1
|
Feng X, Xu R, Liao J, Zhao J, Zhang B, Xu X, Zhao P, Wang X, Yao J, Wang P, Wang X, Han W, She Q. Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope. Nat Commun 2024; 15:3464. [PMID: 38658536 PMCID: PMC11043419 DOI: 10.1038/s41467-024-47697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingyu Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Baochang Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoxiao Xu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Aulitto M, Martinez-Alvarez L, Fusco S, She Q, Bartolucci S, Peng X, Contursi P. Genomics, Transcriptomics, and Proteomics of SSV1 and Related Fusellovirus: A Minireview. Viruses 2022; 14:2082. [PMID: 36298638 PMCID: PMC9608457 DOI: 10.3390/v14102082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Saccharolobus spindle-shaped virus 1 (SSV1) was one of the first viruses identified in the archaeal kingdom. Originally isolated from a Japanese species of Saccharolobus back in 1984, it has been extensively used as a model system for genomic, transcriptomic, and proteomic studies, as well as to unveil the molecular mechanisms governing the host-virus interaction. The purpose of this mini review is to supply a compendium of four decades of research on the SSV1 virus.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
| | - Laura Martinez-Alvarez
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 250100, China
| | | | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Patrizia Contursi
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
3
|
|
4
|
Dar D, Prasse D, Schmitz RA, Sorek R. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat Microbiol 2016; 1:16143. [DOI: 10.1038/nmicrobiol.2016.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
|
5
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
6
|
Fusco S, Liguori R, Limauro D, Bartolucci S, She Q, Contursi P. Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of CRISPR-Cas system. Biochimie 2015; 118:322-32. [DOI: 10.1016/j.biochi.2015.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/08/2015] [Indexed: 11/26/2022]
|
7
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Molecular biology of fuselloviruses and their satellites. Extremophiles 2014; 18:473-89. [DOI: 10.1007/s00792-014-0634-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
9
|
The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol 2013; 11:713-9. [PMID: 24037452 DOI: 10.1038/nrmicro3124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two pioneers of twentieth century biology passed away during the past decade, Wolfram Zillig in April 2005 and Carl Woese in December 2012. Among several other accomplishments, Woese has been celebrated for the discovery of the domain Archaea and for establishing rRNA as the 'Rosetta Stone' of evolutionary and environmental microbiology. His work inspired many scientists in various fields of biology, and among them was Wolfram Zillig, who is credited with the discovery of several unique molecular features of archaea. In this Essay, we highlight the remarkable achievements of Woese and Zillig and consider how they have shaped the archaeal research landscape.
Collapse
|
10
|
Ren Y, She Q, Huang L. Transcriptomic analysis of the SSV2 infection of Sulfolobus solfataricus with and without the integrative plasmid pSSVi. Virology 2013; 441:126-34. [PMID: 23579037 DOI: 10.1016/j.virol.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/25/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
Abstract
The fusellovirus SSV2 and the integrative plasmid pSSVi, which constitute a unique helper-satellite virus system, replicate in Sulfolobus solfataricus P2. In this study, we investigated the interplay among SSV2, pSSVi and their host by transcriptomic analysis. Following infection of S. solfataricus P2, SSV2 activated its promoters in a temporal and distributive fashion, starting from the transcription of ORF305. Expression of several host genes encoding DNA replication and transcription proteins was up-regulated, suggesting that SSV2 depended heavily on the host replication machinery for its replication. SSV2 gene expression appeared to follow a similar pattern in S. solfataricus P2 harboring pSSVi to that in S. solfataricus P2 lacking the plasmid. Several early genes of the virus were transcribed earlier and more efficiently in the presence of pSSVi than in its absence. These results provide valuable clues to the understanding of the three-way interactions among SSV2, pSSVi and the host.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, PR China
| | | | | |
Collapse
|
11
|
T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes. J Virol 2013; 87:5926-36. [PMID: 23514883 DOI: 10.1128/jvi.00458-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While studying the gene expression of the Sulfolobus spindle-shaped virus 1 (SSV1) in Sulfolobus solfataricus lysogenic cells, a novel viral transcript (T(lys)) was identified. Transcriptional analysis revealed that T(lys) is expressed only in the absence of UV irradiation and is downregulated during the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and T(ind)) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and T(ind) transcripts, as well as of its own promoter. Binding sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the T(ind) promoter. Taking together the transcriptional analysis data and the biochemical evidences, we surmise that the protein F55 is involved in the regulation of the lysogenic state of SSV1.
Collapse
|
12
|
Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 2011; 193:3009-19. [PMID: 21515780 DOI: 10.1128/jb.01433-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP(+). Metal analyses revealed that this NADP(+)-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent K(m) values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP(+), respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation.
Collapse
|
13
|
Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 2010; 14:453-63. [PMID: 20734095 DOI: 10.1007/s00792-010-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/16/2010] [Indexed: 01/17/2023]
Abstract
The pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. A systematic study previously performed revealed the presence of nine major transcripts, the expression of which was differentially and temporally regulated over the growth cycle of S. islandicus. In this study, two new transcripts were identified. Then, 3' termini of all the RNAs were mapped using adaptor RT-PCR and RNase protection assays, and termination/arrest positions were identified for each transcript. The majority of the identified ending positions were located in the close vicinity of a T-rich sequence and this was consistent with termination signals identifiable for most of archaeal genes. Furthermore, termination also occurred at locations where a T-track sequence was absent but a stem-loop structure could be formed. We propose that an alternative mechanism based on secondary RNA structures and counter-transcripts might be responsible for the transcription termination at these T-track-minus loci in the closely spaced pSSVx genes.
