1
|
Choi W, Saha RP, Jang S, Harshey RM. Controlling DNA degradation from a distance: a new role for the Mu transposition enhancer. Mol Microbiol 2014; 94:595-608. [PMID: 25256747 DOI: 10.1111/mmi.12781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Phage Mu is unique among transposable elements in employing a transposition enhancer. The enhancer DNA segment is the site where the transposase MuA binds and makes bridging interactions with the two Mu ends, interwrapping the ends with the enhancer in a complex topology essential for assembling a catalytically active transpososome. The enhancer is also the site at which regulatory proteins control divergent transcription of genes that determine the phage lysis-lysogeny decision. Here we report a third function for the enhancer - that of regulating degradation of extraneous DNA attached to both ends of infecting Mu. This DNA is protected from nucleases by a phage protein until Mu integrates into the host chromosome, after which it is rapidly degraded. We find that leftward transcription at the enhancer, expected to disrupt its topology within the transpososome, blocks degradation of this DNA. Disruption of the enhancer would lead to the loss or dislocation of two non-catalytic MuA subunits positioned in the transpososome by the enhancer. We provide several lines of support for this inference, and conclude that these subunits are important for activating degradation of the flanking DNA. This work also reveals a role for enhancer topology in phage development.
Collapse
Affiliation(s)
- Wonyoung Choi
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | |
Collapse
|
2
|
Saha RP, Lou Z, Meng L, Harshey RM. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 2013; 9:e1003902. [PMID: 24244182 PMCID: PMC3820752 DOI: 10.1371/journal.pgen.1003902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
The E. coli chromosome is compacted by segregation into 400–500 supercoiled domains by both active and passive mechanisms, for example, transcription and DNA-protein association. We find that prophage Mu is organized as a stable domain bounded by the proximal location of Mu termini L and R, which are 37 kbp apart on the Mu genome. Formation/maintenance of the Mu ‘domain’ configuration, reported by Cre-loxP recombination and 3C (chromosome conformation capture), is dependent on a strong gyrase site (SGS) at the center of Mu, the Mu L end and MuB protein, and the E. coli nucleoid proteins IHF, Fis and HU. The Mu domain was observed at two different chromosomal locations tested. By contrast, prophage λ does not form an independent domain. The establishment/maintenance of the Mu domain was promoted by low-level transcription from two phage promoters, one of which was domain dependent. We propose that the domain confers transposition readiness to Mu by fostering topological requirements of the reaction and the proximity of Mu ends. The potential benefits to the host cell from a subset of proteins expressed by the prophage may in turn help its long-term stability. A majority of sequenced bacterial genomes harbor prophage sequences. Some prophages are viable, while others have decayed from accumulating mutations and genome rearrangements. Prophages, including defective ones, can contribute important biological properties such as antibiotic resistance, toxins, and serum resistance that increase the survival and ecological range of their hosts. We show in this study that the 37 kbp transposable prophage Mu exists in a unique configuration we call the ‘Mu domain’, where its two ends are paired, segregating the Mu sequences from those of the host chromosome. This is the largest stable chromosomal domain in E. coli mapped to date. The Mu domain configuration promotes low-level transcription from an early prophage promoter, which controls the expression of several genes, not all essential for phage growth. Some non-essential genes include DNA repair functions. We suggest that the Mu domain provides long-term survival benefits to both the prophage and the host: to the prophage in bestowing transposition-ready topological properties unique to the Mu reaction, and to the host in contributing extraneous DNA housekeeping functions.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Zheng Lou
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Luke Meng
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
McGillivary G, Tomaras AP, Rhodes ER, Actis LA. Cloning and sequencing of a genomic island found in the Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius. Infect Immun 2005; 73:1927-38. [PMID: 15784532 PMCID: PMC1087403 DOI: 10.1128/iai.73.4.1927-1938.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A genomic island was identified in the Haemophilus influenzae biogroup aegyptius Brazilian purpuric fever (BPF) strain F3031. This island, which was also found in other BPF isolates, could not be detected in non-BPF biogroup aegyptius strains or in nontypeable or typeable H. influenzae strains, with the exception of a region present in the type b Eagan strain. This 34,378-bp island is inserted, in reference to H. influenzae Rd KW20, within a choline transport gene and contains a mosaic structure of Mu-like prophage genes, several hypothetical genes, and genes potentially encoding an Erwinia carotovora carotovoricin Er-like bacteriocin. The product of the tail fiber ORF in the bacteriocin-like region shows a hybrid structure where the C terminus is similar to an H. influenzae phage HP1 tail protein implicating this open reading frame in altering host specificity for a putative bacteriocin. Significant synteny is seen in the entire genomic island with genomic regions from Salmonella enterica subsp. enterica serovar Typhi CT18, Photorhabdus luminescens subsp. laumondii TT01, Chromobacterium violaceum, and to a lesser extent Haemophilus ducreyi 35000HP. In a previous work, we isolated several BPF-specific DNA fragments through a genome subtraction procedure, and we have found that a majority of these fragments map to this locus. In addition, several subtracted fragments generated from an independent laboratory by using different but related strains also map to this island. These findings underscore the importance of this BPF-specific chromosomal region in explaining some of the genomic differences between highly invasive BPF strains and non-BPF isolates of biogroup aegyptius.
