1
|
Oestreicher N, Bourdineaud JP, Vélot C. Mutagenic effects of a commercial glyphosate-based herbicide formulation on the soil filamentous fungus Aspergillus nidulans depending on the mode of exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503708. [PMID: 37973298 DOI: 10.1016/j.mrgentox.2023.503708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Glyphosate-based herbicides (GBH) are the most used pesticides worldwide. This widespread dissemination raises the question of non-target effects on a wide range of organisms, including soil micro-organisms. Despite a large body of scientific studies reporting the harmful effects of GBHs, the health and environmental safety of glyphosate and its commercial formulations remains controversial. In particular, contradictory results have been obtained on the possible genotoxicity of these herbicides depending on the organisms or biological systems tested, the modes and durations of exposure and the sensitivity of the detection technique used. We previously showed that the well-characterized soil filamentous fungus Aspergillus nidulans was highly affected by a commercial GBH formulation containing 450 g/L of glyphosate (R450), even when used at doses far below the agricultural application rate. In the present study, we analysed the possible mutagenicity of R450 in A. nidulans by screening for specific mutants after different modes of exposure to the herbicide. R450 was found to exert a mutagenic effect only after repeated exposure during growth on agar-medium, and depending on the metabolic status of the tested strain. The nature of some mutants and their ability to tolerate the herbicide better than did the wild-type strain suggested that their emergence may reflect an adaptive response of the fungus to offset the herbicide effects. The use of a non-selective molecular approach, the quantitative random amplified polymorphic DNA (RAPD-qPCR), showed that R450 could also exert a mutagenic effect after a one-shot overnight exposure during growth in liquid culture. However, this effect was subtle and no longer detectable when the fungus had previously been repeatedly exposed to the herbicide on a solid medium. This indicated an elevation of the sensitivity threshold of A. nidulans to the R450 mutagenicity, and thus confirmed the adaptive capacity of the fungus to the herbicide.
Collapse
Affiliation(s)
- Nathalie Oestreicher
- Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350, Avenue Jean Perrin, 91405 Orsay, France
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5234, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, Bordeaux, France
| | - Christian Vélot
- Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350, Avenue Jean Perrin, 91405 Orsay, France.
| |
Collapse
|
2
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Colpa DI, Lončar N, Schmidt M, Fraaije MW. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions. Chembiochem 2017; 18:2226-2230. [PMID: 28885767 PMCID: PMC5708271 DOI: 10.1002/cbic.201700478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/31/2022]
Abstract
A set of bifunctional oxidase-peroxidases has been prepared by fusing four distinct oxidases to a peroxidase. Although such fusion enzymes have not been observed in nature, they could be expressed and purified in good yields. Characterization revealed that the artificial enzymes retained the capability to bind the two required cofactors and were catalytically active as oxidase and peroxidase. Peroxidase fusions of alditol oxidase and chitooligosaccharide oxidase could be used for the selective detection of xylitol and cellobiose with a detection limit in the low-micromolar range. The peroxidase fusions of eugenol oxidase and 5-hydroxymethylfurfural oxidase could be used for dioxygen-driven, one-pot, two-step cascade reactions to convert vanillyl alcohol into divanillin and eugenol into lignin oligomers. The designed oxidase-peroxidase fusions represent attractive biocatalysts that allow efficient biocatalytic cascade oxidations that only require molecular oxygen as an oxidant.
Collapse
Affiliation(s)
- Dana I. Colpa
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Nikola Lončar
- Groningen Enzyme and Cofactor Collection (GECCO)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Mareike Schmidt
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
4
|
Wang SZ, Zhang YH, Ren H, Wang YL, Jiang W, Fang BS. Strategies and perspectives of assembling multi-enzyme systems. Crit Rev Biotechnol 2017; 37:1024-1037. [PMID: 28423958 DOI: 10.1080/07388551.2017.1303803] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multi-enzyme complexes have the potential to achieve high catalytic efficiency for sequence reactions due to their advantages in eliminating product inhibition, facilitating intermediate transfer and in situ regenerating cofactors. Constructing functional multi-enzyme systems to mimic natural multi-enzyme complexes is of great interest for multi-enzymatic biosynthesis and cell-free synthetic biotransformation, but with many challenges. Currently, various assembly strategies have been developed based on the interaction of biomacromolecules such as DNA, peptide and scaffolding protein. On the other hand, chemical-induced assembly is based on the affinity of enzymes with small molecules including inhibitors, cofactors and metal ions has the advantage of simplicity, site-to-site oriented structure control and economy. This review summarizes advances and progresses employing these strategies. Furthermore, challenges and perspectives in designing multi-enzyme systems are highlighted.
Collapse
Affiliation(s)
- Shi-Zhen Wang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China.,b The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University , Xiamen , China.,c State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University , Xiamen , China
| | - Yong-Hui Zhang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Hong Ren
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Ya-Li Wang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Wei Jiang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Bai-Shan Fang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China.,b The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University , Xiamen , China.,d The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen , China
| |
Collapse
|
5
|
Nicolas V, Oestreicher N, Vélot C. Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14393-404. [PMID: 27068896 DOI: 10.1007/s11356-016-6596-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/30/2016] [Indexed: 05/27/2023]
Abstract
Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate.
Collapse
Affiliation(s)
- Valérie Nicolas
- UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateforme d'Imagerie Cellulaire, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, Tour E1, 5 Rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Nathalie Oestreicher
- Laboratoire VEAC, Univ. Paris-Sud, Université Paris-Saclay, Faculté des Sciences, Bât. 360, Rue du Doyen André Guinier, 91405, Orsay, France
- Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la Paix, 14032, Caen, France
| | - Christian Vélot
- Laboratoire VEAC, Univ. Paris-Sud, Université Paris-Saclay, Faculté des Sciences, Bât. 360, Rue du Doyen André Guinier, 91405, Orsay, France.
- Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la Paix, 14032, Caen, France.
- CRIIGEN, 81 rue Monceau, 75008, Paris, France.
| |
Collapse
|
6
|
Sasse A, Hamer SN, Amich J, Binder J, Krappmann S. Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence 2015; 7:56-62. [PMID: 26605426 PMCID: PMC4871646 DOI: 10.1080/21505594.2015.1109766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022] Open
Abstract
Pathogenicity of the saprobe Aspergillus fumigatus strictly depends on nutrient acquisition during infection, as fungal growth determines colonisation and invasion of a susceptible host. Primary metabolism has to be considered as a valid target for antimycotic therapy, based on the fact that several fungal anabolic pathways are not conserved in higher eukaryotes. To test whether fungal proliferation during invasive aspergillosis relies on endogenous biosynthesis of aromatic amino acids, defined auxotrophic mutants of A. fumigatus were generated and assessed for their infectious capacities in neutropenic mice and found to be strongly attenuated in virulence. Moreover, essentiality of the complete biosynthetic pathway could be demonstrated, corroborated by conditional gene expression in infected animals and inhibitor studies. This brief report not only validates the aromatic amino acid biosynthesis pathway of A. fumigatus to be a promising antifungal target but furthermore demonstrates feasibility of conditional gene expression in a murine infection model of aspergillosis.
Collapse
Affiliation(s)
- Anna Sasse
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
| | - Stefanie N Hamer
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
- Present address: Institute of Plant Biology and Biotechnology; University of Münster; Müunster, Germany
| | - Jorge Amich
- Department of Medicine II and Center for Interdisciplinary Clinical Research; University Hospital Würzburg; Würzburg, Germany
| | - Jasmin Binder
- Mikrobiologisches Institut - Klinische Mikrobiologie: Immunologie und Hygiene; Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen, Germany
| | - Sven Krappmann
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
- Mikrobiologisches Institut - Klinische Mikrobiologie: Immunologie und Hygiene; Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen, Germany
- Medical Immunology Campus Erlangen; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen, Germany
| |
Collapse
|
7
|
Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 2014; 99:1545-56. [DOI: 10.1007/s00253-014-6315-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
|
8
|
|
9
|
Huang ZF, Zhang CX, Huang HJ, Wei SH, Liu Y, Cui HL, Chen JC, Yang L, Chen JY. Molecular cloning and characterization of 5-enolpyruvylshikimate-3-phosphate synthase gene from Convolvulus arvensis L. Mol Biol Rep 2014; 41:2077-84. [PMID: 24413996 DOI: 10.1007/s11033-014-3056-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/04/2014] [Indexed: 11/27/2022]
Abstract
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS), the target enzyme for glyphosate inhibition, catalyzes an essential step in the shikimate pathway for aromatic amino acid biosynthesis. The full-length cDNA of 1,751 nucleotides (CaEPSPS, Genbank accession number: EU698030) from Convolvulus arvensis was cloned and characterized. The CaEPSPS encodes a polypeptide of 520 amino acids with a calculated molecular weight of 55.5 kDa and an isoelectric point of 7.05. The results of homology analysis revealed that CaEPSPS showed highly homologous with EPSPS proteins from other plant species. Tissue expression pattern analysis indicated that CaEPSPS was constitutively expressed in stems, leaves and roots, with lower expression in roots. CaEPSPS expression level could increase significantly with glyphosate treatment, and reached its maximum at 24 h after glyphosate application. We fused CaEPSPS to the CaMV 35S promoter and introduced the chimeric gene into Arabidopsis. The resultant expression of CaEPSPS in transgenic Arabidopsis plants exhibited enhanced tolerance to glyphosate in comparison with control.