Collapse
|
14
|
Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Albers SV, Kletzin A. Acidianus,SulfolobusandMetallosphaerasurface layers: structure, composition and gene expression. Mol Microbiol 2009; 73:58-72. [DOI: 10.1111/j.1365-2958.2009.06746.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Brenneis M, Hering O, Lange C, Soppa J. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 2008; 3:e229. [PMID: 18159946 PMCID: PMC2151090 DOI: 10.1371/journal.pgen.0030229] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/08/2007] [Indexed: 02/01/2023] Open
Abstract
The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5′-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5′-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5′-ends and 3′-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5′-UTRs and 3′-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5′-UTRs and 3′-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3′-UTR (average size 57 nt), and their 3′-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5′-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD) sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5′-UTRs of random sequences. Thus, an interaction of the 5′-UTRs of these leadered transcripts with the 16S rRNA could be excluded. Taken together, either a scanning mechanism similar to the mechanism of translation initiation operating in eukaryotes or a novel mechanism must operate on most leadered haloarchaeal transcripts. Expression of the information encoded in the genome of an organism into its phenotype involves transcription of the DNA into messenger RNAs and translation of mRNAs into proteins. The textbook view is that an mRNA consists of an untranslated region (5′-UTR), an open reading frame encoding the protein, and another untranslated region (3′-UTR). We have determined the 5′-ends and the 3′-ends of 40 mRNAs of two haloarchaeal species and used this dataset to gain information about nucleotide elements important for transcription and translation. Two thirds of the mRNAs were devoid of a 5′-UTR, and therefore the major pathway for translation initiation in haloarchaea involves so-called leaderless transcripts. Very unexpectedly, most leadered mRNAs were found to be devoid of a sequence motif believed to be essential for translation initiation in bacteria and archaea (Shine-Dalgarno sequence). A bioinformatic genome analysis revealed that less than 10% of the genes contain a Shine-Dalgarno sequence. mRNAs lacking this motif were efficiently translated in vivo, including mRNAs with artificial 5′-UTRs of total random sequence. Thus, translation initiation on these mRNAs either involves a scanning mechanism similar to the mechanism operating in eukaryotes or a totally novel mechanism operating at least in haloarchaea.
Collapse
Affiliation(s)
- Mariam Brenneis
- Institute for Molecular Biosciences, Goethe-University, Frankfurt, Germany
| | | | | | | |
Collapse
|
16
|
Peng X. Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival. MICROBIOLOGY-SGM 2008; 154:383-391. [PMID: 18227242 DOI: 10.1099/mic.0.2007/012963-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A fusellovirus SSV4 and a pRN-like plasmid pXZ1 were co-isolated from a single strain of Sulfolobus. In contrast to the previously characterized virus-plasmid hybrids pSSVx and pSSVi, which can coexist intracellulary with a fusellovirus, pXZ1 is not packaged into viral particles and shows no viral infectivity. The virus and plasmid carry genomes of 15 135 and 6970 bp, respectively. For SSV4, 33 predicted ORFs are compactly organized with a strong preference for UGA stop codons, three-quarters of which overlap with either the Shine-Dalgarno motif or the start codon of the following gene. pXZ1 carries seven ORFs, three of which encode an atypical RepA, a PlrA and a CopG protein. A fourth ORF exhibits a high nucleotide sequence identity to the SSV4 integrase gene, which suggests that it has been transferred to the plasmid from SSV4. A single point mutation within an otherwise identical 500 bp region of the integrase gene occurs in the viral attachment site (attP), which corresponds to the anticodon region of the targeted tRNA gene in the host chromosome. This point mutation confers on pXZ1 the ability to integrate into the tRNA(Glu)[CUC] gene, which differs from the integration site of SSV4, tRNA(Glu)[UUC]. SSV4 and pXZ1 were also shown experimentally to integrate into separate sites on the host chromosome. This is believed to be the first report of a pRN plasmid sharing its natural host with a fusellovirus and carrying a highly similar integrase gene.
Collapse
Affiliation(s)
- Xu Peng
- Danish Archaea Centre, Department of Molecular Biology, Biocenter, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2007; 67:958-70. [PMID: 18182021 PMCID: PMC2253867 DOI: 10.1111/j.1365-2958.2007.06084.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An archaeal histone gene from the hyperthermophile Pyrococcus furiosus containing four consecutive putative oligo-dT terminator sequences was used as a model system to investigate termination signals and the mechanism of termination in vitro. The archaeal RNA polymerase terminated with high efficiency at the first terminator at 90°C when it contained five to six T residues, at 80°C readthrough was significantly increased. A putative hairpin structure upstream of the first terminator had no effect on termination efficiency. Template competition experiments starting with RNA polymerase molecules engaged in ternary complexes revealed recycling of RNA polymerase from the terminator to the promoter of the same template. This facilitated reinitiation was dependent upon the presence of a terminator sequence suggesting that pausing at the terminator is required for recycling as in the RNA polymerase III system. Replacement of the sequences immediately downstream of the oligo-dT terminator by an AT-rich segment improved termination efficiency. Both AT-rich and GC-rich downstream sequences seemed to impair the facilitated reinitiation pathway. Our data suggest that recycling is dependent on a subtle interplay of pausing of RNA polymerase at the terminator and RNA polymerase translocation beyond the oligo-dT termination signal that is dramatically affected by downstream sequences.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Department of Microbiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
18
|
First characterisation of the active oligomer form of sulfur oxygenase reductase from the bacterium Aquifex aeolicus. Extremophiles 2007; 12:205-15. [PMID: 18060346 DOI: 10.1007/s00792-007-0119-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Sulfur oxygenase reductase (SOR) enzyme is responsible for the initial oxidation step of elemental sulfur in archaea. Curiously, Aquifex aeolicus, a hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium, has the SOR-encoding gene in its genome. We showed, for the first time the presence of the SOR enzyme in A. aeolicus, its gene was cloned and recombinantly expressed in Escherichia coli and the protein was purified and characterised. It is a 16 homo-oligomer of approximately 600 kDa that contains iron atoms indispensable for the enzyme activity. The optimal temperature of SOR activity is 80 degrees C and it is inactive at 20 degrees C. Studies of the factors involved in getting the fully active molecule at high temperature show clearly that (1) incubation at high temperature induces more homogeneous form of the enzyme, (2) conformational changes observed at high temperature are required to get the fully active molecule and (3) acquisition of an active conformation induced by the temperature seems to be more important than the subunit number. Differences between A. aeolicus SOR and the archaea SORs are described.
