1
|
James W. Towards Gene-Inhibition Therapy: A Review of Progress and Prospects in the Field of Antiviral Antisense Nucleic Acids and Ribozymes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense RNA and its derivatives may provide the basis for highly selective gene inhibition therapies of virus infections. In this review, I concentrate on advances made in the study of antisense RNA and ribozymes during the last five years and their implications for the development of such therapies. It appears that antisense RNAs synthesized at realistic levels within the cell can be much more effective inhibitors than originally supposed. Looking at those experiments that enable comparisons to be made, it seems that inhibitory antisense RNAs are not those that are complementary to particular sites within mRNAs but those that are able to make stable duplexes with their targets, perhaps by virtue of their secondary structure and length. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them in vitro and possibly in cells, thereby offering the possibility of markedly increasing their therapeutic potential. The varieties of natural ribozyme and their adaptation as artificial catalysts are reviewed. The implications of these developments for antiviral therapy are discussed.
Collapse
Affiliation(s)
- W. James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| |
Collapse
|
2
|
Mavrogiannopoulou E, Petrou PS, Koukouvinos G, Yannoukakos D, Siafaka-Kapadai A, Fornal K, Awsiuk K, Budkowski A, Kakabakos SE. Improved DNA microarray detection sensitivity through immobilization of preformed in solution streptavidin/biotinylated oligonucleotide conjugates. Colloids Surf B Biointerfaces 2015; 128:464-472. [PMID: 25805150 DOI: 10.1016/j.colsurfb.2015.02.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 11/18/2022]
Abstract
A novel immobilization approach involving binding of preformed streptavidin/biotinylated oligonucleotide conjugates onto surfaces coated with biotinylated bovine serum albumin is presented. Microarrays prepared according to the proposed method were compared, in terms of detection sensitivity and specificity, with other immobilization schemes employing coupling of biotinylated oligonucleotides onto directly adsorbed surface streptavidin, or sequential coupling of streptavidin and biotinylated oligonucleotides onto a layer of adsorbed biotinylated bovine serum albumin. A comparison was performed employing biotinylated oligonucleotides corresponding to wild- and mutant-type sequences of seven single point mutations of the BRCA1 gene. With respect to the other immobilization protocols, the proposed oligonucleotide immobilization approach offered the highest hybridization signals (at least 5 times higher) and permitted more elaborative washings, thus providing considerably higher discrimination between complimentary and non-complementary DNA sequences for all mutations tested. In addition, the hybridization kinetics were significantly enhanced compared to two other immobilization protocols, permitting PCR sample analysis in less than 40 min. Thus, the proposed oligonucleotide immobilization approach offered improved detection sensitivity and discrimination ability along with considerably reduced analysis time, and it is expected to find wide application in DNA mutation detection.
Collapse
Affiliation(s)
- E Mavrogiannopoulou
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece
| | - P S Petrou
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece
| | - G Koukouvinos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece
| | - D Yannoukakos
- Molecular Diagnostics Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece
| | - A Siafaka-Kapadai
- Biochemistry Lab, Department of Chemistry, University of Athens, GR-15771 Panepistimiopolis, Athens, Greece
| | - K Fornal
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - K Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - A Budkowski
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - S E Kakabakos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece.
| |
Collapse
|
3
|
Yin LF, Hu MJ, Wang F, Kuang H, Zhang Y, Schnabel G, Li GQ, Luo CX. Frequent gain and loss of introns in fungal cytochrome b genes. PLoS One 2012; 7:e49096. [PMID: 23145081 PMCID: PMC3492308 DOI: 10.1371/journal.pone.0049096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.