Collapse
Affiliation(s)
- Glen McGillivary
- Department of Microbiology, Miami University, 40 Pearson Hall, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
4
|
Demongeot J, Thuderoz F, Baum TP, Berger F, Cohen O. Bio-array images processing and genetic networks modelling. C R Biol 2003; 326:487-500. [PMID: 12886876 DOI: 10.1016/s1631-0691(03)00114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The new tools available for gene expression studies are essentially the bio-array methods using a large variety of physical detectors (isotopes, fluorescent markers, ultrasounds...). Here we present first rapidly an image-processing method independent of the detector type, dealing with the noise and with the peaks overlapping, the peaks revealing the detector activity (isotopic in the presented example), correlated with the gene expression. After this primary step of bio-array image processing, we can extract information about causal influence (activation or inhibition) a gene can exert on other genes, leading to clusters of genes co-expression in which we extract an interaction matrix M and an associated interaction graph G explaining the genetic regulatory dynamics correlated to the studied tissue function. We give two examples of such interaction matrices and graphs (the flowering genetic regulatory network of Arabidopsis thaliana and the lytic/lysogenic operon of the phage Mu) and after some theoretical rigorous results recently obtained concerning the asymptotic states generated by the genetic networks having a given interaction matrix and reciprocally concerning the minimal (in the sense of having a minimal number of non-zero coefficients) matrices having given stationary stable states.
Collapse
Affiliation(s)
- Jacques Demongeot
- TIMC-IMAG, CNRS 5525, Faculty of Medicine, 38700 La Tronche, France.
| | | | | | | | | |
Collapse
|
5
|
ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 2003; 26:433-56. [PMID: 12586390 DOI: 10.1111/j.1574-6976.2003.tb00625.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pathogenicity and symbiosis are central to bacteria-host interactions. Although several human pathogens have been subjected to functional genomic analysis, we still understand little about bacteria-invertebrate interactions despite their ecological prevalence. Advances in our knowledge of this area are often hindered by the difficulty of isolating and working with invertebrate pathogenic bacteria and their hosts. Here we review studies on pathogenicity and symbiosis in an insect pathogenic bacterium Photorhabdus and its entomopathogenic nematode vector and model insect hosts. Whilst switching between these hosts, Photorhabdus changes from a state of symbiosis with its nematode vector to one of pathogenicity towards its new insect host and both the bacteria and the nematode then cooperatively exploit the dying insect. We examine candidate genes involved in symbiosis and pathogenicity, their secretion and expression patterns in culture and in the host, and begin to dissect the extent of their genetic coregulation. We describe the presence of several large genomic islands, putatively involved in pathogenicity or symbiosis, within the otherwise Yersinia-like backbone of the Photorhabdus genome. Finally, we examine the emerging comparative genomics of the Photorhabdus group and begin to describe the interrelationship between anti-invertebrate virulence factors and those used against vertebrates.
Collapse
Affiliation(s)
- Richard ffrench-Constant
- Centre for Molecular Microbiology, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mizuuchi M, Baker TA, Mizuuchi K. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Cell 1995; 83:375-85. [PMID: 8521467 DOI: 10.1016/0092-8674(95)90115-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transposition of phage Mu takes place within higher order protein-DNA complexes called transpososomes. These complexes contain the two Mu genome ends synapsed by a tetramer of Mu transposase (MuA). Transpososome assembly is tightly controlled by multiple protein and DNA sequence cofactors. We find that assembly can occur through two distinct pathways. One previously described pathway depends on an enhancer-like sequence element, the internal activation sequence (IAS). The second pathway depends on a MuB protein-target DNA complex. For both pathways, all four MuA monomers in the tetramer need to interact with an assembly-assisting element, either the IAS or MuB. However, once assembled, not all MuA monomers within the transpososome need to interact with MuB to capture MuB-bound target DNA. The multiple layers of control likely are used in vivo to ensure efficient rounds of DNA replication when needed, while minimizing unwanted transposition products.
