay developed by the authors. The effect of thymidine glycol was also observed on DNA hybridization at the surface of a thickness-shear mode acoustic wave device. A 1.9-fold decrease in the rate of duplex formation was noted for oligonucleotides carrying one or two thymidine glycol residues in relation to the unmodified analog.
Collapse
Affiliation(s)
- F Yang
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskije Gory, Moscow, 119 991, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luvino D, Gasparutto D, Reynaud S, Smietana M, Vasseur JJ. Boronic acid-based fluorescent receptors for selective recognition of thymine glycol. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.07.173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Fedotova EA, Ian F, Kubareva EA, Romanova EA, Protsenko AS, Viriasov MB, Hianik T, Oretskaia TS. [Synthesis and characteristics of modified DNA fragments containing thymidine glycol residues]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:236-44. [PMID: 18522280 DOI: 10.1134/s1068162008020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue into the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of the unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.
Collapse
|
37
|
Brown KL, Adams T, Jasti VP, Basu AK, Stone MP. Interconversion of the cis-5R,6S- and trans-5R,6R-thymine glycol lesions in duplex DNA. J Am Chem Soc 2008; 130:11701-10. [PMID: 18681438 PMCID: PMC2646635 DOI: 10.1021/ja8016544] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
38
|
de Souza-Pinto NC, Wilson DM, Stevnsner TV, Bohr VA. Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair (Amst) 2008; 7:1098-109. [PMID: 18485834 DOI: 10.1016/j.dnarep.2008.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is a growing public health concern because of the rapid increase in median and maximum life expectancy in the developed world. Mitochondrial dysfunction seems to play a critical role in neurodegeneration, likely owing to the high energy demand of the central nervous system and its sole reliance on oxidative metabolism for energy production. Loss of mitochondrial function has been clearly demonstrated in several neuropathologies, most notably those associated with age, like Alzheimer's, Parkinson's and Huntington's diseases. Among the common features observed in such conditions is the accumulation of oxidative DNA damage, in particular in the mitochondrial DNA, suggesting that mitochondrial DNA instability may play a causative role in the development of these diseases. In this review we examine the evidence for the accumulation of oxidative DNA damage in mitochondria, and its relationship with loss of mitochondrial function and cell death in neural tissues. Oxidative DNA damage is repaired mainly by the base excision repair pathway. Thus, we review the molecular events and enzymes involved in base excision repair in mitochondria, and explore the possible role of alterations in mitochondrial base excision repair activities in premature aging and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadja C de Souza-Pinto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
39
|
Aller P, Rould MA, Hogg M, Wallace SS, Doublié S. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc Natl Acad Sci U S A 2007; 104:814-8. [PMID: 17210917 PMCID: PMC1783396 DOI: 10.1073/pnas.0606648104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymine glycol (Tg) is a common product of oxidation and ionizing radiation, including that used for cancer treatment. Although Tg is a poor mutagenic lesion, it has been shown to present a strong block to both repair and replicative DNA polymerases. The 2.65-A crystal structure of a binary complex of the replicative RB69 DNA polymerase with DNA shows that the templating Tg is intrahelical and forms a regular Watson-Crick base pair with the incorporated A. The C5 methyl group protrudes axially from the ring of the damaged pyrimidine and hinders stacking of the adjacent 5' template guanine. The position of the displaced 5' template guanine is such that the next incoming nucleotide cannot be incorporated into the growing primer strand, and it explains why primer extension past the lesion is prohibited even though DNA polymerases can readily incorporate an A across from the Tg lesion.
Collapse
Affiliation(s)
- Pierre Aller
- Departments of *Microbiology and Molecular Genetics and
| | - Mark A. Rould
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Matthew Hogg
- Departments of *Microbiology and Molecular Genetics and
| | - Susan S. Wallace
- Departments of *Microbiology and Molecular Genetics and
- To whom correspondence may be addressed at:
Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068. E-mail:
or
| | - Sylvie Doublié
- Departments of *Microbiology and Molecular Genetics and
- To whom correspondence may be addressed at:
Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068. E-mail:
or
| |
Collapse
|
40
|
Charlet-Berguerand N, Feuerhahn S, Kong SE, Ziserman H, Conaway JW, Conaway R, Egly JM. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J 2006; 25:5481-91. [PMID: 17110932 PMCID: PMC1679758 DOI: 10.1038/sj.emboj.7601403] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/04/2006] [Indexed: 12/15/2022] Open
Abstract
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8-oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases.