Collapse
|
19
|
Contursi P, Cannio R, Prato S, She Q, Rossi M, Bartolucci S. Transcriptional analysis of the genetic element pSSVx: differential and temporal regulation of gene expression reveals correlation between transcription and replication. J Bacteriol 2007; 189:6339-50. [PMID: 17586636 PMCID: PMC1951929 DOI: 10.1128/jb.00638-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pSSVx from Sulfolobus islandicus strain REY15/4 is a hybrid between a plasmid and a fusellovirus. A systematic study performed by a combination of Northern blot analysis, primer extension, and reverse transcriptase PCR revealed the presence of nine major transcripts whose expression was differentially and temporally regulated over the growth cycle of S. islandicus. The map positions of the RNAs as well as the clockwise and the anticlockwise directions of their transcription were determined. Some genes were clustered and appeared to be transcribed as polycistronic messengers, among which one long transcriptional unit comprised the genes for the plasmid copy number control protein ORF60 (CopG), ORF91, and the replication protein ORF892 (RepA). We propose that a termination readthrough mechanism might be responsible for the formation of more than one RNA species from a single 5' end and therefore that the nine different RNAs corresponded to only seven different transcriptional starts. Three transcripts, ORF76 and two antisense RNAs, countertranscribed RNA1 (ctRNA1) and ctRNA2, were found to be specifically expressed during (and hence correlated to) the phase in which the pSSVx copy number is kept under stringent control, as they were completely switched off upon the onset of the induction of replication.
Collapse
Affiliation(s)
- Patrizia Contursi
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Fröls S, Gordon PMK, Panlilio MA, Schleper C, Sensen CW. Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology 2007; 365:48-59. [PMID: 17467765 DOI: 10.1016/j.virol.2007.03.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/09/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The spindle-shaped Sulfolobus virus SSV1 was the first of a series of unusual and uniquely shaped viruses isolated from hyperthermophilic Archaea. Using whole-genome microarrays we show here that the circular 15.5 kb DNA genome of SSV1 exhibits a chronological regulation of its transcription upon UV irradiation, reminiscent to the life cycles of bacteriophages and eukaryotic viruses. The transcriptional cycle starts with a small UV-specific transcript and continues with early transcripts on both its flanks. The late transcripts appear after the onset of viral replication and are extended to their full lengths towards the end of the approximately 8.5 h cycle. While we detected only small differences in genome-wide analysis of the host Sulfolobus solfataricus comparing infected versus uninfected strains, we found a marked difference with respect to the strength and speed of the general UV response of the host. Models for the regulation of the virus cycle, and putative functions of genes in SSV1 are presented.
Collapse
Affiliation(s)
- Sabrina Fröls
- University of Bergen, Department of Biology, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
21
|
Berkner S, Lipps G. Characterization of the transcriptional activity of the cryptic plasmid pRN1 from Sulfolobus islandicus REN1H1 and regulation of its replication operon. J Bacteriol 2006; 189:1711-21. [PMID: 17172324 PMCID: PMC1855746 DOI: 10.1128/jb.01586-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasmid pRN1 from Sulfolobus islandicus REN1H1 belongs to the crenarchaeal plasmid family pRN. The plasmids in this family encode three conserved proteins that participate in plasmid replication and copy number regulation, as suggested by biochemical characterization of the recombinant proteins. In order to deepen our understanding of the molecular biology of these plasmids, we investigated the transcriptional activity of the model plasmid pRN1. We detected five major transcripts present at about 2 to 15 copies per cell. One long transcriptional unit comprises the genes for the plasmid-copy-number control protein Orf56/CopG and the replication protein Orf904. A second transcript with a long 3'-untranslated region codes for the DNA binding protein Orf80. For both transcripts, we identified countertranscripts which could play a regulatory role. The function of the fifth transcript is unclear. For the five transcripts, we determined the start site, the transcript end, the stability, and the abundance in different growth phases. Reporter gene experiments demonstrated that the copy number control protein Orf56 represses transcription of the orf56-orf904 cotranscript in vivo.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
22
|
Aucelli T, Contursi P, Girfoglio M, Rossi M, Cannio R. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic Acids Res 2006; 34:e114. [PMID: 16971457 PMCID: PMC1635272 DOI: 10.1093/nar/gkl615] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coli-Sulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment. The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the beta-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the beta-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium.
Collapse
Affiliation(s)
- Tiziana Aucelli
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli Federico IIVia Cinthia, 80126 Napoli, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli Federico IIVia Cinthia, 80126 Napoli, Italy
| | | | | | - Raffaele Cannio
- To whom correspondence should be addressed at Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131, Naples, Italy. Tel: +39 081 613 2285; Fax: +39 081 613 2248;
| |
Collapse
|
23
|
Lipps G. Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 2006; 10:17-28. [PMID: 16397749 DOI: 10.1007/s00792-005-0492-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 07/15/2005] [Indexed: 11/28/2022]
Abstract
The crenarchaeote Sulfolobus spp. is a host for a remarkably large spectrum of viruses and plasmids. The genetic elements characterized so far indicate a large degree of novelty in terms of morphology (viruses) and in terms of genome content (plasmids and viruses). The viruses and conjugative plasmids encode a great number of conserved proteins of unknown function due to the lack of sequence similarity to functionally characterized proteins. These apparently essential proteins remain to be studied and should help to understand the physiology and genetics of the respective genetic elements as well as the host. Sulfolobus is one of the best-studied archaeons and could develop into an important model organism of the crenarchaea and the archaea.
Collapse
Affiliation(s)
- Georg Lipps
- Institute of Biochemistry, University of Bayreuth, Universitätstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
24
|
Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ. Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 2005; 579:6865-9. [PMID: 16330030 DOI: 10.1016/j.febslet.2005.11.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/03/2005] [Accepted: 11/03/2005] [Indexed: 11/25/2022]
Abstract
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.