Collapse
Affiliation(s)
- M Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
7
|
Yang JY, Jayaram M, Harshey RM. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase. Genes Dev 1995; 9:2545-55. [PMID: 7590234 DOI: 10.1101/gad.9.20.2545] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Assembly of the functional tetrameric form of phage Mu transposase (A protein) requires specific interactions between the Mu A monomer and its cognate sequences at the ends of the Mu genome (attL and attR) as well as those internal to it (the enhancer element). We describe here deletion variants of Mu A that show enhancer-independence in the assembly of the strand cleavage complex. These deletions remove the amino-terminal region of Mu A required for its interactions with the enhancer elements. The basal enhancer-independent activity of the variant proteins can be stimulated by a partner variant harboring an intact enhancer-binding domain. By exploiting the identical att-binding, and nonidentical enhancer-binding specificities of Mu A and D108 A (transposase of the Mu related phage D108), we show that the stimulation of activity is enhancer-specific. Taken together, these results suggest that the domain of Mu A that includes the enhancer-interacting region may exert negative as well as positive modulatory effects on the strand cleavage reaction. We discuss the implications of these results in the framework of a recent model for the assembly of shared active sites within the Mu A tetramer.
Collapse
Affiliation(s)
- J Y Yang
- Department of Microbiology, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
8
|
Clubb RT, Omichinski JG, Savilahti H, Mizuuchi K, Gronenborn AM, Clore GM. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Structure 1994; 2:1041-8. [PMID: 7881904 DOI: 10.1016/s0969-2126(94)00107-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Mu transposase (MuA) is a multidomain protein encoded by the bacteriophage Mu genome. It is responsible for translocation of the Mu genome, which is the largest and most efficient transposon known. While the various domains of MuA have been delineated by means of biochemical methods, no data have been obtained to date relating to its tertiary structure. RESULTS We have solved the three-dimensional solution structure of the DNA-binding domain (residues 1-76; MuA76) of MuA by multidimensional heteronuclear NMR spectroscopy. The structure consists of a three-membered alpha-helical bundle buttressed by a three-stranded antiparallel beta-sheet. Helices H1 and H2 and the seven-residue turn connecting them comprise a helix-turn-helix (HTH) motif. In addition, there is a long nine-residue flexible loop or wing connecting strands B2 and B3 of the sheet. NMR studies of MuA76 complexed with a consensus DNA site from the internal activation region of the Mu genome indicate that the wing and the second helix of the HTH motif are significantly perturbed upon DNA binding. CONCLUSIONS While the general appearance of the DNA-binding domain of MuA76 is similar to that of other winged HTH proteins, the connectivity of the secondary structure elements is permuted. Hence, the fold of MuA76 represents a novel class of winged HTH DNA-binding domain.
Collapse
Affiliation(s)
- R T Clubb
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | | | | | | | | | | |
Collapse
|
9
|
van Drunen CM, Mientjes E, van Zuylen O, van de Putte P, Goosen N. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. Nucleic Acids Res 1994; 22:773-9. [PMID: 8139917 PMCID: PMC307881 DOI: 10.1093/nar/22.5.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this paper we determine which of the A binding sites in the attachment sites of phage Mu are required for the stimulatory activity of the transpositional enhancer (IAS). For this purpose the transposition frequencies of mini-Mu's with different truncated attachment sites to an Ftet target were measured both in the presence and the absence of the IAS. The results show that in our in vivo assay the L3 and R3 sites are dispensable for functioning of the IAS. An additional deletion of L2 or R2 however abolishes the stimulating activity of the enhancer suggesting an interaction between A molecules bound to these sites and the IAS. The residual transposition activity of a IAS-containing mini Mu in which R2 (and R3) are deleted is much lower than the activity of the comparable construct without the IAS. This means that in the absence of R2 the IAS is inhibiting transposition. Such an inhibition is not observed when L2 (and L3) are deleted. This suggests that the IAS interacts with the attachment sites in an ordered fashion, first with attL and then with attR. Furthermore we show that mini-Mu transposition is enhanced when Fpro-lac is used as a target instead of Ftet. We show that this elevated transposition is dependent on the Mu A binding sites L2,L3 and R2. These sequences could possibly mediate an interaction between the mini-Mu plasmid and sequences present on Fpro-lac.