Collapse
Affiliation(s)
- Zhao-Feng Huang
- Institute of Plant Protection, Key Laboratory of Weed and Rodent Biology and Management, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bauler P, Huber G, Leyh T, McCammon JA. Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics. J Phys Chem Lett 2010; 1:1332-1335. [PMID: 20454551 PMCID: PMC2865391 DOI: 10.1021/jz1002007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/06/2010] [Indexed: 05/22/2023]
Abstract
Nature often colocalizes successive steps in a metabolic pathway. Such organization is predicted to increase the effective concentration of pathway intermediates near their recipient active sites and to enhance catalytic efficiency. Here, the pathway of a two-step reaction is modeled using a simple spherical approximation for the enzymes and substrate particles. Brownian dynamics are used to simulate the trajectory of a substrate particle as it diffuses between the active site zones of two different enzyme spheres. The results approximate distances for the most effective reaction pathways, indicating that the most effective reaction pathway is one in which the active sites are closely aligned. However, when the active sites are too close, the ability of the substrate to react with the first enzyme was hindered, suggesting that even the most efficient orientations can be improved for a system that is allowed to rotate or change orientation to optimize the likelihood of reaction at both sites.
Collapse
Affiliation(s)
- Patricia Bauler
- Department of Chemistry and Biochemistry
- Department of Pharmacology
- Center for Theoretical Biological Physics
- Howard Hughes Medical Institute
- To whom correspondence should be addressed. E-mail: ,
| | - Gary Huber
- Department of Chemistry and Biochemistry
- Department of Pharmacology
- Center for Theoretical Biological Physics
- Howard Hughes Medical Institute
- To whom correspondence should be addressed. E-mail: ,
| | - Thomas Leyh
- Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, New York 10461
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry
- Department of Pharmacology
- Center for Theoretical Biological Physics
- Howard Hughes Medical Institute
| |
Collapse
|
11
|
Homogeneous recombinant Mycobacterium tuberculosis shikimate dehydrogenase production: An essential step towards target-based drug design. Int J Biol Macromol 2009; 45:200-5. [DOI: 10.1016/j.ijbiomac.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 11/18/2022]
|
12
|
Conrado RJ, Varner JD, DeLisa MP. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr Opin Biotechnol 2008; 19:492-9. [DOI: 10.1016/j.copbio.2008.07.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
13
|
Wu X, Flatt PM, Schlörke O, Zeeck A, Dairi T, Mahmud T. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem 2007; 8:239-48. [PMID: 17195255 PMCID: PMC3127856 DOI: 10.1002/cbic.200600446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sugar phosphate cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, for example, aromatic amino acids, and clinically relevant secondary metabolites, for example, aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically labeled cyclitols revealed that cetoniacytone A, a unique C(7)N-aminocyclitol antibiotic isolated from an insect endophytic Actinomyces sp., is derived from 2-epi-5-epi-valiolone, a product of SPC. By using heterologous probes from the 2-epi-5-epi-valiolone synthase class of SPCs, an SPC homologue gene, cetA, was isolated from the cetoniacytone producer. cetA is closely related to BE-orf9 found in the BE-40644 biosynthetic gene cluster from Actinoplanes sp. strain A40644. Recombinant expression of cetA and BE-orf9 and biochemical characterization of the gene products confirmed their function as 2-epi-5-epi-valiolone synthases. Further phylogenetic analysis of SPC sequences revealed a new clade of SPCs that might regulate the biosynthesis of a novel set of secondary metabolites.
Collapse
Affiliation(s)
- Xiumei Wu
- Genetics Program, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331-2212, USA
| | | | | | | | | | | |
Collapse
|
14
|
Han C, Wang L, Yu K, Chen L, Hu L, Chen K, Jiang H, Shen X. Biochemical characterization and inhibitor discovery of shikimate dehydrogenase from Helicobacter pylori. FEBS J 2006; 273:4682-92. [PMID: 16972983 DOI: 10.1111/j.1742-4658.2006.05469.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shikimate dehydrogenase (SDH) is the fourth enzyme involved in the shikimate pathway. It catalyzes the NADPH-dependent reduction of 3-dehydroshikimate to shikimate, and has been developed as a promising target for the discovery of antimicrobial agent. In this report, we identified a new aroE gene encoding SDH from Helicobacter pylori strain SS1. The recombinant H. pylori shikimate dehydrogenase (HpSDH) was cloned, expressed, and purified in Escherichia coli system. The enzymatic characterization of HpSDH demonstrates its activity with k(cat) of 7.7 s(-1) and K(m) of 0.148 mm toward shikimate, k(cat) of 7.1 s(-1) and K(m) of 0.182 mm toward NADP, k(cat) of 5.2 s(-1) and K(m) of 2.9 mm toward NAD. The optimum pH of the enzyme activity is between 8.0 and 9.0, and the optimum temperature is around 60 degrees C. Using high throughput screening against our laboratory chemical library, five compounds, curcumin (1), 3-(2-naphthyloxy)-4-oxo-2-(trifluoromethyl)-4H-chromen-7-yl 3-chlorobenzoate (2), butyl 2-{[3-(2-naphthyloxy)-4-oxo-2-(trifluoromethyl)-4H-chromen-7-yl]oxy}propanoate (3), 2-({2-[(2-{[2-(2,3-dimethylanilino)-2-oxoethyl]sulfanyl}-1,3-benzothiazol-6-yl)amino]-2-oxoethyl}sulfanyl)-N-(2-naphthyl)acetamide (4), and maesaquinone diacetate (5) were discovered as HpSDH inhibitors with IC(50) values of 15.4, 3.9, 13.4, 2.9, and 3.5 microm, respectively. Further investigation indicates that compounds 1, 2, 3, and 5 demonstrate noncompetitive inhibition pattern, and compound 4 displays competitive inhibition pattern with respect to shikimate. Compounds 1, 4, and 5 display noncompetitive inhibition mode, and compounds 2 and 3 show competitive inhibition mode with respect to NADP. Antibacterial assays demonstrate that compounds 1, 2, and 5 can inhibit the growth of H. pylori with MIC of 16, 16, and 32 microg.mL(-1), respectively. This current work is expected to favor better understanding the features of SDH and provide useful information for the development of novel antibiotics to treat H. pylori-associated infection.
Collapse
Affiliation(s)
- Cong Han
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lakshman DK, Liu C, Mishra PK, Tavantzis S. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Curr Genet 2006; 49:166-77. [PMID: 16479402 DOI: 10.1007/s00294-005-0005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/19/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
The quinate pathway is induced by quinate in the wild-type virulent Rhizoctonia solani isolate Rhs 1AP but is constitutive in the hypovirulent, M2 dsRNA-containing isolate Rhs 1A1. Constitutive expression of the quinate pathway results in downregulation of the shikimate pathway, which includes the pentafunctional arom gene in Rhs 1A1. The arom gene has 5,323 bp including five introns as opposed to a single intron found in arom in ascomycetes. A 199-bp upstream sequence has a GC box, no TATAA box, but two GTATTAGA repeats. The largest arom transcript is 5,108 nucleotides long, excluding the poly(A) tail. It contains an open reading frame of 4,857 bases, coding for a putative 1,618-residue pentafunctional AROM protein. A Kozak sequence (GCGCCATGG) is present between +127 and +135. The 5'-end of the arom mRNA includes two nucleotides (UA) that are not found in the genomic sequence, and are probably added post-transcriptionally. Size and sequence heterogeneity were observed at both 5'- and 3'-end of the mRNA. Northern blot and suppression subtractive hybridization analyses showed that presence of a low amount of quinate, inducer of the quinate pathway, resulted in increased levels of arom mRNA, consistent with the compensation effect observed in ascomycetes.