Collapse
Affiliation(s)
- Henry J Lamble
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Kim S, Lee S. Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. Biochem J 2005; 387:271-80. [PMID: 15509194 PMCID: PMC1134955 DOI: 10.1042/bj20041053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extremely thermoacidophilic archaeon Sulfolobus solfataricus utilizes D-glucose as a sole carbon and energy source through the non-phosphorylated Entner-Doudoroff pathway. It has been suggested that this micro-organism metabolizes D-gluconate, the oxidized form of D-glucose, to pyruvate and D-glyceraldehyde by using two unique enzymes, D-gluconate dehydratase and 2-keto-3-deoxy-D-gluconate aldolase. In the present study, we report the purification and characterization of D-gluconate dehydratase from S. solfataricus, which catalyses the conversion of D-gluconate into 2-keto-3-deoxy-D-gluconate. D-Gluconate dehydratase was purified 400-fold from extracts of S. solfataricus by ammonium sulphate fractionation and chromatography on DEAE-Sepharose, Q-Sepharose, phenyl-Sepharose and Mono Q. The native protein showed a molecular mass of 350 kDa by gel filtration, whereas SDS/PAGE analysis provided a molecular mass of 44 kDa, indicating that D-gluconate dehydratase is an octameric protein. The enzyme showed maximal activity at temperatures between 80 and 90 degrees C and pH values between 6.5 and 7.5, and a half-life of 40 min at 100 degrees C. Bivalent metal ions such as Co2+, Mg2+, Mn2+ and Ni2+ activated, whereas EDTA inhibited the enzyme. A metal analysis of the purified protein revealed the presence of one Co2+ ion per enzyme monomer. Of the 22 aldonic acids tested, only D-gluconate served as a substrate, with K(m)=0.45 mM and V(max)=0.15 unit/mg of enzyme. From N-terminal sequences of the purified enzyme, it was found that the gene product of SSO3198 in the S. solfataricus genome database corresponded to D-gluconate dehydratase (gnaD). We also found that the D-gluconate dehydratase of S. solfataricus is a phosphoprotein and that its catalytic activity is regulated by a phosphorylation-dephosphorylation mechanism. This is the first report on biochemical and genetic characterization of D-gluconate dehydratase involved in the non-phosphorylated Entner-Doudoroff pathway.
Collapse
Affiliation(s)
- Seonghun Kim
- *School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
- †Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Sun Bok Lee
- *School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
- †Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
- ‡Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Greve B, Jensen S, Phan H, Brügger K, Zillig W, She Q, Garrett RA. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:319-25. [PMID: 15876565 PMCID: PMC2685554 DOI: 10.1155/2005/159218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase-primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins.
Collapse
Affiliation(s)
- Bo Greve
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Susanne Jensen
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Hoa Phan
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Kim Brügger
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Wolfram Zillig
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Qunxin She
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Roger A. Garrett
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
- Corresponding author ()
| |
Collapse
|
27
|
Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Hüttenhofer A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 2005; 55:469-81. [PMID: 15659164 DOI: 10.1111/j.1365-2958.2004.04428.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
Collapse
Affiliation(s)
- Thean-Hock Tang
- Institute for Research in Molecular Medicine, University Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelatan, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Peeters E, Thia-Toong TL, Gigot D, Maes D, Charlier D. Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region. Mol Microbiol 2005; 54:321-36. [PMID: 15469506 DOI: 10.1111/j.1365-2958.2004.04274.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ss-LrpB, a novel Lrp-like DNA-binding protein from the hyperthermophilic crenarchaeon Sulfolobus solfataricus, was shown to bind cooperatively to three regularly spaced targets in its own control region, with as consensus the 15 bp palindrome 5'-TTGYAW WWWWTRCAA-3'. Binding to the border sites occurred with high affinity; the target in the middle proved to be a low affinity site which is stably bound only when both flanking sites are occupied. Ss-LrpB contacts two major groove segments and the intervening minor groove of each site, all aligned on one face of the helix. The operator shows intrinsic bending and is increasingly deformed upon binding of Ss-LrpB to one, two and three targets. Complex formation relies therefore on DNA conformability, protein-DNA and protein-protein contacts. Mobility-shift assays and in gel footprinting indicate that Ss-LrpB and the transcription factors TATA-box binding protein (TBP) and transcription factor B (TFB) can bind simultaneously to the control region. Based on these findings we present a model for the construction of the higher order nucleoprotein complexes and a hypothesis for the autoregulatory process. The latter is based on the concentration-dependent formation of distinct complexes exhibiting different stoichiometries and conformations, which could positively and negatively affect promoter activity.
Collapse
Affiliation(s)
- Eveline Peeters
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
29
|
Kappler U, Sly LI, McEwan AG. Respiratory gene clusters of Metallosphaera sedula - differential expression and transcriptional organization. MICROBIOLOGY-SGM 2005; 151:35-43. [PMID: 15632423 DOI: 10.1099/mic.0.27515-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metallosphaera sedula is a thermoacidophilic Crenarchaeon which is capable of leaching metals from sulfidic ores. The authors have investigated the presence and expression of genes encoding respiratory complexes in this organism when grown heterotrophically or chemolithotrophically on either sulfur or pyrite. The presence of three gene clusters, encoding two terminal oxidase complexes, the quinol oxidase SoxABCD and the SoxM oxidase supercomplex, and a gene cluster encoding a high-potential cytochrome b and components of a bc(1) complex analogue (cbsBA-soxL2N gene cluster) was established. Expression studies showed that the soxM gene was expressed to high levels during heterotrophic growth of M. sedula on yeast extract, while the soxABCD mRNA was most abundant in cells grown on sulfur. Reduced-minus-oxidized difference spectra of cell membranes showed cytochrome-related peaks that correspond to published spectra of Sulfolobus-type terminal oxidase complexes. In pyrite-grown cells, expression levels of the two monitored oxidase gene clusters were reduced by a factor of 10-12 relative to maximal expression levels, although spectra of membranes clearly contained oxidase-associated haems, suggesting the presence of additional gene clusters encoding terminal oxidases in M. sedula. Pyrite- and sulfur-grown cells contained high levels of the cbsA transcript, which encodes a membrane-bound cytochrome b with a possible role in iron oxidation or chemolithotrophy. The cbsA gene is not co-transcribed with the soxL2N genes, and therefore does not appear to be an integral part of this bc(1) complex analogue. The data show for the first time the differential expression of the Sulfolobus-type terminal oxidase gene clusters in a Crenarchaeon in response to changing growth modes.