Collapse
Affiliation(s)
| | - Sascha Feuerhahn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
| | | | - Howard Ziserman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ronald Conaway
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jean Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex 67000, CU Strasbourg, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
41
|
Wang Y, Wang Y. Synthesis and thermodynamic studies of oligodeoxyribonucleotides containing tandem lesions of thymidine glycol and 8-oxo-2'-deoxyguanosine. Chem Res Toxicol 2006; 19:837-43. [PMID: 16780363 PMCID: PMC2533691 DOI: 10.1021/tx060032l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidine glycol (Tg), which is also known as 5,6-dihydroxy-5,6-dihydrothymidine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) are two major types of DNA damage products induced by reactive oxygen species (ROS). Here, we report the synthesis of oligodeoxyribonucleotides (ODNs) containing both Tg and 8-oxodG. The dual incorporation of the two single-base lesions was achieved by using a phosphoramidite building block of 8-oxodG with ultramild base protecting group and a building block of Tg whose nucleobase hydroxyl groups were protected with acetyl functionality. The availability of ODNs carrying neighboring 8-oxodG and Tg provided authentic substrates for assessing the formation and examining the replication and repair of this kind of tandem lesions. In addition, thermodynamic parameters derived from melting temperature data revealed that tandem lesions destabilized the double helix to a greater extent than either of the two single-base lesions alone. The thermodynamic results could offer a basis for understanding the repair of the tandem base lesions.
Collapse
Affiliation(s)
- Yuesong Wang
- Department of Chemistry, University of California at Riverside, 92521-0403, USA
| | | |
Collapse
|
42
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
43
|
Singh RK, Krishna M. DNA damage induced nucleotide excision repair in Saccharomyces cerevisiae. Mol Cell Biochem 2006; 290:103-12. [PMID: 16607478 DOI: 10.1007/s11010-006-9173-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However, question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival. To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active (32)P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially error free. Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India 400085.
| | | |
Collapse
|
44
|
Yang N, Chaudhry MA, Wallace SS. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells. DNA Repair (Amst) 2005; 5:43-51. [PMID: 16111924 DOI: 10.1016/j.dnarep.2005.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/06/2005] [Accepted: 07/18/2005] [Indexed: 11/15/2022]
Abstract
Using siRNA technology, we down-regulated in human B-lymphoblastoid TK6 cells the two major oxidative DNA glycosylases/AP lyases that repair free radical-induced base damages, hNTH1 and hOGG1. The down-regulation of hOGG1, the DNA glycosylase whose main substrate is the mutagenic but not cytotoxic 8-oxoguanine, resulted in reduced radiation cytotoxicity and decreased double strand break (DSB) formation post-irradiation. This supports the idea that the oxidative DNA glycosylases/AP lyases convert radiation-induced clustered DNA lesions into lethal DSBs and is in agreement with our previous finding that overexpression of hNTH1 and hOGG1 in TK6 cells increased radiation lethality, mutant frequency at the thymidine kinase locus and the enzymatic production of DSBs post-irradiation [N. Yang, H. Galick, S.S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair (Amst) 3 (2004) 1323-1334]. Interestingly, cells deficient in hNTH1, the DNA glycosylase that repairs a major lethal single free radical damage, thymine glycol, were more radiosensitive but at the same time fewer DSBs were formed post-irradiation. These results indicate that hNTH1 plays two roles in the processing of radiation damages: repair of potentially lethal single lesions and generation of lethal DSBs at clustered damage sites. In contrast, in hydrogen peroxide-treated cells where the majority of free radical DNA damages are single lesions, the base excision repair pathway functioned to protect the cells. Here, overexpression of hNTH1 and hOGG1 resulted in reduced cell killing while suppression of glycosylase expression resulted in elevated cell death.