Collapse
Affiliation(s)
- C M van Drunen
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Kukolj G, DuBow M. Integration host factor activates the Ner-repressed early promoter of transposable Mu-like phage D108. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37118-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Mizuuchi M, Baker TA, Mizuuchi K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 1992; 70:303-11. [PMID: 1322248 DOI: 10.1016/0092-8674(92)90104-k] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Discovery and characterization of a new intermediate in Mu DNA transposition allowed assembly of the transposition machinery to be separated from the chemical steps of recombination. This stable intermediate, which accumulates in the presence of Ca2+, consists of the two ends of the Mu DNA synapsed by a tetramer of the Mu transposase. Within this stable synaptic complex (SSC), the recombination sites are engaged but not yet cleaved. Thus, the SSC is structurally related to both the cleaved donor and strand transfer complexes, but precedes them on the transposition pathway. Once the active protein-DNA complex is constructed, it is conserved throughout transposition. The participation of internal sequence elements and accessory factors exclusively during SSC assembly allows recombination to be controlled prior to the irreversible chemical steps.
Collapse
Affiliation(s)
- M Mizuuchi
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
12
|
Kukolj G, DuBow MS. Characterization of the lysogenic repressor (c) from transposable Mu-like bacteriophage D108. Nucleic Acids Res 1991; 19:5949-56. [PMID: 1658747 PMCID: PMC329052 DOI: 10.1093/nar/19.21.5949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The c gene products from related, transposable phages Mu and D108 encode lysogenic repressors which negatively regulate transcription and transposition. Using the gel shift assay to monitor c-operator specific DNA-binding activity, the 19.5 kDa D108 c repressor was purified to homogeneity. Sequence analysis of the N-terminus confirmed the identity of the purified protein as the repressor and ascribed its ATG initiation codon to base pair 864 from the D108 left end. Analytical gel filtration and dimethyl suberimidate cross-linking of repressor at 0.1-0.5 microM concentrations revealed that the repressor protein could form oligomers in the absence of its DNA substrate. From DNase I footprinting and gel mobility shift analyses, the D108 repressor only bound to two operators (O1 and O2) which, as in Mu, flank an Integration Host Factor (IHF) binding site. In contrast to Mu, an O3 site in D108 was not found. Moreover, D108 repressor first bound operator O2, while occupancy of O1 required higher protein concentrations. The implications of these results on the D108 regulatory system are discussed.
Collapse
Affiliation(s)
- G Kukolj
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Vogel JL, Li ZJ, Howe MM, Toussaint A, Higgins NP. Temperature-sensitive mutations in the bacteriophage Mu c repressor locate a 63-amino-acid DNA-binding domain. J Bacteriol 1991; 173:6568-77. [PMID: 1833382 PMCID: PMC208994 DOI: 10.1128/jb.173.20.6568-6577.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phage Mu's c gene product is a cooperative regulatory protein that binds to a large, complex, tripartite 184-bp operator. To probe the mechanism of repressor action, we isolated and characterized 13 phage mutants that cause Mu to undergo lytic development when cells are shifted from 30 to 42 degrees C. This collection contained only four mutations in the repressor gene, and all were clustered near the N terminus. The cts62 substitution of R47----Q caused weakened specific DNA recognition and altered cooperativity in vitro. A functional repressor with only 63 amino acids of Mu repressor fused to a C-terminal fragment of beta-galactosidase was constructed. This chimeric protein was an efficient repressor, as it bound specifically to Mu operator DNA in vitro and its expression conferred Mu immunity in vivo. A DNA looping model is proposed to explain regulation of the tripartite operator site and the highly cooperative nature of repressor binding.