Collapse
Affiliation(s)
- Dilip K Lakshman
- Department of Biological Sciences, University of Maine, Orono, ME 04469-5735, USA
| | | | | | | |
Collapse
|
16
|
Abstract
A search of the genomic sequences of the thermophilic microorganisms Aquifex aeolicus, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii for the first seven enzymes (aroG, B, D, E, K, A, and C ) involved in the shikimic acid biosynthetic pathway reveal two key enzymes are missing. The first enzyme in the pathway, 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (aroG) and the second enzyme in the pathway, 5-dehydroquinic acid synthase (aroB) are "missing." The remaining five genes for the shikimate pathway in these organism are present and are similar to the corresponding Escherichia coli genes. The genomic sequences of the thermophiles Pyrococcus abyssi and Thermotoga maritima contain the aroG and aroB genes. Several fungi such as Aspergillus fumigatus, Aspergillus nidulans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pneumocystis carinii f. sp. carinii, and Neurospora crassa contain the gene aroM, a pentafunctional enzyme whose overall activity is equivalent to the combined catalytic activities of proteins expressed by aroB, D, E, K, and A genes. Two of these fungi also lack an aroG gene. A discussion of potential reasons for these missing enzymes is presented.
Collapse
Affiliation(s)
- Ronald W Woodard
- Department of Medicinal Chemistry and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1065, USA.
| |
Collapse
|
17
|
Park A, Lamb HK, Nichols C, Moore JD, Brown KA, Cooper A, Charles IG, Stammers DK, Hawkins AR. Biophysical and kinetic analysis of wild-type and site-directed mutants of the isolated and native dehydroquinate synthase domain of the AROM protein. Protein Sci 2005; 13:2108-19. [PMID: 15273308 PMCID: PMC2279823 DOI: 10.1110/ps.04705404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dehydroquinate synthase (DHQS) is the N-terminal domain of the pentafunctional AROM protein that catalyses steps 2 to 7 in the shikimate pathway in microbial eukaryotes. DHQS converts 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate in a reaction that includes alcohol oxidation, phosphate beta-elimination, carbonyl reduction, ring opening, and intramolecular aldol condensation. Kinetic analysis of the isolated DHQS domains with the AROM protein showed that for the substrate DAHP the difference in Km is less than a factor of 3, that the turnover numbers differed by 24%, and that the Km for NAD+ differs by a factor of 3. Isothermal titration calorimetry revealed that a second (inhibitory) site for divalent metal binding has an approximately 4000-fold increase in KD compared to the catalytic binding site. Inhibitor studies have suggested the enzyme could act as a simple oxidoreductase with several of the reactions occurring spontaneously, whereas structural studies have implied that DHQS participates in all steps of the reaction. Analysis of site-directed mutants experimentally test and support this latter hypothesis. Differential scanning calorimetry, circular dichroism spectroscopy, and molecular exclusion chromatography demonstrate that the mutant DHQS retain their secondary and quaternary structures and their ligand binding capacity. R130K has a 135-fold reduction in specific activity with DAHP and a greater than 1100-fold decrease in the kcat/Km ratio, whereas R130A is inactive.
Collapse
Affiliation(s)
- Alison Park
- School of Cell and Molecular Biosciences, Catherine Cookson Building, University of Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Watts C, Si-Hoe SM, Lamb HK, Levett LJ, Coggins JR, Hawkins AR. Kinetic analysis of the interaction between the QutA and QutR transcription-regulating proteins. Proteins 2002; 48:161-8. [PMID: 12112685 DOI: 10.1002/prot.10157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The QutR protein is a multidomain repressor protein that interacts with the QutA activator protein. Both proteins are active in the signal transduction pathway that regulates transcription of the quinic acid utilization (qut) gene cluster of the microbial eukaryote Aspergillus nidulans. In the presence of quinate, production of mRNA from the eight genes of the qut pathway is stimulated by the QutA activator protein. The QutR protein plays a key role in signal recognition and transduction, and a deletion analysis has shown that the N-terminal 88 amino acids are sufficient to inactivate QutA function in vivo. Using surface plasmon resonance we show here that the N-terminal 88 amino acids of QutR are able to bind in vitro to a region of QutA that genetic analysis has previously implicated in transcription activation. We further show that increasing the concentration of a full-length (missense) mutant QutR protein in the original mutant strain can restore its repressing function. This is interpreted to mean that the qutR mutation in this strain increases the equilibrium dissociation constant for the interaction between QutA and QutR. We propose a model in which the QutA and QutR proteins are in dynamic equilibrium between bound (transcriptionally inactive) and unbound (transcriptionally active) states.
Collapse
Affiliation(s)
- Carys Watts
- Department of Biochemistry and Genetics, Catherine Cookson Building, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Clustered metabolic pathway genes in filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Levett LJ, Si-Hoe SM, Liddle S, Wheeler K, Smith D, Lamb HK, Newton GH, Coggins JR, Hawkins AR. Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Biochem J 2000; 350 Pt 1:189-97. [PMID: 10926843 PMCID: PMC1221241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
QUTR (qutR-encoded transcription-repressing protein) is a multi-domain repressor protein active in the signal-transduction pathway that regulates transcription of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. In the presence of quinate, production of mRNA from the eight genes of the qut pathway is stimulated by the activator protein QUTA (qutA-encoded transcription-activating protein). Mutations in the qutR gene alter QUTR function such that the transcription of the qut gene cluster is permanently on (constitutive phenotype) or is insensitive to the presence of quinate (super-repressed phenotype). These mutant phenotypes imply that the QUTR protein plays a key role in signal recognition and transduction, and we have used deletion analysis to determine which regions of the QUTR protein are involved in these functions. We show that the QUTR protein recognizes and binds to the QUTA protein in vitro and that the N-terminal 88 amino acids of QUTR are sufficient to inactivate QUTA function in vivo. Deletion analysis and domain-swap experiments imply that the two C-terminal domains of QUTR are mainly involved in signal recognition.
Collapse
Affiliation(s)
- L J Levett
- Department of Biochemistry and Genetics, Catherine Cookson Building, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and erythrose 4-phosphate are converted to chorismate, the precursor of the aromatic amino acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized from several organisms. The cDNAs of higher plants encode proteins with amino terminal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regulated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel weed control systems for several crop plants.
Collapse
Affiliation(s)
- Klaus M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; e-mail: , Monsanto Company, St. Louis, Missouri 63198; e-mail:
| | | |
Collapse
|
22
|
Florova G, Denoya CD, Morgenstern MR, Skinner DD, Reynolds KA. Cloning, expression, and characterization of a type II 3-dehydroquinate dehydratase gene from Streptomyces hygroscopicus. Arch Biochem Biophys 1998; 350:298-306. [PMID: 9473305 DOI: 10.1006/abbi.1997.0536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A gene encoding dehydroquinate dehydratase (DHQase) was cloned from Streptomyces hygroscopicus var. ascomyceticus. The 528-bp open reading frame specified a primary translation product of 175 amino acids with a calculated Mr of 18,789. The predicted amino acid sequence of the DHQase showed similarities to bacterial and fungal type II DHQases. Overexpression of the dhq gene was accomplished in Escherichia coli using a gene fusion technique in which a malE, the gene encoding the maltose binding protein (MBP), was fused via a short oligonucleotide region to the beginning of dhq. The recombinant MBP-DHQase fusion protein was purified by affinity chromatography and cleaved using thrombin. The resulting DHQase, separated from the MBP, demonstrated typical properties of a type II DHQase: a relatively high Km for the dehydroquinate substrate (650 microM) and extreme thermal stability. The subunit Mr estimated by SDS-PAGE was 19,000, and the native Mr estimated by gel-exclusion chromatography and sucrose-density centrifugation was 130,000, suggesting that the enzyme is a homoheptamer (type II DHQases are typically homododecamers). The MBP-DHQase complex also adopted a heptameric structure and was a thermostable, fully active DHQase, indicating that the N-terminus is not involved in formation of protomer-protomer complexes. Previous analyses have supported positioning the N-terminus of type II DHQases close to the active site and a conformational change in this region coincident with ligand binding. Nonetheless, the Km and relative kcat obtained for MBP-DHQase were indistinguishable from those observed for DHQase. Inactivation data of the DHQase from S. hygroscopicus with the arginine-specific reagent phenylglyoxal showed that a modified Arg residue(s) is likely close to the N-terminus and active site of DHQase, but does not play an essential role in catalysis.