Collapse
Affiliation(s)
- Liang-Fen Yin
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Meng-Jun Hu
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Fei Wang
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hanhui Kuang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yu Zhang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guido Schnabel
- School of Agricultural, Forestry & Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Guo-Qing Li
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Chao-Xi Luo
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
4
|
Grasso V, Palermo S, Sierotzki H, Garibaldi A, Gisi U. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. PEST MANAGEMENT SCIENCE 2006; 62:465-72. [PMID: 16688790 DOI: 10.1002/ps.1236] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The cytochrome b (cyt b) gene structure was characterized for different agronomically important plant pathogens, such as Puccinia recondita f sp tritici (Erikss) CO Johnston, P graminis f sp tritici Erikss and Hennings, P striiformis f sp tritici Erikss, P coronata f sp avenae P Syd & Syd, P hordei GH Otth, P recondita f sp secalis Roberge, P sorghi Schwein, P horiana Henn, Uromyces appendiculatus (Pers) Unger, Phakopsora pachyrhizi Syd & P Syd, Hemileia vastatrix Berk & Broome, Alternaria solani Sorauer, A alternata (Fr) Keissl and Plasmopara viticola (Berk & Curt) Berlese & de Toni. The sequenced fragment included the two hot spot regions in which mutations conferring resistance to QoI fungicides may occur. The cyt b gene structure of these pathogens was compared with that of other species from public databases, including the strobilurin-producing fungus Mycena galopoda (Pers) P Kumm, Saccharomyces cerevisiae Meyer ex Hansen, Venturia inaequalis (Cooke) Winter and Mycosphaerella fijiensis Morelet. In all rust species, as well as in A solani, resistance to QoI fungicides caused by the mutation G143A has never been reported. A type I intron was observed directly after the codon for glycine at position 143 in these species. This intron was absent in pathogens such as A alternata, Blumeria graminis (DC) Speer, Pyricularia grisea Sacc, Mycosphaerella graminicola (Fuckel) J Schröt, M fijiensis, V inaequalis and P viticola, in which resistance to QoI fungicides has occurred and the glycine is replaced by alanine at position 143 in the resistant genotype. The present authors predict that a nucleotide substitution in codon 143 would prevent splicing of the intron, leading to a deficient cytochrome b, which is lethal. As a consequence, the evolution of resistance to QoI fungicides based on G143A is not likely to evolve in pathogens carrying an intron directly after this codon.
Collapse
Affiliation(s)
- Valeria Grasso
- Centre of Competence for Innovation in the Agro-environmental Sector (AGROINNOVA), University of Turin, via L. da Vinci 44, 10095 Grugliasco (TO), Italy.
| | | | | | | | | |
Collapse
|
5
|
Sharma M, Hinton DM. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J Bacteriol 1994; 176:6439-48. [PMID: 7961394 PMCID: PMC196996 DOI: 10.1128/jb.176.21.6439-6448.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although not encoded by an intron, the bacteriophage T4 SegA protein shares common amino acid motifs with a family of proteins found within mobile group I introns present in fungi and phage. Each of these intron-encoded proteins is thought to initiate the homing of its own intron by cleaving the intronless DNA at or near the site of insertion. Previously, we have found that SegA also cleaves DNA. In this report, we have purified the SegA protein and characterized this endonuclease activity extensively. SegA protein cleaved circular and linear plasmids, DNA containing unmodified cytosines, and wild-type T4 DNA containing hydroxymethylated, glucosylated cytosines. In all cases, certain sites on the DNA were highly preferred for cleavage, but with increasing protein concentration or time of incubation, cleavage occurred at many sites. SegA cleaving activity was stimulated by the presence of ATP or ATP gamma S. Sequence analysis of three highly preferred cleavage sites did not reveal a simple consensus sequence, suggesting that even among highly preferred sites, SegA tolerates many different sequences. A T4 segA amber mutant that we constructed had no phenotype, and PCR analyses indicated that several T-even-related phages lack the segA gene. Taken together, our results show that SegA is an endonuclease with a hierarchy of site specificity, and these results are consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely related T-even phages.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophage T4/enzymology
- Bacteriophage T4/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Viral/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/isolation & purification
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Endonucleases/genetics
- Endonucleases/isolation & purification
- Endonucleases/metabolism
- Genome, Viral
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- T-Phages/genetics
- Viral Proteins