Collapse
Affiliation(s)
- J L Vogel
- Department of Biochemistry, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
14
|
Pato ML, Banerjee M, Wagonner BT. Sequence of gene E15 of bacteriophage D108 and comparison with phage Mu. Nucleic Acids Res 1990; 18:6458. [PMID: 2147059 PMCID: PMC332576 DOI: 10.1093/nar/18.21.6458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- M L Pato
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
15
|
Burns CM, Chan HL, DuBow MS. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108. Proc Natl Acad Sci U S A 1990; 87:6092-6. [PMID: 2166943 PMCID: PMC54478 DOI: 10.1073/pnas.87.16.6092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mu and D108 are related, temperate, transposable coliphages with unusual modes of DNA replication (transposition) and virion DNA maturation. These double-stranded DNA genomes replicate intrachromosomally and are matured and encapsidated linked to DNA sequences flanking the dispersed, integrated phage genomes. We have developed an in vitro system that employs crude lysates prepared from cells late in the Mu lytic cycle and that is proficient for both maturation and encapsidation of D108 DNA. Different forms of phage DNA were packaged at different efficiencies, with a circular pSC101::D108cts10 plasmid being most efficient, linearized plasmid less so, and mature virion DNA a poor substrate. The addition of purified D108 Ner protein to the reaction had no effect, whereas D108 repressor (c protein) inhibited the reaction. Escherichia coli integration host factor and D108 transposase proteins exerted an inhibitory effect on circular DNA substrates but had little effect on linear DNA packaging. This in vitro system, coupled with that developed for transposition, can now be used to biochemically dissect the protein and substrate requirements of these phages' DNA maturation pathway and the nature of the molecular switch between DNA transposition and encapsidation.
Collapse
Affiliation(s)
- C M Burns
- McGill University, Department of Microbiology and Immunology, Montreal, PQ, Canada
| | | | | |
Collapse
|
16
|
Abstract
The kil gene encoded in bacteriophage Mu DNA was previously shown to reside between the end of the B gene at 4.3 kb and the EcoRI site at 5.1 kb from the left end. To precisely map the kil gene within this region, two series of BAL-31 deletion derivatives were created: one removed Mu DNA rightward from the Hpal site (4.2 kb) and the other removed Mu DNA leftward from the EcoRI site. The deleted Mu DNA was subcloned into the expression vector pUC19 under lac promoter control and tested for the expression of the killing function following IPTG induction. Using DNA sequencing analysis, the Mu DNA in Kil+ and Kil- clones was precisely determined, and the kil gene was mapped to the first open reading frame beyond the B gene. The expression of the kil gene was sufficient to induce dramatic morphological changes: cells became enlarged and predominantly spherical, reminiscent of the phenotype of certain cell mutants.
Collapse
Affiliation(s)
- B T Waggoner
- Division of Molecular and Cellular Biology, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | | | | | |
Collapse
|
17
|
Choi YL, Nishida T, Kawamukai M, Utsumi R, Sakai H, Komano T. Cloning and sequencing of an Escherichia coli gene, nlp, highly homologous to the ner genes of bacteriophages Mu and D108. J Bacteriol 1989; 171:5222-5. [PMID: 2670911 PMCID: PMC210348 DOI: 10.1128/jb.171.9.5222-5225.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An nlp (Ner-like protein) gene was isolated from Escherichia coli. The nucleotide sequence of a 1,342-base-pair chromosomal DNA fragment containing the nlp gene was analyzed. It contained two open reading frames; one encoded 91 amino acid residues with an Mr of 10,361, and the other (ORFX) encoded 131 amino acid residues of the carboxyl-terminal region of a truncated polypeptide. The amino acid sequence deduced from the DNA sequence of nlp was highly homologous (62 to 63%) to the Ner proteins of bacteriophages Mu and D108. The amino-terminal region of Nlp deduced from the complete open reading frame contained a presumed DNA-binding region. The nlp gene was located at 69.3 min on the E. coli genetic map.
Collapse
Affiliation(s)
- Y L Choi
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Desmet L, Faelen M, Gama MJ, Ferhat A, Toussaint A. Characterization of amber mutations in bacteriophage Mu transposase: a functional analysis of the protein. Mol Microbiol 1989; 3:1145-58. [PMID: 2552260 DOI: 10.1111/j.1365-2958.1989.tb00265.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized a series of amber mutations in the A gene of bacteriophage Mu encoding the phage transposase. We tested different activities of these mutant proteins either in a sup0 strain or in different sup bacteria. In conjunction with the results described in the accompanying paper by Bétermier et al. (1989) we find that the C-terminus of the protein is not absolutely essential for global transposase function, but is essential for phage growth. Specific binding to Mu ends is defined by a more central domain. Our results also reinforce the previous findings (Bétermier et al., 1987) that more than one protein may be specified by the A gene.