Collapse
Affiliation(s)
- Ulrike Kappler
- Centre for Metals in Biology, The University of Queensland, St Lucia, Qld 4072, Australia
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Lindsay I Sly
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alastair G McEwan
- Centre for Metals in Biology, The University of Queensland, St Lucia, Qld 4072, Australia
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
30
|
Hagedoorn PL, Chen T, Schröder I, Piersma SR, de Vries S, Hagen WR. Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum. J Biol Inorg Chem 2005; 10:259-69. [PMID: 15772818 DOI: 10.1007/s00775-005-0637-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/21/2005] [Indexed: 11/27/2022]
Abstract
A tungsten-containing aldehyde:ferredoxin oxidoreductase (AOR) has been purified to homogeneity from Pyrobaculum aerophilum. The N-terminal sequence of the isolated enzyme matches a single open reading frame in the genome. Metal analysis and electron paramagnetic resonance (EPR) spectroscopy indicate that the P. aerophilum AOR contains one tungsten center and one [4Fe-4S](2+/1+) cluster per 68-kDa monomer. Native AOR is a homodimer. EPR spectroscopy of the purified enzyme that has been reduced with the substrate crotonaldehyde revealed a W(V) species with g(zyx) values of 1.952, 1.918, 1.872. The substrate-reduced AOR also contains a [4Fe-4S](1+) cluster with S=3/2 and zero field splitting parameters D=7.5 cm(-1) and E/D=0.22. Molybdenum was absent from the enzyme preparation. The P. aerophilum AOR lacks the amino acid sequence motif indicative for binding of mononuclear iron that is typically found in other AORs. Furthermore, the P. aerophilum AOR utilizes a 7Fe ferredoxin as the putative physiological redox partner, instead of a 4Fe ferredoxin as in Pyrococcus furiosus. This 7Fe ferredoxin has been purified from P. aerophilum, and the amino acid sequence has been identified using mass spectrometry. Direct electrochemistry of the ferredoxin showed two one-electron transitions, at -306 and -445 mV. In the presence of 55 microM ferredoxin the AOR activity is 17% of the activity obtained with 1 mM benzyl viologen as an electron acceptor.
Collapse
Affiliation(s)
- Peter L Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Kessler A, Brinkman AB, van der Oost J, Prangishvili D. Transcription of the rod-shaped viruses SIRV1 and SIRV2 of the hyperthermophilic archaeon sulfolobus. J Bacteriol 2004; 186:7745-53. [PMID: 15516589 PMCID: PMC524901 DOI: 10.1128/jb.186.22.7745-7753.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The double-stranded DNA genomes of the crenarchaeal rudiviruses SIRV1 (32 kb) and SIRV2 (35 kb) were previously sequenced. Here we present results of the analysis of gene expression of these viruses at different time points after infection of the host cell, Sulfolobus islandicus, and of the mapping of transcriptional start sites. Transcription of both genomes starts simultaneously at multiple sites spread over the total length of the genome and from both strands. The earliest time point when viral transcripts could be detected in cells was 30 min after infection. At this time point all the viral genes, except one, were transcribed. Many genes were clustered and appeared to be transcribed as polycistronic messengers. Although the coat protein-encoding gene was initially also transcribed as a polycistronic messenger, an abundant monocistronic transcript of this gene was detected 2 to 3 h after infection, just before assembly of viral particles. The expression of a single gene, adjacent to the coat protein gene, was upregulated at the late phase of infection, suggesting that it might be involved in specific processing and activation of the coat protein messenger. Start sites of 13 transcripts from the SIRV1 genome have been mapped by primer extension, and promoter sequences have been identified. Similar to host promoters, these viral promoters all contain potential binding sites for the archaeal transcription factors TATA binding protein and transcription factor B. In addition, most of them contain a virus-specific consensus element, suggesting the involvement of alternative transcription factors.
Collapse
Affiliation(s)
- Alexandra Kessler
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
32
|
Häring M, Peng X, Brügger K, Rachel R, Stetter KO, Garrett RA, Prangishvili D. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology 2004; 323:233-42. [PMID: 15193919 DOI: 10.1016/j.virol.2004.03.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/01/2004] [Accepted: 03/02/2004] [Indexed: 11/30/2022]
Abstract
A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.
Collapse
Affiliation(s)
- Monika Häring
- Department of Microbiology, Archaea Centre, University of Regensburg, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Bettstetter M, Peng X, Garrett RA, Prangishvili D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology 2003; 315:68-79. [PMID: 14592760 DOI: 10.1016/s0042-6822(03)00481-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel virus, AFV1, of the hyperthermophilic archaeal genus Acidianus. Filamentous virions are covered with a lipid envelope and contain at least five different proteins with molecular masses in the range of 23-130 kDa and a 20.8-kb-long linear double-stranded DNA. The virus has been assigned to the family Lipothrixviridae on the basis of morphotypic characteristics. Host range is confined to several strains of Acidianus and the virus persists in its hosts in a stable carrier state. The latent period of virus infection is about 4 h. Viral DNA was sequenced and sequence similarities were found to the lipothrixvirus SIFV, the rudiviruses SIRV1 and SIRV2, as well as to conjugative plasmids and chromosomes of the genus Sulfolobus. Exceptionally for the linear genomes of archaeal viruses, many short direct repeats, with the sequence TTGTT or close variants thereof, are closely clustered over 300 bp at each end of the genome. They are reminiscent of the telomeric ends of linear eukaryal chromosomes.