Collapse
Affiliation(s)
- Ning Yang
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
45
|
Larsen E, Kwon K, Coin F, Egly JM, Klungland A. Transcription activities at 8-oxoG lesions in DNA. DNA Repair (Amst) 2005; 3:1457-68. [PMID: 15380101 DOI: 10.1016/j.dnarep.2004.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 02/07/2023]
Abstract
7,8-Dihydro-8-oxoguanine (8-oxoG) is the most frequent mutagenic lesion caused by oxidative stress. Eukaryotic cells use a specific DNA glycosylase, OGG1, to excise 8-oxoG from DNA. The mild phenotype of OGG1 null mice has been attributed to the existence of alternative pathways, including Cockayne syndrome B (CSB)-dependent transcription coupled repair (TCR), for removal of 8-oxoG. We have studied repair and transcription activities at 8-oxoG lesions with a reconstituted transcription system (RTS; RNA polymerase II, TBP, TFIIA, TFIIB, TFIIE, TFIIF and TFIIH), as well as in cellular extracts and in vivo. All measurable repair activity at 8-oxoG lesions takes place in the 3'-direction from the lesion, indicating base excision repair (BER) activity and negligible role of nucleotide excision repair (NER). Although 8-oxoG has been shown to be preferentially removed from the transcribed strand, in vitro experiments with purified transcription factors failed to identify a definite block for RNA polymerase II at the lesion. However, a weak block was observed at the lesion during transcription carried out with RTS as well as with cellular extracts. RNA polymerase II was identified at the site of the lesion on obstructed templates. Wild-type cells, as well as cells carrying targeted mutations of genes required for removal of 8-oxoG, were transfected with a luciferase expression vector containing an 8-oxoG lesion. No significant obstruction at 8-oxoG lesions was observed by this in vivo approach. In control experiments transcription elongation was completely blocked by cisplatin.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, National Hospital, University of Oslo, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
46
|
Miller H, Fernandes AS, Zaika E, McTigue MM, Torres MC, Wente M, Iden CR, Grollman AP. Stereoselective excision of thymine glycol from oxidatively damaged DNA. Nucleic Acids Res 2004; 32:338-45. [PMID: 14726482 PMCID: PMC373299 DOI: 10.1093/nar/gkh190] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA damage created by reactive oxygen species includes the prototypic oxidized pyrimidine, thymine glycol (Tg), which exists in oxidatively damaged DNA as two diastereoisomeric pairs. In Escherichia coli, Saccharomyces cerevesiae and mice, Tg is preferentially excised by endonuclease III (Endo III) and endonuclease VIII (Endo VIII), yNTG1 and yNTG2, and mNTH and mNEIL1, respectively. We have explored the ability of these DNA glycosylases to discriminate between Tg stereoisomers. Oligonucleotides containing a single, chromatographically pure (5S,6R) or (5R,6S) stereoisomer of Tg were prepared by oxidation with osmium tetroxide. Steady-state kinetic analyses of the excision process revealed that Endo III, Endo VIII, yNTG1, mNTH and mNEIL1, but not yNTG2, excise Tg isomers from DNA in a stereoselective manner, as reflected in the parameter of catalytic efficiency (kcat/Km). When DNA glycosylases occur as complementary pairs, failure of one or both enzymes to excise their cognate Tg stereoisomer from oxidatively damaged DNA could have deleterious consequences for the cell.
Collapse
Affiliation(s)
- Holly Miller
- Laboratory of Chemical Biology, State University of New York, Stony Brook, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jałoszyński P, Masutani C, Hanaoka F, Perez AB, Nishimura S. 8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, 'action-at-a-distance' mutagenesis and inhibition of replication. Nucleic Acids Res 2003; 31:6085-95. [PMID: 14576295 PMCID: PMC275471 DOI: 10.1093/nar/gkg829] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/11/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
Mutations in particular codons of c-Ha-ras have a strong activating potential, and an activated ras oncogene has been found in a number of human cancers. Using fragments of the human c-Ha-ras gene containing 8-hydroxyguanine (8-OH-G) in codon 12, we provide evidence for highly complex biochemical events leading to activation of the oncogene. Replication with DNA polymerases alpha (Pol(alpha)) and beta (Pol(beta)) led to misincorporation of dAMP, while DNA polymerase eta (Pol(eta)) caused additional insertion of dGMP. For the first time we report an 'action-at-a-distance' mutagenic effect for Pol(eta). Replication catalyzed by this enzyme resulted in misincorporating dAMP, dTMP and dGMP opposite non-oxidized guanine 3'-flanked by 8-OH-G. Interestingly, two adjacent 8-OH-G residues greatly relaxed the specificity of Pol(eta), which in this system was able to incorporate all four nucleotides. Moreover, two adjacent 8-OH-G residues completely blocked Pol(alpha) and strongly inhibited Pol(beta), whereas Pol(eta) was entirely resistant to this inhibition. These results suggest an important role for Pol(eta) in inducing hypermutability in codon 12. Our observations are important for understanding the consequences of 8-OH-G being positioned within the mutational hot spots of oncogenes, the outcome of which appears to be relatively complex even in minimal in vitro systems.