Collapse
Affiliation(s)
- G Florova
- School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Bottomley JR, Clayton CL, Chalk PA, Kleanthous C. Cloning, sequencing, expression, purification and preliminary characterization of a type II dehydroquinase from Helicobacter pylori. Biochem J 1996; 319 ( Pt 2):559-65. [PMID: 8912695 PMCID: PMC1217804 DOI: 10.1042/bj3190559] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A heat-stable dehydroquinase was purified to near homogeneity from a plate-grown suspension of the Gram-negative stomach pathogen Helicobacter pylori, and shown from both its subunit and native molecular masses to be a member of the type II family of dehydroquinases. This was confirmed by N-terminal amino acid sequence data. The gene encoding this activity was isolated following initial identification, by random sequencing of the H. pylori genome, of a 96 bp fragment, the translated sequence of which showed strong identity to a C-terminal region of other type II enzymes. Southern blot analysis of a cosmid library identified several potential clones, one of which complemented an Escherichia coli aroD point mutant strain deficient in host dehydroquinase. The gene encoding the H. pylori type II dehydroquinase (designated aroQ) was sequenced. The translated sequence was identical to the N-terminal sequence obtained directly from the purified protein, and showed strong identity to other members of the type II family of dehydroquinases. The enzyme was readily expressed in E. coli from a plasmid construct from which several milligrams of protein could be isolated, and the molecular mass of the protein was confirmed by electrospray MS. The aroQ gene in H. pylori may function in the central biosynthetic shikimate pathway of this bacterium, thus opening the way for the construction of attenuated strains as potential vaccines as well as offering a new target for selective enzyme inhibition.
Collapse
Affiliation(s)
- J R Bottomley
- School of Biological Sciences, University of East Anglia, Norwhich, U.K
| | | | | | | |
Collapse
|
25
|
Lamb HK, Newton GH, Levett LJ, Cairns E, Roberts CF, Hawkins AR. The QUTA activator and QUTR repressor proteins of Aspergillus nidulans interact to regulate transcription of the quinate utilization pathway genese. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1477-1490. [PMID: 8704987 DOI: 10.1099/13500872-142-6-1477] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetic evidence suggests that the activity of the native QUTA transcription activator protein is negated by the action of the QUTR transcription repressor protein. When Aspergillus nidulans was transformed with plasmids containing the wild-type qutA gene, transformants that constitutively expressed the quinate pathway enzymes were isolated. The constitutive phenotype of these transformants was associated with an increased copy number of the transforming qutA gene and elevated qutA mRNA levels. Conversely, when A. nidulans was transformed with plasmids containing the qutR gene under the control of the constitutive pgk promoter, transformants with a super-repressed phenotype (unable to utilize quinate as a carbon source) were isolated. The super-repressed phenotype of these transformants was associated with an increased copy number of the transforming qutR gene and elevated qutR mRNA levels. These copy-number-dependent phenotypes argue that the levels of the QUTA and QUTR proteins were elevated in the high-copy-number transformants. When diploid strains were formed by combining haploid strains that contained high copy numbers of either the qutA gene (constitutive phenotype) or the qutR gene (super-repressing; non-inducible phenotype), the resulting diploid phenotype was one of quinate-inducible production of the quinate pathway enzymes, in a manner similar to wild-type. The simplest interpretation of these observations is that the QUTR repressor protein mediates its repressing activity through a direct interaction with the QUTA activator protein. Other possible interpretations are discussed in the text. Experiments in which truncated versions of the QUTA protein were produced in the presence of a wild-type QUTA protein indicate that the QUTR repressor protein recognizes and binds to the C-terminal half of the QUTA activator protein.
Collapse
Affiliation(s)
- Heather K Lamb
- Department of Biochemistry and Genetics, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Giles H Newton
- Department of Biochemistry and Genetics, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Lisa J Levett
- Department of Biochemistry and Genetics, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Elaine Cairns
- Department of Biochemistry and Genetics, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Clive F Roberts
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Alastair R Hawkins
- Department of Biochemistry and Genetics, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
He X, Thorson JS, Liu HW. Probing the coenzyme and substrate binding events of CDP-D-glucose 4,6-dehydratase: mechanistic implications. Biochemistry 1996; 35:4721-31. [PMID: 8664262 DOI: 10.1021/bi952706p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NAD+-dependent nucleotidyl diphosphohexose 4,6-dehydratases which transform nucleotidyl diphosphohexoses into corresponding 4-keto-6-deoxy sugar derivatives are essential to the formation of all 6-deoxyhexoses. Studies of the CDP-D-glucose 4,6-dehydratase (Eod) from Yersinia had shown that this dimeric protein binds only 1 equiv of NAD+/mol of enzyme and, unlike other enzymes of the same class, displays a unique NAD+ requirement for full catalytic activity. Analysis of the primary sequence revealed an extended ADP-binding fold (GHTGFKG) which deviates from the common Rossman consensus (GXGXXG) and thus may have contributed to Eod's limited NAD+ affinity. In particular, the presence of His17 in the beta-turn region and that of Lys21 in a position typically occupied by a small hydrophobic residue may impose electronic or steric perturbations to this essential binding motif. To better understand the correlation between the binding properties and primary sequence, mutants (H17G and K21I) were constructed to provide enzymes containing an ADP binding region which more closely resembles the Rossman-type fold. Analysis of the cofactor and substrate binding characteristics of the wild-type and mutant enzymes helped define the presence of two binding sites for both CDP-d_glucose and NAD+ per enzyme molecule. While both mutants displayed enhanced NAD+ affinity, the H17G mutation resulted in an enzyme with slightly higher kcat and a 3-fold increase in catalytic efficiency (kcat/Km). The large anticooperativity found for NAD+ binding (K1=40.3 + or - 0.4 nM, K2=539.8 + or - 4.8 nM) may explain why the cofactor binding sites of wild-type Eod are only half-occupied. Further examination also revealed the purified Eod to contain sequestered NADH and that the affinity of Eod for NADH(K1=0.21 + or - 0.01 nM, K2= 7.46 + or -0.25 nM) is much higher than that for NAD+. Thus, it is possible that Eod's half-site saturation of NAD+ per enzyme dimer may also be attributed to a significant portion of the cofactor binding sites being occupied by NADH. Interestingly, the sequestered NADH is released upon binding with CDP-D-glucose. These results implicate a new kinetic mechanism for Eod catalysis.
Collapse
Affiliation(s)
- X He
- Department of Chemistry, University of Minnesota, Minneapolis, 55455, USA
| | | | | |
Collapse
|
27
|
Wheeler KA, Lamb HK, Hawkins AR. Control of metabolic flux through the quinate pathway in Aspergillus nidulans. Biochem J 1996; 315 ( Pt 1):195-205. [PMID: 8670107 PMCID: PMC1217171 DOI: 10.1042/bj3150195] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The quinic acid ulitization (qut) pathway in Aspergillus nidulans is a dispensable carbon utilization pathway that catabolizes quinate to protocatechuate via dehydroquinate and dehydroshikimate(DHS). At the usual in vitro growth pH of 6.5, quinate enters the mycelium by means of a specific permease and is converted into PCA by the sequential action of the enzymes quinate dehydrogenase, 3-dehydroquinase and DHS dehydratase. The extent of control on metabolic flux exerted by the permease and the three pathway enzymes was investigated by applying the techniques of Metabolic Control Analysis. The flux control coefficients for each of the three quinate pathway enzymes were determined empirically, and the flux control coefficient of the quinate permease was inferred by use of the summation theorem. There measurements implied that, under the standard growth conditions used, the values for the flux control coefficients of the components of the quinate pathway were: quinate permease, 0.43; quinate dehydrogenase, 0.36; dehydroquinase, 0.18; DHS dehydratase, <0,03. Attempts to partially decouple quinate permease from the control over flux by measuring flux at pH 3.5 (when a significant percentage of the soluble quinate is protonated and able to enter the mycelium without the aid of a permease) led to an increase of approx. 50% in the flux control coefficient for dehydroquinase. Taken together with the fact that A. nidulans has a very efficient pH homeostasis mechanism, these experiments are consistent with the view that quinate permease exerts a high degree of control over pathway flux under the standard laboratory growth conditions at pH 6.5. The enzymes quinate dehydrogenase and 3-dehydroquinase have previously been overproduced in Escherichia coli, and protocols for their purification published. The remaining qut pathway enzyme DHS dehydratase was overproduced in E. coli and a purification protocol established. The purified DHS dehydratase was shown to have a K(m) of 530 microM for its substrate DHS and a requirement for bivalent metal cations that could be fulfilled by Mg(2+), Mn(2+) or Zn(2+). All three qut pathway enzymes were purified in bulk and their elasticity coefficients with respect to the three quinate pathway intermediates were derived over a range of concentrations in a core tricine/NaOH buffer, augmented with necessary cofactors and bivalent cations as appropriate. Using these empirically determined relative values, in conjunction with the connectivity theorem, the relative ratios of the flux control coefficients for the various quinate pathway enzymes, and how this control shifts between them, was determined over a range of possible metabolic concentrations. These calculations, although clearly subject to caveates about the relationswhip between kinetic measurements in vitro and the situation in vivo, were able to successfully predict the hiearchy of control observed under the standard laboratory growth conditions. The calculations imply that the hierarchy of control exerted by the quinate pathway enzymes is stable and relatively insensitive to changing metabolite concentrations in the ranges most likely to correspond to those found in vivo. The effects of substituting the type I 3-dehydroquinases from Salmonella typhi and the A. nidulans AROM protein (a pentadomain protein catalysing the conversion of 3-deoxy-D-arabinoheptulosonic acid 7-phosphate into 5-enolpyruvylshikimate 3 phosphate), and the Mycobacterium tuberculosis type II 3-dehydroquinase, in the quinate pathway were investigated and found to have an effect. In the case of S. typhi and A. nidulans, overproduction of heterologous dehydroquinase led to a diminuation of pathway flux caused by a lowering of in vivo quinate dehydrogenase levels increased above those of the wild type. We speculate that these changes in qu