Collapse
Affiliation(s)
- Marcus Bettstetter
- Department of Microbiology, Archaea Centre, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
34
|
Hiller A, Henninger T, Schäfer G, Schmidt CL. New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 2003; 35:121-31. [PMID: 12887010 DOI: 10.1023/a:1023742002493] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The soxL gene from Sulfolobus acidocaldarius (DSM 639) encodes a Rieske iron-sulfur protein. In this study we report the identification of two open reading frames in its downstream region. The first one, named soxN, codes for a membrane protein bearing a resemblance to the b-type cytochromes of the cytochrome bc1 and b6f complexes. The protein is predicted to contain at least 10 transmembrane helices and features the two conserved histidine pairs coordinating the heme groups of these cytochromes. The second open reading frame, named odsN, encodes a soluble protein of unknown function. The genomic region displays a complex transcription pattern. Northern blot and RT-PCR analyses revealed the presence of mono- and bi-cistronic transcripts as well as a tri-cistronic transcript of soxL and cbsAB, encoding the mono-heme cytochrome b558/566. Phylogenetic analyses of the genes of the soxLN pair and of other archaeal gene pairs encoding Rieske iron-sulfur proteins and b-type cytochromes revealed an identical branching patterns for both protein families, suggesting an evolutionary link of these genes provided by the functional interaction of the proteins. On the basis of the findings of this study and the previously studied properties of the soxL and cbsA proteins, we propose the occurrence of a novel cytochrome bc1-analogous complex in the membranes of Sulfolobus, consisting of the cytochrome b homolog soxN, the Rieske protein soxL, the high potential cytochrome cbsA, as well as the non-redox-active subunits cbsB and odsN.
Collapse
Affiliation(s)
- A Hiller
- Institut für Biochemie der Universität Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
35
|
Chuakrut S, Arai H, Ishii M, Igarashi Y. Characterization of a bifunctional archaeal acyl coenzyme A carboxylase. J Bacteriol 2003; 185:938-47. [PMID: 12533469 PMCID: PMC142822 DOI: 10.1128/jb.185.3.938-947.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.
Collapse
Affiliation(s)
- Songkran Chuakrut
- Laboratory of Applied Microbiology, Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8567, Japan
| | | | | | | |
Collapse
|
36
|
Enoru-Eta J, Gigot D, Glansdorff N, Charlier D. High resolution contact probing of the Lrp-like DNA-binding protein Ss-Lrp from the hyperthermoacidophilic crenarchaeote Sulfolobus solfataricus P2. Mol Microbiol 2002; 45:1541-55. [PMID: 12354224 DOI: 10.1046/j.1365-2958.2002.03136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ss-Lrp, from Sulfolobus solfataricus, is an archaeal homologue of the global bacterial regulator Lrp (Leucine-responsive regulatory protein), which out of all genome-encoded proteins is most similar to Escherichia coli Lrp (E-value of 5.6 e-14). The recombinant protein has been purified as a 68 kDa homotetramer. The specific binding of Ss-Lrp to its own control region is suggestive of negative autoregulation. A high resolution contact map of Ss-Lrp binding was established by DNase I and hydroxyl radical footprinting, small non-intercalating groove-specific ligand-binding interference, and various base-specific premodification and base removal binding interference techniques. We show that Ss-Lrp binds one face of the DNA helix and establishes the most salient contacts with two major groove segments and the intervening minor groove, in a region that overlaps the TATA-box and BRE promoter elements. Therefore, Ss-Lrp most likely exerts autoregulation by preventing promoter recognition by TBP and TFB. Moreover, the results demonstrate profound Ss-Lrp induced structural alterations of sequence stretches flanking the core contact site, and reveal that the deformability of these regions significantly contributes to binding selectivity.
Collapse
Affiliation(s)
- Julius Enoru-Eta
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussels, Belgium
| | | | | | | |
Collapse
|
37
|
Klein R, Baranyi U, Rössler N, Greineder B, Scholz H, Witte A. Natrialba magadii virus phiCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 2002; 45:851-63. [PMID: 12139629 DOI: 10.1046/j.1365-2958.2002.03064.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The double-stranded (ds)DNA virus phiCh1 infects the haloalkaliphilic archaeon Natrialba magadii. The complete DNA sequence of 58 498 bp of the temperate virus was established, and the probable functions of 21 of 98 phiCh1-encoded open reading frames (ORFs) have been assigned. This knowledge has been used to propose functional modules each required for specific functions during virus development. The phiCh1 DNA is terminally redundant and circularly permuted and therefore appears to be packaged by the so-called headful mechanism. The presence of ORFs encoding homologues of proteins involved in plasmid replication as well as experimental evidence indicate a plasmid-mediated replication strategy of the virus. Results from nanosequencing of virion components suggest covalent cross-linking of monomers of at least one of the structural proteins during virus maturation. A comparison of the phiCh1 genome with the partly sequenced genome of Halobacterium salinarum virus phiH revealed a close relationship between the two viruses, although their host organisms live in distinct environments with respect to the different pH values required for growth.
Collapse
Affiliation(s)
- R Klein
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J Mol Biol 2001; 309:347-60. [PMID: 11371158 DOI: 10.1006/jmbi.2001.4669] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We mapped transcription start sites for ten unrelated protein-encoding Pyrobaculum aerophilum genes by primer extension and S(1) nuclease mapping. All of the mapped transcripts start at the computationally predicted translation start codons, two of which were supported by N-terminal protein sequencing. A whole genome computational analysis of the regions from -50 to +50 nt around the predicted translation starts codons revealed a clear upstream pattern matching the consensus sequence of the archaeal TATA box located unusually close to the translation starts. For genes with the TATA boxes that best matched the consensus sequence, the distance between the TATA box and the translation start codon appears to be shorter than 30 nt. Two other promoter elements distinguished were also found unusually close to the translation start codons: a transcription initiator element with significant elevation of C and T frequencies at the -1 position and a BRE element with more frequent A bases at position -29 to -32 (counting from the translation start site). We also show that one of the mapped genes is transcribed as the first gene of an operon. For a set of genes likely to be internal in operons the upstream signal extracted by computer analysis was a Shine-Dalgarno pattern matching the complementary sequence of P. aerophilum 16 S rRNA. Together these results suggest that the translation of proteins encoded by single genes or genes that are first in operons in the hyperthermophilic crenarchaeon P. aerophilum proceeds mostly, if not exclusively, through leaderless transcripts. Internal genes in operons are likely to undergo translation via a mechanism that is facilitated by ribosome binding to the Shine-Dalgarno sequence.