Collapse
Affiliation(s)
- L Desmet
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode-St-Genèse, Belgium
| | | | | | | | | |
Collapse
|
19
|
Bétermier M, Alazard R, Lefrère V, Chandler M. Functional domains of bacteriophage Mu transposase: properties of C-terminal deletions. Mol Microbiol 1989; 3:1159-71. [PMID: 2552261 DOI: 10.1111/j.1365-2958.1989.tb00266.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have generated a series of 3' deletions of a cloned copy of the bacteriophage Mu transposase (A) gene. The corresponding truncated proteins, expressed under the control of the lambda PI promoter, were analysed in vivo for their capacity to complement a super-infecting MuAam phage, both for lytic growth and lysogeny, and for their effect on growth of wild-type Mu following infection or induction of a lysogen. Using crude cell extracts, we have also examined binding properties of these proteins to the ends of Mu. The results allow us to further define regions of the protein important in replicative transposition, establishment of lysogeny and DNA binding.
Collapse
Affiliation(s)
- M Bétermier
- Centre de Recherche de Biochimie et Génétique, Cellulaires du CNRS, Toulouse, France
| | | | | | | |
Collapse
|
20
|
Mizuuchi M, Mizuuchi K. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 1989; 58:399-408. [PMID: 2546681 DOI: 10.1016/0092-8674(89)90854-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phage Mu transposition is initiated by the Mu DNA strand-transfer reaction, which generates a branched DNA structure that acts as a transposition intermediate. A critical step in this reaction is formation of a special synaptic DNA-protein complex called a plectosome. We find that formation of this complex involves, in addition to a pair of Mu end sequences, a third cis-acting sequence element, the internal activation sequence (IAS). The IAS is specifically recognized by the N-terminal domain of Mu transposase (MuA protein). Neither the N-terminal domain of MuA protein nor the IAS is required for later reaction steps. The IAS overlaps with the sequences to which Mu repressor protein binds in the Mu operator region; the Mu repressor directly inhibits the Mu DNA strand-transfer reaction by interfering with the interaction between MuA protein and the IAS, providing an additional mode of regulation by the repressor.
Collapse
Affiliation(s)
- M Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
21
|
Levin DB, DuBow MS. Regulation of repressor and early gene expression in Mu-like transposable bacteriophage D108. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:392-400. [PMID: 2549379 DOI: 10.1007/bf02464909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The temperate, transposable bacteriophages D108 and Mu are highly homologous, but differ in their lef-end regulatory regions. We have previously cloned the gene encoding the D108 thermo-sensitive (cts) repressor under the control of the lactUV5 promoter. In this work, we report that crude protein extracts containing highly-expressed D108 repressor protect a 77 bp region of DNA, located between 863 bp and 940 bp from the D108 lef--end, from both exonuclease III and DNase I hydrolysis. Nucleotide sequence analysis of this region reveals that is also contains DNA sequences homologous to the consensus DNA-binding site of the Escherichia coli protein, Integration Host Factor (IHF). Crude protein extracts containing highly-expressed IHF specifically bind to, and retard the migration of, DNA fragments containing the D108 regulatory region, and the DNA sequence which IHF protects from DNase I cleave lies directly within the D108 repressor binding region. There are two apparent repressor-specific S1 nuclease-resistant RNA suggests that transcription from the early region promoter, Pe may initiate at or about 1000 bp from the left-end of the D108 genome. Thus though, D108 and Mu utilize three analogous proteins (repressor, ner, and IHF) and the same apparent promoters for early gene regulation and the lytic/lysogenic decision, the organization of these regulatory components is apparently different, suggesting different mechanisms of control of gene expression.
Collapse
Affiliation(s)
- D B Levin
- Department of Micorbiology and Immunology, McGill University, MontrealQuebec, Canada
| | | |
Collapse
|
22
|
Leung PC, Teplow DB, Harshey RM. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 1989; 338:656-8. [PMID: 2539564 DOI: 10.1038/338656a0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteriophage Mu is the largest and most efficient transposable element known. The Mu transposase (A protein) of relative molecular mass 75,000 is a central component of the transposition machinery. We report here that the N-terminal region of Mu transposase contains two distinct DNA-binding domains, one which binds the two Mu DNA ends, and another which binds an internal operator region. This internal operator is required for the transposase-mediated synapsis and nicking of Mu ends in vitro, and stimulates transposition more than 100-fold in vivo. The orientation of the operator with respect to the ends is critical to its function, whereas its distance from the ends seems to be relatively unimportant. We propose that the operator enhances transposition by transiently interacting with the transposase and Mu DNA end(s) to form a complex in which synapsis of the ends occurs.