Collapse
Affiliation(s)
- K A Wheeler
- Department of Biochemistry and Genetics, New Medical School, University of Newcastle upon Tyne, U.K
| | | | | |
Collapse
|
28
|
Lamb HK, Moore JD, Lakey JH, Levett LJ, Wheeler KA, Lago H, Coggins JR, Hawkins AR. Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme. Biochem J 1996; 313 ( Pt 3):941-50. [PMID: 8611179 PMCID: PMC1217002 DOI: 10.1042/bj3130941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The AROM protein is a pentadomain protein catalysing steps two to six in the prechorismate section of the shikimate pathway in microbial eukaryotes. On the basis of amino acid sequence alignments and the properties of mutants unable to utilize quinic acid as a carbon source, the AROM protein has been proposed to be homologous throughout its length with the proteins regulating transcription of the genes necessary for quinate catabolism. The QUTR transcription repressor protein has been proposed to be homologous with the three C-terminal domains of the AROM protein and one-fifth of the penultimate N-terminal domain. We report here the results of experiments designed to overproduce the QUTR and AROM proteins and their constituent domains in Escherichia coli, the purpose being to facilitate domain purification and (in the case of AROM), complementation of E. coli aro- mutations in order to probe the degree to which individual domains are stable and functional. The 3-dehydroquinate dehydratase domain of the AROM protein and the 3-dehydroquinate dehydratase-like domain of the QUTR spectroscopy and fluorescence emission spectroscopy. The CD spectra were found to be virtually superimposable. The fluorescence emission spectra of both domains had the signal from the tryptophan residues almost completely quenched, giving a tyrosine-dominated spectrum for both the AROM- and QUTR-derived domains. This unexpected observation was demonstrated to be due to a highly unusual environment provided by the tertiary structure, as addition of the denaturant guanidine hydrochloride gave a typical tryptophan-dominated spectrum for both domains. The spectroscopy experiments had the potential to refute the biologically-based proposal for a common origin for the AROM and QUTR proteins; however, the combined biophysical data are consistent with the hypothesis. We have previously reported that the AROM dehydroquinate synthase and 3-dehydroquinate dehydratase are stable and functional as individual domains, but that the 5-enol-pyruvylshikimate-3-phosphate synthase is only active as part of the complete AROM protein or as a bi-domain fragment with dehydroquinate synthase. Here we report that the aromA gene (encoding the AROM protein) of Aspergillus nidulans contains a 53 nt intron in the extreme C-terminus of the shikimate dehydrogenase domain. This finding accounts for the previously reported observation that the AROM protein was unable to complement aroE- (lacking shikimate dehydrogenase) mutations in E. coli. When the intron is removed the correctly translated AROM protein is able to complement the E. coli aroE- mutation. An AROM-derived shikimate dehydrogenase domain is, however, non-functional, but function is restored in a bi-domain protein with e-dehydroquinate dehydratase. This interaction is not entirely specific, as substitution of the 3-dehydroquinate dehydratase domain with the glutathione S-transferase protein partially restores enzyme activity. Similarly an AROM-derived shikimate kinase domain is non-functional, but is functional as part of the complete AROM protein, or as a bi-domain protein with 3-dehydroquinate dehydratase.
Collapse
Affiliation(s)
- H K Lamb
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Levesley I, Newton GH, Lamb HK, van Schothorst E, Dalgleish RWM, Samson ACR, Roberts CF, Hawkins AR. Domain structure and function within the QUTA protein of Aspergillus nidulans: implications for the control of transcription. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 1):87-98. [PMID: 8581174 DOI: 10.1099/13500872-142-1-87] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
QUTA is a positively acting regulatory protein that regulates the expression of the eight genes comprising the quinic acid utilization gene (qut) gene cluster in Aspergillus nidulans. It has been proposed that the QUTA protein is composed of two domains that are related to the N-terminal two domains-dehydroquinate (DHQ) synthase and 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase-of the pentadomain AROM protein. The AROM protein is an enzyme catalysing five consecutive steps in the shikimate pathway, two of which are common to the qut pathway. A genetic and molecular analysis of non-inducible qutA mutants showed that all 23 mutations analysed map within the N-terminal half of the encoded QUTA protein. One dominant mutation (qutA382) introduces a stop codon at the boundary between the two domains that were identified on the basis of amino acid sequence alignments between the QUTA protein and the N-terminal two domains of the pentafunctional AROM protein. The truncated protein encoded by mutant qutA382 has DNA-binding ability but no transcription activation function. A second dominant mutation (in strain qutA214) is missense, changing 457E-->K in a region of localized high negative charge and potentially identifies a transcription activation domain in the N-terminus of the EPSP-synthase-like domain of the QUTA protein. A series of qualitative and quantitative Northern blot experiments with mRNA derived from wild-type and mutant qutA strains supported the view that the QUTA protein regulates the expression of the qut gene cluster, including the qutA gene which encodes it. A series of Western blot and zinc-binding experiments demonstrated that a putative zinc binuclear cluster motif located within the N-terminus of the QUTA protein is able to bind zinc in vitro.
Collapse
Affiliation(s)
- Ian Levesley
- Department of Genetics, Adrian Building, University of Leicester, Leicester LE1 7RH, UK
| | - Giles H Newton
- Department of Biochemistry and Genetics, Catherine Cookson Building, New Medical School, University of Newcastle upon Tyne NE2 4HH, UK
| | - Heather K Lamb
- Department of Biochemistry and Genetics, Catherine Cookson Building, New Medical School, University of Newcastle upon Tyne NE2 4HH, UK
| | - Evert van Schothorst
- Department of Genetics, Adrian Building, University of Leicester, Leicester LE1 7RH, UK
| | - Raymond W M Dalgleish
- Department of Genetics, Adrian Building, University of Leicester, Leicester LE1 7RH, UK
| | - Anthony C R Samson
- Department of Biochemistry and Genetics, Catherine Cookson Building, New Medical School, University of Newcastle upon Tyne NE2 4HH, UK
| | - Clive F Roberts
- Department of Genetics, Adrian Building, University of Leicester, Leicester LE1 7RH, UK
| | - Alastair R Hawkins
- Department of Biochemistry and Genetics, Catherine Cookson Building, New Medical School, University of Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
30
|
Elsemore DA, Ornston LN. Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus. J Bacteriol 1995; 177:5971-8. [PMID: 7592351 PMCID: PMC177426 DOI: 10.1128/jb.177.20.5971-5978.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Catabolism of quinate to protocatechuate requires the consecutive action of quinate dehydrogenase (QuiA), dehydroquinate dehydratase (QuiB), and dehydroshikimate dehyratase (QuiC), Genes for catabolism of protocatechuate are encoded by the pca operon in the Acinetobacter calcoaceticus chromosome. Observations reported here demonstrate that A. calcoaceticus qui genes are clustered in the order quiBCXA directly downstream from the pca operon. Sequence comparisons indicate that quiX encodes a porin, but the specific function of this protein has not been clearly established. Properties of mutants created by insertion of omega elements show that quiBC is expressed as part of a single transcript, but there is also an independent transcriptional initiation site directly upstream of quiA. The deduced amino acid sequence of QuiC does not resemble any other known sequence. A. calcoaceticus QuiB is most directly related to a family of enzymes with identical catalytic activity and biosynthetic AroD function in coliform bacteria. Evolution of A. calcoaceticus quiB appears to have been accompanied by fusion of a leader sequence for transport of the encoded protein into the inner membrane, and the location of reactions catalyzed by the mature enzyme may account for the failure of A. calcoaceticus aroD to achieve effective complementation of null mutations in quiB. Analysis of a genetic site where a DNA segment encoding a leader sequence was transposed adds to evidence suggesting horizontal transfer of nucleotide sequences within genes during evolution.