Collapse
Affiliation(s)
- M M Slupska
- Department of Microbiology, Molecular Biology Institute, University of Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ho KC, Tsai CC, Chung TL. Organization of ribosomal RNA genes from a Loofah witches' broom phytoplasma. DNA Cell Biol 2001; 20:115-22. [PMID: 11244569 DOI: 10.1089/104454901750070328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using the technique of integrative mapping with three vectors carrying chromosomal rDNA sequences, one of two rRNA operons of loofah witches' broom (LfWB) phytoplasma was constructed. This is the first complete rRNA operon of a phytoplasma to be reported. The operon has a context of 5'-16S-23S-5S-3' with a tRNA(Ile) gene in the ITS and tRNA(Val) and tRNA(Asn) genes downstream from the 5S rRNA gene. Although the other operon has not been cloned, the DNA sequence of a PCR-amplified product shows that it has no tRNA(Ile) gene in the ITS region. The complete nucleotide sequences of 16S, 23S, and 5S rDNA are 1538, 2864, and 113 bp, respectively. Five -10-like sequences, but no -35 sequences, were found within a 494-bp leader region. There was a TG dinucleotide two nucleotides upstream from each -10-like sequence. The existence of a TG dinucleotide at this position has been reported to enhance the efficiency of a promoter without a -35 region. The regions immediately flanking the 5' and 3' ends of 16S and 23S rDNA can form long basepaired stems that contain sites for processing by RNase III. No obvious sequence for a rho-dependent or rho-independent termination site was found downstream from the tRNA(Asn) gene. The transcription may stop within a pyrimidine-rich region, as has been reported for several polypeptide-encoding genes and rRNA operons of archaeobacteria. The presence of the tRNA genes downstream from the 5S rRNA gene in the rRNA operon of LfWB phytoplasma further supports the hypothesis that phytoplasmas are phylogenetically closer to acholeplasmas than to mycoplasmas. The phylogenetic relatedness of LfWB phytoplasma to other phytoplasmas is discussed on the basis of the nucleotide sequence of rRNA genes and ITS.
Collapse
MESH Headings
- 3' Untranslated Regions/analysis
- 5' Untranslated Regions/analysis
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Ribosomal Spacer/analysis
- Gene Dosage
- Gene Order
- Genes, Bacterial
- Molecular Sequence Data
- Mycoplasma/genetics
- Operon
- Plants/microbiology
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/isolation & purification
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/isolation & purification
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- K C Ho
- Department of Botany, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
40
|
Enoru-Eta J, Gigot D, Thia-Toong TL, Glansdorff N, Charlier D. Purification and characterization of Sa-lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the bacterial global transcriptional regulator Lrp. J Bacteriol 2000; 182:3661-72. [PMID: 10850980 PMCID: PMC94536 DOI: 10.1128/jb.182.13.3661-3672.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea, constituting the third primary domain of life, harbor a basal transcription apparatus of the eukaryotic type, whereas curiously, a large fraction of the potential transcription regulation factors appear to be of the bacterial type. To date, little information is available on these predicted regulators and on the intriguing interplay that necessarily has to occur with the transcription machinery. Here, we focus on Sa-lrp of the extremely thermoacidophilic crenarchaeote Sulfolobus acidocaldarius, encoding an archaeal homologue of the Escherichia coli leucine-responsive regulatory protein Lrp, a global transcriptional regulator and genome organizer. Sa-lrp was shown to produce a monocistronic mRNA that was more abundant in the stationary-growth phase and produced in smaller amounts in complex medium, this down regulation being leucine independent. We report on Sa-Lrp protein purification from S. acidocaldarius and from recombinant E. coli, both identified by N-terminal amino acid sequence determination. Recombinant Sa-Lrp was shown to be homotetrameric and to bind to its own control region; this binding proved to be leucine independent and was stimulated at high temperatures. Interference binding experiments suggested an important role for minor groove recognition in the Sa-Lrp-DNA complex formation, and mutant analysis indicated the importance for DNA binding of the potential helix-turn-helix motif present at the N terminus of Sa-Lrp. The DNA-binding capacity of purified Sa-Lrp was found to be more resistant to irreversible heat inactivation in the presence of L-leucine, suggesting a potential physiological role of the amino acid as a cofactor.
Collapse
Affiliation(s)
- J Enoru-Eta
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, and Department of Microbiology, The Flanders Interuniversity Institute for Biotechnology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
41
|
Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson JK, Klenk HP, Nelson KE, Fraser CM. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 2000; 267:252-66. [PMID: 10662621 DOI: 10.1006/viro.1999.0105] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel lipothrixvirus, SIFV, of the crenarchaeotal archaeon Sulfolobus islandicus. SIFV (S. islandicus filamentous virus) has a linear virion with a linear double-stranded DNA genome. These two features coincide in several crenarchaeotal but not in any other viruses. The SIFV core is formed by a zipper-like array of DNA-associated protein subunits and is covered by a lipid envelope containing host lipids. We sequenced approximately 96% of the virus genome excepting the DNA termini, which were modified in an unusual, yet uncharacterized, manner. Both, the 5' and the 3' DNA termini were insensitive to enzymatic degradation and labelling. Two open reading frames (ORFs) of the SIFV genome are likely to encode helicases and resemble uncharacterized ORFs from other archaea in sequence. Three ORFs showed sequence similarity with each other and each contained a glycosyl transferase motif. Another ORF of the SIFV genome showed significant sequence similarity to the ORF a291 from the well characterized, spindle-shaped Sulfolobus virus SSV1. Due to its structure, SIFV is classified as a lipothrixvirus.