Collapse
Affiliation(s)
- P C Leung
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | |
Collapse
|
23
|
Waggoner BT, Wade T, Pato ML. Identification of the bacteriophage D108 kil gene and of the second region of sequence nonhomology with bacteriophage Mu. Gene X 1988; 62:111-9. [PMID: 2836266 DOI: 10.1016/0378-1119(88)90584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify the second region of sequence nonhomology between the genomes of the transposable bacteriophages Mu and D108 originally observed by electron-microscopic analysis of DNA heteroduplexes and to localize functions ascribed to the 'accessory' or 'semi-essential' early regions of the phages between genes B and C, a 0.9-kb fragment of each genome located immediately beyond the B gene was cloned and sequenced. Three open reading frames (ORFs) were identified in each. The region of nonhomology is located within the 3' portion of the third ORF. D108 is shown to possess a Kil function similar to that previously shown for Mu, and that function is encoded by the first ORF.
Collapse
Affiliation(s)
- B T Waggoner
- Department of Molecular and Cellular Biology, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206
| | | | | |
Collapse
|
24
|
Levin DB, DuBow MS. Cloning and localization of the repressor gene (c) of the Mu-like transposable phage D108. FEBS Lett 1987; 222:199-203. [PMID: 2820796 DOI: 10.1016/0014-5793(87)80219-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have localized the D108 thermosensitive (cts) repressor gene to a region of DNA approx. 600 base pairs (bp) in length by sub-cloning an RsaI restriction endonuclease fragment (bp 200 to bp 802 from the left-end of the D108 genome). We determined that the gene product from this fragment appears to be the same size (19 kDa) as that expressed from clones containing larger fragments of D108 DNA. Results from in vitro gel electrophoresis band-retardation and in vivo immunity assays show that the sub-cloned repressor appears to be fully functional.
Collapse
Affiliation(s)
- D B Levin
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Szatmari GB, Lapointe M, DuBow MS. The right end of transposable bacteriophage D108 contains a 520 base pair protein-encoding sequence not present in bacteriophage Mu. Nucleic Acids Res 1987; 15:6691-704. [PMID: 2957646 PMCID: PMC306132 DOI: 10.1093/nar/15.16.6691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have cloned and characterized the right end terminal 796 bp of the transposable Mu-like bacteriophage D108. This region encompasses a 520 bp region of D108-specific sequences not present in phage Mu that contain an open reading frame encoding a 12 KDa protein. This protein can be visualized in vivo when the region is placed downstream from the strong lac UV5 promoter. The open reading frame can be expressed from the dam-regulated mod promoter (for modification of D108 DNA), yet also contains its own dam-independent promoter for expression that is detectable by northern blot analysis late in the D108 lytic cycle. Comparison of this region of D108 DNA with the corresponding region of Mu DNA suggests that a complex rearrangement has occurred at the phages' right ends during their evolution.
Collapse
|
26
|
Tolias PP, Dubow MS. The amino terminus of the bacteriophage D108 transposase protein contains a two-component sequence-specific DNA-binding domain. Virology 1987; 157:117-26. [PMID: 3029952 DOI: 10.1016/0042-6822(87)90320-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have cloned various amino-terminal domains of the transposable bacteriophage D108 A protein (transposase) into a high-copy-number expression vector and visualized the D108 polypeptides and fusion proteins expressed by the recombinant plasmids. By using crude protein extracts made from strains harboring these recombinant plasmids, we have performed band competition assays and DNasel footprinting on a 32P-end-labeled DNA restriction fragment which contained the Mu right end (to which the Mu A protein binds) and have shown that these fusion proteins in crude extracts can specifically bind to this DNA substrate. Furthermore, we have divided the amino-terminal 13 kDa of the D108 A protein (which may contain two bi-alpha-helical protein structures) in half and have shown that each half is capable of independent binding to the Mu attR site. These results suggest that the D108 transposase protein contains multiple DNA-binding domains which may be required for the complex protein-DNA interactions of D108 transposition.
Collapse
|