Collapse
Affiliation(s)
- D A Elsemore
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
31
|
Hawkins AR, Lamb HK. The molecular biology of multidomain proteins. Selected examples. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:7-18. [PMID: 7556173 DOI: 10.1111/j.1432-1033.1995.tb20775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this review is to give an overview of the contribution molecular biology can make to an understanding of the functions and interactions within multidomain proteins. The contemporary advantages ascribed to multidomain proteins include (a) the potential for metabolite channelling and the protection of unstable intermediates; (b) the potential for interactions between domains catalysing sequential steps in a metabolic pathway, thereby giving the potential for allosteric interactions; and (c) the facility to produce enzymic activities in a fixed stoichiometric ratio. The alleged advantages in (a) and (b) however apply equally well to multi-enzyme complexes; therefore, specific examples of these phenomena are examined in multidomain proteins to determine whether the proposed advantages are apparent. Some transcription-regulating proteins active in the control of metabolic pathways are composed of multiple domains and their control is exerted and modulated at the molecular level by protein-DNA, protein-protein and protein-metabolite interactions. These complex recognition events place strong constraints upon the proteins involved, requiring the recognition of and interaction with different classes of cellular metabolites and macromolecules. Specific examples of transcription-regulating proteins are examined to probe how their multidomain nature facilitates a general solution to the problem of multiple recognition events. A general unifying theme that emerges from these case studies is that a basic unitary design of modules provided by enzymes is exploited to produce multidomain proteins by a complex series of gene duplication and fusion events. Successful modules provided by enzymes are co-opted to new function by selection apparently acting upon duplicated copies of the genes encoding the enzymes. In multidomain transcription-regulating proteins, former enzyme modules can be recruited as molecular sensors that facilitate presumed allosteric interactions necessary for the molecular control of transcription.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
32
|
Herrmann KM. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. THE PLANT CELL 1995; 7:907-919. [PMID: 12242393 PMCID: PMC160886 DOI: 10.1105/tpc.7.7.907] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- K. M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
33
|
Herrmann KM. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. THE PLANT CELL 1995. [PMID: 12242393 DOI: 10.2307/3870046] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- K. M. Herrmann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
34
|
Reinbothe C, Ortel B, Parthier B, Reinbothe S. Cytosolic and plastid forms of 5-enolpyruvylshikimate-3-phosphate synthase in Euglena gracilis are differentially expressed during light-induced chloroplast development. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:616-22. [PMID: 7808412 DOI: 10.1007/bf00282224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19), the target of the herbicide glyphosate [N-(phosphonomethyl)glycine], exists in two molecular forms in Euglena gracilis. One form has previously been characterized as a monofunctional 59 kDa protein. The other form constitutes a single domain of the multifunctional 165 kDa arom protein. The two enzyme forms are inversely regulated at the protein and mRNA levels during light-induced chloroplast development, as demonstrated by the determination of their enzyme activities after non-denaturing polyacrylamide gel electrophoresis and Northern hybridization analysis with a Saccharomyces cerevisiae ARO1 gene probe. The arom protein and its mRNA predominate in dark-grown cells, and the levels of both decline upon illumination. In contrast, the monofunctional EPSP synthase and its mRNA are induced by light, the increase in mRNA abundance preceding accumulation of the protein. The two enzymes are localized in different subcellular compartments, as demonstrated by comparing total protein patterns with those of isolated organelles. Glyphosate-adapted wild-type cells and glyphosate-tolerant cells of a plastid-free mutant of E. gracilis, W10BSmL, were used for organelle isolation and protein extraction, as these cell lines overproduce EPSP synthase and the arom protein, respectively. Evidence was obtained for the cytosolic localization of the arom protein and the plastid compartmentalization of the monofunctional EPSP synthase. These conclusions are further supported by the observation that EPSP synthase precursor, produced by in vitro translation of the hybrid-selected mRNA, was efficiently taken up and processed to mature size by isolated chloroplasts from photoautotrophic wild-type E. gracilis cells, while the in vitro-synthesized arom protein was not sequestered by isolated Euglena plastids.
Collapse
Affiliation(s)
- C Reinbothe
- Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | | | | |
Collapse
|
35
|
Hawkins AR, Lamb HK, Radford A, Moore JD. Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes. Gene X 1994; 146:145-58. [PMID: 8076813 DOI: 10.1016/0378-1119(94)90287-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies on the quinic acid utilisation gene (qut) cluster in Aspergillus nidulans showed that the genes encoding transcriptional activator and repressor proteins evolved by co-opting duplicated copies of genes encoding metabolic enzymes. In order to test the hypothesis that this was a general route for the genesis of regulatory proteins, the origins of the major control protein mediating nitrogen metabolite repression (an example of inter-pathway regulation) and ethanol utilisation (an example of intra-pathway regulation) in filamentous fungi were sought. The regulatory proteins mediating nitrogen metabolite repression were deduced to have originated in a duplication of genes encoding the anthranilate synthase complex which is active in the shikimate pathway. The major protein regulating ethanol utilisation was deduced to have its origin in the fusion of duplicated genes encoding the aldehyde and alcohol dehydrogenases (ALDA and ALCA). These data strongly support the view that transcriptional regulatory proteins evolve by the recruitment of functional domains provided by metabolic enzymes.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
36
|
Bonner CA, Jensen RA. Cloning of cDNA encoding the bifunctional dehydroquinase.shikimate dehydrogenase of aromatic-amino-acid biosynthesis in Nicotiana tabacum. Biochem J 1994; 302 ( Pt 1):11-4. [PMID: 8067995 PMCID: PMC1137184 DOI: 10.1042/bj3020011] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nicotiana tabacum cDNA encoding a bifunctional protein having catalytic domains for dehydroquinase and shikimate dehydrogenase was cloned and sequenced. Complementation of Escherichia coli aroD and aroE auxotrophs was successful. Amino acid sequencing located the N-terminus of the mature protein. The two catalytic domains exhibited greater amino acid identity with prokaryote homologues than with yeast and fungal homologues.
Collapse
Affiliation(s)
- C A Bonner
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611-0100
| | | |
Collapse
|
37
|
Moore JD, Coggins JR, Virden R, Hawkins AR. Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans. Biochem J 1994; 301 ( Pt 1):297-304. [PMID: 8037684 PMCID: PMC1137175 DOI: 10.1042/bj3010297] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dehydroquinate synthase (DHQ synthase) functional domain from the pentafunctional AROM protein of Aspergillus nidulans has previously been overproduced in Escherichia coli [van den Hombergh, Moore, Charles and Hawkins (1992) Biochem J. 284, 861-867]. We now report the purification of this domain to homogeneity and subsequent characterization. The monofunctional DHQ synthase was found to retain efficient catalytic activity when compared with the intact pentafunctional AROM protein of Neurospora crassa [Lambert, Boocock and Coggins (1985) Biochem J. 226, 817-829]. The apparent kcat. was estimated to be 8 s-1, and the apparent Km values for NAD+ and 3-deoxy-D-arabino-heptulosonate phosphate (DAHP) were 3 microM and 2.2 microM respectively. These values are similar to those reported for the intact N. crassa enzyme, except that the apparent Km for NAD+ reported here is 15-fold higher. The monofunctional DHQ synthase domain is inactivated by treatment with chelating agents in the absence of substrates and is re-activated by the addition of metal ions; among those tested, Zn2+ gave the highest kcat./Km value. The enzyme is inactivated by diethyl pyrocarbonate; both the substrate, DAHP, and the product phosphate protected against inactivation. Size-exclusion chromatography suggested an M(r) of 43,000 for the monofunctional domain, indicating that it is monomeric and compactly folded. The c.d. spectrum confirmed that the domain has a compact globular conformation; the near-u.v. c.d. of zinc- and cobalt-reactivated domains were superimposable.
Collapse
Affiliation(s)
- J D Moore
- Department of Biochemistry and Genetics, New Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | |
Collapse
|
38
|
Lim CJ, Hwang W, Park EH, Fuchs JA. Cyclic AMP-dependent expression of the Escherichia coli serC-aroA operon. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:250-3. [PMID: 8018734 DOI: 10.1016/0167-4781(94)90024-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Escherichia coli serC-aroA operon encodes biosynthetic enzymes for unrelated amino acid biosynthetic pathways leading to the synthesis of serine and the aromatic amino acids. A serC-aroA-lac translational fusion was constructed in the vector pMC1403. Synthesis of beta-galactosidase from the serC-aroA-lac fusion was found to be enhanced in the presence of lactose as the sole carbon source. This enhancement was not observed in strains containing a cya or crp mutant. However, the exogenous addition of cAMP greatly increased the beta-galactosidase synthesis in the cya mutant strain. The serC-aroA mRNA content, analyzed by a dot blot assay, also appeared to increase in the serC+ aroA+ cells after the exogenous addition of cAMP. These findings unambiguously indicate that the expression of the serC-aroA operon is positively controlled by cAMP.