Collapse
Affiliation(s)
- Paweł Jałoszyński
- Banyu Tsukuba Research Institute in Collaboration with Merck Research Laboratories, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | |
Collapse
|
48
|
Hahm S, Dresner HS, Podwall D, Golden M, Winiarsky R, Moosikasuwan M, Cajigas A, Steinberg JJ. DNA biomarkers antecede semiquantitative anthracycline cardiomyopathy. Cancer Invest 2003; 21:53-67. [PMID: 12643010 DOI: 10.1081/cnv-120016404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adriamycin (ADM, or doxorubicin hydrochloride) is an effective antineoplastic agent whose use is restricted by its well-described, dose-dependent cardiotoxicity. This study measures ADM DNA adduct formation by 32P-radiolabeling DNA, enzymatically digesting radiolabeled DNA, separating the formed adducts on two-dimensional thinlayer chromatography (2D-TLC), and quantitating the adducts with autoradiography and densitometry. Thirty-six male Sprague-Dawley rats are randomized to receive ADM at varying intraperitoneal (i.p.) injection concentrations: 0.9% saline i.p. controls, 4 mg/kg ADM i.p., and 6 mg/kg ADM i.p. Myocardial and pulmonary tissues are harvested 48 hours after i.p. injection for autoradiographic and histopathologic analyses. The results indicate differences in the amount and type of adduct formation as a function of ADM concentration. Increased partial depurination of dGMP and dAMP occurs with increasing ADM concentration at equal incubation times. This depurination correlates with the emergence of new adducts HM-dUMP, 8-OH-dGMP, HM-dCMP, and Me-dCMP. The quantification of these adducts can potentially represent an early marker of ADM cardiotoxicity and thereby optimize the efficacy of individual chemotherapy regimens while minimizing adverse effects.
Collapse
Affiliation(s)
- Sae Hahm
- Unified Tumor Marker Laboratory, Department of Pathology and Radiation Oncology, Montefiore Medical Center, 111 East 210th Street, Central 312, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A, Radicella JP. Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A 2003; 100:2789-94. [PMID: 12601164 PMCID: PMC151419 DOI: 10.1073/pnas.0337641100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Helicobacter pylori elicits an oxidative stress during host colonization. This oxidative stress is known to cause lesions in the host DNA. Here we addressed the question as to whether the pathogen DNA is subject to lethal or mutational damage by the host-generated oxidative response. H. pylori Hpnth mutants unable to repair oxidized pyrimidines from the bacterial DNA were generated. H. pylori strains lacking a functional endonuclease III (HpNth) showed elevated spontaneous and induced mutation rates and were more sensitive than the parental strain to killing by exposure to oxidative agents or activated macrophages. Although under laboratory conditions the Hpnth mutant strain grows as well as the wild-type strain, in a mouse infection the stomach bacterial load gradually decreases while the population in the wild-type strain remains stable, showing that endonuclease III deficiency reduces the colonization capacity of the pathogen. In coinfection experiments with a wild-type strain, Hpnth cells are eradicated 15 days postinfection (p.i.) even when inoculated in a 1:9 wild-type:mutant strain ratio, revealing mutagenic lesions that are counterselected under competition conditions. These results show that the host effectively induces lethal and premutagenic oxidative DNA adducts on the H. pylori genome. The possible consequences of these DNA lesions on the adaptability of H. pylori strains to new hosts are discussed.
Collapse
Affiliation(s)
- Eyleen J O'Rourke
- Département de Radiobiologie et Radiopathologie, Commissariat à l'Energie Atomique (CEA), Unité Mixte de Recherche 217/Centre National de la Recherche Scientifique, BP6, F-92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Fischhaber PL, Gerlach VL, Feaver WJ, Hatahet Z, Wallace SS, Friedberg EC. Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. J Biol Chem 2002; 277:37604-11. [PMID: 12145297 DOI: 10.1074/jbc.m206027200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human polymerase kappa (polkappa), the product of the human POLK (DINB1) gene, is a member of the Y superfamily of DNA polymerases that support replicative bypass of chemically modified DNA bases (Ohmori, H., Friedberg, E. C., Fuchs, R. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., and Woodgate, R. (2001) Mol. Cell 8, 7-8; Gerlach, V. L., Aravind, L., Gotway, G., Schultz, R. A., Koonin, E. V., and Friedberg, E. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11922-11927). Polkappa is shown here to bypass 5,6-dihydro-5,6-dihydroxythymine (thymine glycol) generated in two different DNA substrate preparations. Polkappa inserts the correct base adenine opposite thymine glycol in preference to the other three bases. Additionally, the enzyme correctly extends beyond the site of the thymine glycol lesion when presented with adenine opposite thymine glycol at the primer terminus. However, steady state kinetic analysis of nucleotides incorporated opposite thymine glycol demonstrates different misincorporation rates for guanine with each of the two DNA substrates. The two substrates differ only in the relative proportions of thymine glycol stereoisomers, suggesting that polkappa distinguishes among stereoisomers and exhibits reduced discrimination between purines when incorporating a base opposite a 5R thymine glycol stereoisomer. When extending beyond the site of the lesion, the misincorporation rate of polkappa for each of the three incorrect nucleotides (adenine, guanine, and thymine) is dramatically increased. Our findings suggest a role for polkappa in both nonmutagenic and mutagenic bypass of oxidative damage.
Collapse
Affiliation(s)
- Paula L Fischhaber
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | | | |
Collapse
|