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
6
|
Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial cytochrome b: evolution and structure of the protein. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:243-71. [PMID: 8329437 DOI: 10.1016/0005-2728(93)90197-n] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b is the central redox catalytic subunit of the quinol: cytochrome c or plastocyanin oxidoreductases. It is involved in the binding of the quinone substrate and it is responsible for the transmembrane electron transfer by which redox energy is converted into a protonmotive force. Cytochrome b also contains the sites to which various inhibitors and quinone antagonists bind and, consequently, inhibit the oxidoreductase. Ten partial primary sequences of cytochrome b are presented here and they are compared with sequence data from over 800 species for a detailed analysis of the natural variation in the protein. This sequence information has been used to predict some aspects of the structure of the protein, in particular the folding of the transmembrane helices and the location of the quinone- and heme-binding pockets. We have observed that inhibitor sensitivity varies greatly among species. The comparison of inhibition titrations in combination with the analysis of the primary structures has enabled us to identify amino acid residues in cytochrome b that may be involved in the binding of the inhibitors and, by extrapolation, quinone/quinol. The information on the quinone-binding sites obtained in this way is expected to be both complementary and supplementary to that which will be obtained in the future by mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- M D Esposti
- Department of Biology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Sharma M, Ellis RL, Hinton DM. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A 1992; 89:6658-62. [PMID: 1631169 PMCID: PMC49561 DOI: 10.1073/pnas.89.14.6658] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bacteriophage T4 segA gene lies in a genetically unmapped region between the gene beta gt (beta-glucosyltransferase) and uvsX (recombination protein) and encodes a protein of 221 amino acids. We have found that the first 100 amino acids of the SegA protein are highly similar to the N termini of four other predicted T4 proteins, also of unknown function. Together these five proteins, SegA-E (similar to endonucleases of group I introns), contain regions of similarity to the endonuclease I-Tev I, which is encoded by the mobile group I intron of the T4 td gene, and to putative endonucleases of group I introns present in the mitochondria of Neurospora crassa, Podospora anserina, and Saccharomyces douglasii. Intron-encoded endonucleases are required for the movement (homing) of the intron DNA into an intronless gene, cutting at or near the site of intron insertion. Our in vitro assays indicate that SegA, like I-Tev I, is a Mg(2+)-dependent DNA endonuclease that has preferred sites for cutting. Unlike the I-Tev I gene, however, there is no evidence that segA (or the other seg genes) resides within introns. Thus, it is possible that segA encodes an endonuclease that is involved in the movement of the endonuclease-encoding DNA rather than in the homing of an intron.
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
8
|
Eaton KA, Brooks CL, Morgan DR, Krakowka S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 1991; 66:1308-15. [PMID: 2050411 DOI: 10.1002/ps.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/03/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022] Open
Abstract
A mutant strain of Helicobacter pylori with weak urease activity was created by using N-methyl-N'-nitro-N-nitrosoguanidine. The urease activity of the mutant (0.036 +/- 0.009 nmol of urea per micrograms of bacterial protein per min) was 0.4% of that of the parental strain (8.20 +/- 2.30 nmol of urea per micrograms of bacterial protein per min). The mutant was otherwise indistinguishable from the parental strain. Both demonstrated prominent catalase and oxidase activities, and both produced vacuolating cytotoxin. Restriction endonuclease and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultrastructure were identical for the two strains. The mutant was fully motile, as evaluated by spreading in soft agar and by direct microscopic examination. Growth rate and colony size and morphology were identical for the mutant and parental strains. Seventeen gnotobiotic piglets were challenged with either the mutant or the parental strain and sacrificed 3 or 21 days after challenge. Gastric tissue was examined histologically and cultured for H. pylori. Of seven piglets challenged with the parental strain, all became infected. H. pylori was not recovered from any of 10 piglets challenged with the urease-negative strain. Lymphofollicular gastritis was present in all seven piglets challenged with the parental strain but in none of the piglets challenged with the urease-negative strain. These results suggest that prominent urease activity is essential for colonization by H. pylori.