Collapse
Affiliation(s)
- C J Lim
- Department of Biochemistry, Kangwon National University, South Korea
| | | | | | | |
Collapse
|
39
|
Hawkins AR, Lamb HK, Moore JD, Roberts CF. Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene 1993; 136:49-54. [PMID: 8294040 DOI: 10.1016/0378-1119(93)90446-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes necessary for the correctly regulated catabolism of quinate in Aspergillus nidulans and Neurospora crassa are controlled at the level of transcription by a DNA-binding activator protein and a repressor protein that directly interact with one another. The repressor protein is homologous throughout its length with the three C-terminal domains of a pentafunctional enzyme catalysing five consecutive steps in the related anabolic shikimate pathway. We now report that the activator protein is homologous to the two N-terminal domains of the same pentafunctional enzyme and that this proposed structural similarity suggests a molecular mechanism by which the repressor recognises the activator protein. We believe that this is the first report of the genesis of a pair of interacting eukaryotic regulatory proteins by the splitting of a multidomain anabolic enzyme. The recruitment of preformed enzymatically active domains to a regulatory role may represent a general mechanism for the evolution of pathway-specific regulator proteins in dispensable pathways.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
40
|
Graham LD, Gillies FM, Coggins JR. Over-expression of the yeast multifunctional arom protein. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:417-24. [PMID: 8268222 DOI: 10.1016/0167-4781(93)90009-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pentafunctional arom protein of Saccharomyces cerevisiae is encoded by the ARO1 gene. Substantial elevation of the levels of the arom protein (25-fold) was achieved in yeast using a vector that exploited the ubiquitin-fusion cleavage system of yeast. However, attempts to express the N-terminal 3-dehydroquinate synthase domain (E1) or the internal 3-dehydroquinase domain (E2) using the same system did not succeed. The yeast arom protein was successfully purified from the over-expressing transformant, and was found to possess all five enzymatic activities in a ratio similar to that observed in crude cell extracts. The purified material consisted mainly of a polypeptide that co-migrated in SDS-PAGE with intact arom proteins from other species.
Collapse
Affiliation(s)
- L D Graham
- Department of Biochemistry, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
41
|
Hawkins AR, Moore JD, Adeokun AM. Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from neurospora crassa. Biochem J 1993; 296 ( Pt 2):451-7. [PMID: 8257437 PMCID: PMC1137716 DOI: 10.1042/bj2960451] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The AROM protein of Aspergillus nidulans is a multidomain pentafunctional polypeptide that is active as a dimer and catalyses steps 2-6 in the prechorismate section of the shikimate pathway. The three C-terminal domains (including the type I 3-dehydroquinase) of the AROM protein are homologous with the qutR-encoded QUTR protein that represses transcription of the eight genes comprising the quinic acid utilization (qut) gene cluster, and the two N-terminal domains are homologous with the qutA-encoded QUTA protein that transcribes the qut genes. As part of a larger research programme designed to compare the structures of the three proteins and to probe the domain structure and interaction within each protein, we have overproduced and purified the 3-dehydroquinase domain of the AROM protein. Additionally we have overproduced and purified the qutB-encoded quinate dehydrogenase and overproduced the qa-2 encoded type II 3-dehydroquinase of Neurospora crassa. We report that the AROM 3-dehydroquinase domain has a monomeric native state, with an apparent kcat./Km ratio that is approx. 160-fold lower than the value for the native N. crassa AROM protein. The AROM protein 3-dehydroquinase domain is sensitive to inactivation by borohydride in the presence of the substrate 3-dehydroquinate, confirming that it is a typical type I 3-dehydroquinase. The purified quinate dehydrogenase is bifunctional, being able to metabolize shikimate as a substrate. The apparent Km values for quinate (450 microM), shikimate (1.7 mM) and NAD+ (150 microM) are all similar to values reported for the qa-3-encoded enzyme from N. crassa.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | |
Collapse
|
42
|
Charles IG, Palmer RM, Hickery MS, Bayliss MT, Chubb AP, Hall VS, Moss DW, Moncada S. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci U S A 1993; 90:11419-23. [PMID: 7504305 PMCID: PMC47994 DOI: 10.1073/pnas.90.23.11419] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Incubation of human articular chondrocytes with interleukin 1 beta results in the time-dependent expression of nitric oxide (NO) synthase. We report here the isolation of a cDNA clone which encodes a protein of 1153 amino acids with a molecular mass of 131,213 Da and a calculated isoelectric point of 7.9. CHO cells transfected with a plasmid harboring this cDNA clone expressed NO synthase activity that was inhibited by some L-arginine analogues. The deduced amino acid sequence of the human chondrocyte inducible NO synthase shows 51% identity and 68% similarity with the endothelial NO synthase and 54% identity and 70% similarity with the neuronal NO synthase. The similarity (88%) between the human chondrocyte NO synthase cDNA sequence and that reported for the murine macrophage suggests that the inducible class of enzyme is conserved between different cell types and across species.
Collapse
Affiliation(s)
- I G Charles
- Wellcome Research Laboratories, Beckenham, Kent, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moore JD, Hawkins AR, Charles IG, Deka R, Coggins JR, Cooper A, Kelly SM, Price NC. Characterization of the type I dehydroquinase from Salmonella typhi. Biochem J 1993; 295 ( Pt 1):277-85. [PMID: 8216229 PMCID: PMC1134850 DOI: 10.1042/bj2950277] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type I dehydroquinase from the human pathogen Salmonella typhi was overexpressed in an Escherichia coli host and purified to homogeneity. The S. typhi enzyme was characterized in terms of its kinetic parameters, important active-site residues, thermal stability and c.d. and fluorescence properties. In all important respects, the enzyme from S. typhi behaves in a very similar fashion to the well-characterized enzyme from E. coli, including the remarkable conformational stabilization observed on reduction of the substrate/product mixture by NaBH4. This gives confidence that the information from X-ray studies on the S. typhi enzyme [Boys, Fawcett, Sawyer, Moore, Charles, Hawkins, Deka, Kleanthous and Coggins (1992) J. Mol. Biol. 227, 352-355] can be applied to other type I dehydroquinases. Studies of the quenching of fluorescence of the S. typhi enzyme by succinimide show that NaBH4 reduction of the substrate/product imine complex involves a dramatic decrease in the flexibility of the enzyme, with only very minor changes in the overall secondary and tertiary structure.
Collapse
Affiliation(s)
- J D Moore
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Moore JD, Hawkins AR. Overproduction of, and interaction within, bifunctional domains from the amino- and carboxy-termini of the pentafunctional AROM protein of Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:92-102. [PMID: 8393515 DOI: 10.1007/bf00276888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pentafunctional AROM protein in Aspergillus nidulans and other fungi catalyses five consecutive enzymatic steps leading to the production of 5-enolpyruvylshikimate 3-phosphate (EPSP) in the shikimate pathway. The AROM protein has five separate enzymatic domains that have previously been shown to display a range of abilities to fold and function in isolation as monofunctional enzymes. In this communication, we report (1) the stable overproduction of a bifunctional protein containing the 3-dehydroquinate (DHQ) synthase and EPSP synthase activities in Escherichia coli to around 10% of the total cell protein; (2) that both the DHQ synthase and EPSP synthase activities in the overproduced fragment are enzymatically active as judged by their ability to complement aroA and aroB mutants of E. coli; (3) that the EPSP synthase domain is only enzymatically active when covalently attached to the DHQ synthase domain (the cis arrangement). When DHQ synthase and EPSP synthase are produced concomitantly by transcribing sequences encoding the individual domains from separate plasmids in the same bacterial cell (the trans arrangement) no overproduction or enzyme activity can be detected for the EPSP synthase domain; (4) the EPSP synthase domain can be stably overproduced as a fusion protein with glutathione S-transferase (GST), however the EPSP synthase in this instance is enzymatically inactive; (5) a protein containing an enzymatically inactive DHQ synthase domain in the cis arrangement with EPSP synthase domain is stably overproduced with enzymatically active EPSP synthase; (6) the two C-terminal domains of the AROM protein specifying the 3-dehydroquinase and shikimate dehydrogenase domains can be overproduced in A. nidulans using a specially constructed expression vector. This same bi-domain fragment however is not produced in E. coli when identical coding sequences are transcribed from a prokaryotic expression vector. These data support the view that multifunctional/multidomain proteins do not solely consist of independent units covalently linked together, but rather that certain individual domains interact to varying degrees to stabilise enzyme activity.
Collapse
Affiliation(s)
- J D Moore
- Dept. of Biochemistry and Genetics, University of Newcastle upon Tyne, UK
| | | |
Collapse
|
45
|
Reinbothe S, Ortel B, Parthier B. Overproduction by gene amplification of the multifunctional arom protein confers glyphosate tolerance to a plastid-free mutant of Euglena gracilis. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:416-24. [PMID: 8391114 DOI: 10.1007/bf00276940] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cells of the plastid-free mutant line of Euglena gracilis var. bacillaris, W10BSmL, can be adapted to glyphosate [N-(phosphonomethyl)glycine] by gradually increasing the concentration of the herbicide in the culture medium. The molecular basis of glyphosate tolerance is the selective ca. ten-fold overproduction of the multifunctional arom protein catalyzing steps 2-6 in the pre-chorismate pathway. Determination of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (E.C.2.5.1.19), shikimate:NADP+ oxidoreductase (E.C.1.1.1.25) and shikimate kinase (E.C.2.7.1.71) activities after non-denaturing gel electrophoresis, in combination with two-dimensional separations, revealed an increase in all three enzyme activities associated with overproduction of a 165 kDa protein in cells adapted to 6 mM glyphosate. Further evidence for an involvement of the multifunctional arom protein in aromatic amino acid synthesis in the plastid-free W10BSmL cells was obtained by Northern hybridization with ARO1-, aroA-, aroL- and aroE-specific Saccharomyces cerevisiae gene probes encoding the entire arom protein or parts of the EPSP synthase, shikimate:NADP+ oxidoreductase and shikimate kinase domains, respectively. Overproduction in adapted relative to control cells of a 5.3 kb transcript that cross-hybridized with all of the different probes could be demonstrated. The elevated content of the arom transcript correlated with a selective amplification of two out of five genomic sequences that hybridized with the S. cerevisiae ARO1 gene probe in Southern blots. One of the amplified genomic fragments is assumed to encode the previously identified monofunctional 59 kDa EPSP synthase, which is thought to be an organellar protein, that accumulates to a certain extent in its enzymatically active precursor form of 64.5 kDa in the plastid-free W10BSmL cells.
Collapse
Affiliation(s)
- S Reinbothe
- Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | | |
Collapse
|
46
|
Huynh QK. Photo-oxidation of 5-enolpyruvoylshikimate-3-phosphate synthase from Escherichia coli: evidence for a reactive imidazole group (His385) at the herbicide glyphosate-binding site. Biochem J 1993; 290 ( Pt 2):525-30. [PMID: 8452542 PMCID: PMC1132305 DOI: 10.1042/bj2900525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photo-oxidation of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the non-selective herbicide glyphosate (N-phosphonomethylglycine), in the presence of pyridoxal 5'-phosphate resulted in irreversible inactivation of the enzyme. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact. of 50 microM. The inactivation is specifically prevented by preincubation of the enzyme with the combination of shikimate 3-phosphate and glyphosate. Increasing glyphosate concentration during preincubation resulted in a decreasing rate of inactivation. On 95% inactivation, approximately one histidine per molecule of enzyme was oxidized. Tryptic mapping of the enzyme modified in the absence and presence of shikimate 3-phosphate and glyphosate as well as analyses of the histidine content in the isolated peptides indicated that His385, in the peptide Asn383-Asp-His-Arg386, was the site of oxidation. These results suggest that His385 is the most accessible reactive imidazole group under these conditions and is located close to the glyphosate-binding site.
Collapse
Affiliation(s)
- Q K Huynh
- Department of Protein Biochemistry, Monsanto Company, St. Louis, MO 63198
| |
Collapse
|
47
|
Moore JD, Lamb HK, Garbe T, Servos S, Dougan G, Charles IG, Hawkins AR. Inducible overproduction of the Aspergillus nidulans pentafunctional AROM protein and the type-I and -II 3-dehydroquinases from Salmonella typhi and Mycobacterium tuberculosis. Biochem J 1992; 287 ( Pt 1):173-81. [PMID: 1329726 PMCID: PMC1133140 DOI: 10.1042/bj2870173] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aroQ gene of Mycobacterium tuberculosis, encoding a type-II 3-dehydroquinase, and the aroD gene of Salmonella typhi, encoding a type-I 3-dehydroquinase, have been highly overexpressed in Escherichia coli using the powerful trc promoter contained within the expression vector pKK233-2. The M. tuberculosis type-II 3-dehydroquinase has been purified in bulk from overproducing strains of E. coli to greater than 95% homogeneity. The protein is extremely heat-stable, is active as a homododecamer and has the lowest reported Km value of any type-II 3-dehydroquinase. The pentafunctional aromA gene of Aspergillus nidulans has been overexpressed more than 120-fold in an A. nidulans aromA- qutB- double mutant from a truncated quinate-inducible qutE promoter, such that the AROM protein is visible as a significant fraction (approx. 6%) in cell-free crude extracts. The M. tuberculosis aroQ gene has been fused to the same truncated qutE promoter and shown to encode quinate-inducible 3-dehydroquinase activity that allows a qutE- mutant strain of A. nidulans to utilize quinate as sole carbon source.
Collapse
Affiliation(s)
- J D Moore
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | | | |
Collapse
|
48
|
Boys CW, Bury SM, Sawyer L, Moore JD, Charles IG, Hawkins AR, Deka R, Kleanthous C, Coggins JR. Crystallization of a type I 3-dehydroquinase from Salmonella typhi. J Mol Biol 1992; 227:352-5. [PMID: 1522599 DOI: 10.1016/0022-2836(92)90704-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystals have been grown of a type I 3-dehydroquinase from both Escherichia coli and Salmonella typhi. However, only those from S. typhi diffract to a resolution of 2.3 A on a conventional X-ray source and are suitable for structure determination. The space group has been determined as P2(1)2(1)2 with unit cell dimensions a = 48.01 A, b = 114.29 A, c = 42.87 A. There is one subunit in the asymmetric unit.
Collapse
Affiliation(s)
- C W Boys
- Department of Biochemistry, University of Edinburgh, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van den Hombergh JP, Moore JD, Charles IG, Hawkins AR. Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. Biochem J 1992; 284 ( Pt 3):861-7. [PMID: 1320381 PMCID: PMC1132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pentafunctional AROM protein of Aspergillus nidulans is encoded by the complex aromA locus and catalyses steps 2-6 in the synthesis of chorismate, the common precursor for the aromatic amino acids and p-aminobenzoic acid. DNA sequences encoding the 3-dehydroquinate synthase (DHQ synthase) and 3-dehydroquinase domains of the AROM protein have been amplified with the inclusion of a translational stop codon at the C-terminus by PCR technology. These amplified fragments of DNA have been subcloned into the prokaryotic expression vector pKK233-2 and expressed in Escherichia coli. As a result, the DHQ synthase domain is overproduced in E. coli, forming 30% of total cell protein, and can be purified to greater than 80% homogeneity by a simple two-step protocol. The 3-dehydroquinase domain is produced at a specific activity 8-fold greater than the corresponding activity encoded by the aromA gene in A. nidulans. The qutB gene of A. nidulans encoding quinate dehydrogenase has similarly been subjected to PCR amplification and expression in E. coli. The quinate dehydrogenase is not overproduced, but is active in E. coli as a shikimate dehydrogenase, as the presence of the qutB gene allows the growth of an E. coli mutant strain lacking shikimate dehydrogenase on minimal medium lacking aromatic-amino-acid supplementation.
Collapse
Affiliation(s)
- J P van den Hombergh
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | |
Collapse
|
50
|
Lamb HK, van den Hombergh JP, Newton GH, Moore JD, Roberts CF, Hawkins AR. Differential flux through the quinate and shikimate pathways. Implications for the channelling hypothesis. Biochem J 1992; 284 ( Pt 1):181-7. [PMID: 1318019 PMCID: PMC1132714 DOI: 10.1042/bj2840181] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The qutC gene encoding dehydroshikimate dehydratase has been constitutively overexpressed in Aspergillus nidulans from a range of 1-30-fold over the normal wild-type level. This overexpression leads to impaired growth in minimal medium which can be alleviated by the addition of aromatic amino acids to the medium. Overexpression of the qutC gene in mutant strains lacking protocatechuic acid (PCA) oxygenase leads to the build up of PCA in the medium, which can be measured by a simple assay. Measuring the rate of production of PCA in strains overproducing dehydroshikimate dehydratase and correlating this with the level of overproduction and impaired ability to grow in minimal medium lacking aromatic amino acids leads to the conclusion that (a) the metabolites 3-dehydroquinate and dehydroshikimate leak from the AROM protein at a rate comparable with the extent of flux catalysed by the AROM protein, (b) the AROM protein has a low-level channelling function probably as a result of the close juxtaposition of five active sites and (c) this channelling function is only physiologically significant under non-optimal conditions of nutrient supply and oxygenation, when the organism is in situ in its natural environment.
Collapse
Affiliation(s)
- H K Lamb
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | |
Collapse
|