Collapse
Affiliation(s)
- K A Eaton
- Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
9
|
Tian GL, Michel F, Macadre C, Slonimski PP, Lazowska J. Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. J Mol Biol 1991; 218:747-60. [PMID: 1708831 DOI: 10.1016/0022-2836(91)90263-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
10
|
Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C. Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol 1991; 218:293-311. [PMID: 1849178 DOI: 10.1016/0022-2836(91)90713-g] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chloroplast large subunit rRNA gene of Chlamydomonas eugametos and its 5' flanking region encoding tRNA(Ile) (GAU) and tRNA(Ala) (UGC) have been sequenced. The DNA sequence data along with the results of a detailed RNA analysis disclosed two unusual features of this green algal large subunit rRNA gene: (1) the presence of six group I introns (CeLSU.1-CeLSU.6) whose insertion positions have not been described previously, and (2) the presence of three short internal transcribed spacers that are post-transcriptionally excised to yield four rRNA species of 280, 52, 810 and 1720 nucleotides, positioned in this order (5' to 3') in the primary transcript. Together, these RNA species can assume a secondary structure that is almost identical to that proposed for the 23 S rRNA of Escherichia coli. All three internal transcribed spacers map to variable regions of primary sequence and/or potential secondary structure, whereas all six introns lie within highly conserved regions. The first three introns are inserted within the sequence encoding the 810 nucleotide rRNA species and map within domain II of the large subunit rRNA structure; the remaining introns, found in the sequence encoding the 1720 nucleotide rRNA species, lie within either domain IV or V, as is the case for all other large subunit rDNA introns that have been documented to date. CeLSU.5 and CeLSU.6 each contain a long open reading frame (ORF) of more than 200 codons. While the CeLSU.6 ORF is not related to any known ORFs, the CeLSU.5 ORF belongs to a family of ORFs that have been identified in Podospora and Neurospora mitochondrial group I introns. The finding that a polymorphic marker showing unidirectional gene conversion during crosses between C. eugametos and Chlamydomonas moewusii is located within the CeLSU.5 ORF makes it likely that this intron is a mobile element and that its ORF encodes a site-specific endonuclease promoting the transfer of the intron DNA sequence.
Collapse
Affiliation(s)
- M Turmel
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
11
|
Michel F, Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990; 216:585-610. [PMID: 2258934 DOI: 10.1016/0022-2836(90)90386-z] [Citation(s) in RCA: 914] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Colleaux L, Michel-Wolwertz MR, Matagne RF, Dujon B. The apocytochrome b gene of Chlamydomonas smithii contains a mobile intron related to both Saccharomyces and Neurospora introns. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:288-96. [PMID: 1701210 DOI: 10.1007/bf00265065] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mitochondrial DNA of the two interfertile algal species Chlamydomonas smithii and Chlamydomonas reinhardtii are co-linear with the exception of ca. 1 kb insertion (the alpha insert) present in C. smithii DNA only. In vegetative diploids resulting from interspecific crosses, mitochondrial genomes are transmitted biparentally except for the alpha insert which is transmitted to all C. reinhardtii molecules in a manner reminiscent of the intron-mediated conversion event that occurs at the omega locus in yeast mitochondria, under the action of the I-SceI endonuclease. Here we report that the alpha insert corresponds to a typical group I intron of 1075 bp, inserted within the gene for apocytochrome b and containing a 237 codon open reading frame (ORF). We also report the complete sequence of the apocytochrome b gene of C. smithii. Comparison with the sequence of the same gene in C. reinhardtii reveals the precise intron insertion site. These data, together with the previous genetic data provide the first example of intron mobility in mitochondria of the plant kingdom. The product of the intronic ORF shows 36% amino acid identity with the I-SceI endonuclease whereas the intron ribozyme shows a 60% identity at the nucleotide level with the Neurospora crassa cob.1 intron. The possibility of a recent horizontal transfer of introns between fungi and algae is discussed.
Collapse
Affiliation(s)
- L Colleaux
- Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
13
|
Cummings DJ, Michel F, Domenico JM, McNally KL. Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit II gene from Podospora anserina. A group IA intron with a putative alternative splice site. J Mol Biol 1990; 212:287-94. [PMID: 2157023 DOI: 10.1016/0022-2836(90)90125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
14
|
Cummings DJ, Michel F, Domenico JM, McNally KL. DNA sequence analysis of the mitochondrial ND4L-ND5 gene complex from Podospora anserina. Duplication of the ND4L gene within its intron. J Mol Biol 1990; 212:269-86. [PMID: 2319602 DOI: 10.1016/0022-2836(90)90124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 15 kb region of the 100 kb mitochondrial genome of Podospora anserina has been mapped and sequenced (1 kb = 10(3) base-pairs). The genes for ND4L and ND5 are identified as contiguous genes with overlapping termination and initiation codons. In race A (101 kb) the gene for ND4L (4.3 kb) has a gene duplication within an intron including a second subgroup IC intron. Race s (95 kb) lacks this second gene complex. Each intron has the identical 5' exon boundary. Secondary structure analysis showed that the closest relative of the second intron is the first intron itself. The open reading frames of the two introns are also closely related to each other as well as to their counterpart in the ND4L gene of Neurospora crassa. The 9.9 kb ND5 gene starts immediately at the termination codon of ND4L and is split by two group IB introns, one group IC intron and one group II intron. The group II intron is closely related to other group II introns although its open reading frame sequence similarity with retroviral reverse transcriptase appears to be more divergent. The similarities in secondary structure and open reading frames for these six introns are discussed.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
15
|
Cummings DJ, Michel F, McNally KL. DNA sequence analysis of the apocytochrome b gene of Podospora anserina: a new family of intronic open reading frame. Curr Genet 1989; 16:407-18. [PMID: 2611913 DOI: 10.1007/bf00340720] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 5,969 bp (base pair) DNA sequence of the apocytochrome b mitochondrial (mt) gene of race A Podospora anserina was located in a 8.5 Kbp region. This gene contained a 2,499 bp subgroup IB and a 1,306 bp subgroup ID intron as well as a 990 bp subgroup IB intron which is present in race A but not race s. The large subgroup IB intron and the race A specific IB intron both contained potential alternate splice sites which brought their open reading frames into phase with their upstream exon sequences. All three introns were compared with regard to their secondary structures and open reading frames to the other 30 group I introns in Podospora anserina, as well as to other fungal introns. We detected a new family of intronic ORFs comprising seven P. anserina introns, several N. crassa introns, as well as the T4td bacteriophage intron. Sequence similarities to intron-encoded endonucleases were noteworthy. The DNA sequences reported here and in the accompanying paper complete the analysis of race s and race A mitochondrial DNA.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
16
|
Abstract
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.
Collapse
Affiliation(s)
- B Dujon
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Dobinson KF, Henderson M, Kelley RL, Collins RA, Lambowitz AM. Mutations in nuclear gene cyt-4 of Neurospora crassa result in pleiotropic defects in processing and splicing of mitochondrial RNAs. Genetics 1989; 123:97-108. [PMID: 2478417 PMCID: PMC1203794 DOI: 10.1093/genetics/123.1.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.
Collapse
Affiliation(s)
- K F Dobinson
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|
18
|
Turmel M, Boulanger J, Lemieux C. Two group I introns with long internal open reading frames in the chloroplast psbA gene of Chlamydomonas moewusii. Nucleic Acids Res 1989; 17:3875-87. [PMID: 2660104 PMCID: PMC317866 DOI: 10.1093/nar/17.10.3875] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report the nucleotide sequence of the chloroplast psbA gene encoding the 32 kilodalton protein of photosystem II from Chlamydomonas moewusii. Like its land plant homologues, this green algal protein consists of 353 amino acids. The C. moewusii psbA gene is composed of three exons containing 252, 11 and 90 codons and of two group I introns containing 2363 and 1807 nucleotides. Each of the introns features an internal open reading frame (ORF) that potentially encodes a basic protein of more than 300 residues. The primary sequences of the putative intron-encoded proteins are unrelated and none of them shares conserved elements with any of the proteins predicted from the group I intron sequences published so far. The first C. moewusii intron is inserted at the same position as the fourth intron of the psbA gene from Chlamydomonas reinhardtii; the second intron lies at a novel site downstream of this position. On the basis of their RNA secondary structures, the C. moewusii introns 1 and 2 can be assigned to subgroups IA and IB, respectively. However, intron 1 is not typical of subgroup IA introns, its most unusual feature being the location of the ORF in the "loop L5" region. To our knowledge, this is the first time that an ORF is located in this region of the group I intron structure.
Collapse
Affiliation(s)
- M Turmel
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|