Collapse
Affiliation(s)
- H P Arnold
- Max-Planck-Institut für Biochemie, Martinsried, 82152, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arnold HP, She Q, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson JK, Garrett R, Zillig W. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 1999; 34:217-26. [PMID: 10564466 DOI: 10.1046/j.1365-2958.1999.01573.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new Sulfolobus islandicus strain, REY15/4, harboured both a novel fusellovirus, SSV2, and a small plasmid, pSSVx. The plasmid spread in S. solfataricus P1 together with the virus after infection with either the supernatant of a culture of REY15/4 or purified virus. Spreading of the plasmid required co-transfection with either SSV2 or the related SSV1 as helpers. Virus purified from REY15/4 constituted a mixture of two sizes of particles, one with the dimensions of a normal fusellovirus and the other smaller. Cloned SSV2 produced only the larger particles and only SSV2 DNA, indicating that the smaller particles contained pSSVx packaged into capsids made up of SSV2 components. The 5.7 kb genome of pSSVx revealed regions of high sequence similarity to the cryptic Sulfolobales plasmids pRN1, pRN2 and pDL10. Thus, pSSVx belongs to the family of pRN plasmids that share a highly conserved region, which probably constitutes the minimal replicon. They also contain a variable region showing no sequence similarity. In pSSVx, this region contains three open reading frames (ORFs), two of which are juxtapositioned and show high sequence similarity to a tandem of ORFs in fusellovirus genomes. Neither pRN1 nor pRN2, which lack this tandem, spread in the presence of the fuselloviruses, which implies that the sequences of these ORFs enable pSSVx to use the packaging system of the viral helpers for spreading.
Collapse
Affiliation(s)
- H P Arnold
- Max Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Antoine E, Rolland JL, Raffin JP, Dietrich J. Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Characterization and comparison of the native and the recombinant enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:880-9. [PMID: 10491136 DOI: 10.1046/j.1432-1327.1999.00685.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A NADP-dependent group III alcohol dehydrogenase (ADH) was purified from the hyperthermophilic strictly anaerobic archaeon Thermococcus hydrothermalis, which grows at an optimum temperature of 85 degrees C and an optimum pH of 6. The gene encoding this enzyme was cloned, sequenced, and over-expressed in Escherichia coli. The recombinant enzyme was purified, characterized and compared with the native form of the enzyme. The enzyme structure is pH-dependent, being a 197-kDa tetramer (subunit of 45 kDa) at pH 10.5, the pH optimum for alcohol oxidation, and a 80.5-kDa dimer at pH 7.5, the pH optimum for aldehyde reduction. The kinetic parameters of the enzyme show that the affinity of the enzyme is greater for the aldehyde substrate and NADPH cofactor, suggesting that the dimeric form of the enzyme is probably the active form in vivo. The ADH of T. hydrothermalis oxidizes a series of primary aliphatic and aromatic alcohols preferentially from C2 to C8 but is also active towards methanol and glycerol and stereospecific for monoterpenes. T. hydrothermalis ADH is the first Thermococcale ADH to be cloned and overproduced in a mesophilic heterologous expression system, and the recombinant and the native forms have identical main characteristics.
Collapse
Affiliation(s)
- E Antoine
- Laboratoire de Biotechnologie des Microorganisms Hydrothermaux, Centre IFREMER de Brest, France.
| | | | | | | |
Collapse
|
44
|
Cosper NJ, Stålhandske CM, Iwasaki H, Oshima T, Scott RA, Iwasaki T. Structural conservation of the isolated zinc site in archaeal zinc-containing ferredoxins as revealed by x-ray absorption spectroscopic analysis and its evolutionary implications. J Biol Chem 1999; 274:23160-8. [PMID: 10438486 DOI: 10.1074/jbc.274.33.23160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zfx gene encoding a zinc-containing ferredoxin from Thermoplasma acidophilum strain HO-62 was cloned and sequenced. It is located upstream of two genes encoding an archaeal homolog of nascent polypeptide-associated complex alpha subunit and a tRNA nucleotidyltransferase. This gene organization is not conserved in several euryarchaeoteal genomes. The multiple sequence alignments of the zfx gene product suggest significant sequence similarity of the ferredoxin core fold to that of a low potential 8Fe-containing dicluster ferredoxin without a zinc center. The tightly bound zinc site of zinc-containing ferredoxins from two phylogenetically distantly related Archaea, T. acidophilum HO-62 and Sulfolobus sp. strain 7, was further investigated by x-ray absorption spectroscopy. The zinc K-edge x-ray absorption spectra of both archaeal ferredoxins are strikingly similar, demonstrating that the same zinc site is found in T. acidophilum ferredoxin as in Sulfolobus sp. ferredoxin, which suggests the structural conservation of isolated zinc binding sites among archaeal zinc-containing ferredoxins. The sequence and spectroscopic data provide the common structural features of the archaeal zinc-containing ferredoxin family.
Collapse
Affiliation(s)
- N J Cosper
- Center for Metalloenzyme Studies and Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA
| | | | | | | | | | | |
Collapse
|
45
|
Stedman KM, Schleper C, Rumpf E, Zillig W. Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 1999; 152:1397-405. [PMID: 10430570 PMCID: PMC1460719 DOI: 10.1093/genetics/152.4.1397] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Directed open reading frame (ORF) disruption and a serial selection technique in Escherichia coli and the extremely thermophilic archaeon Sulfolobus solfataricus allowed the identification of otherwise cryptic crucial and noncrucial viral open reading frames in the genome of the archaeal virus SSV1. It showed that the 15. 5-kbp viral genome can incorporate a 2.96-kbp insertion without loss of viral function and package this DNA properly into infectious virus particles. The selection technique, based on the preferential binding of ethidium bromide to relaxed DNA and the resulting inhibition of endonuclease cleavage to generate a pool of mostly singly cut molecules, should be generally applicable. A fully functional viral shuttle vector for S. solfataricus and E. coli was made. This vector spreads efficiently through infected cultures of S. solfataricus, its replication is induced by UV irradiation, it forms infectious virus particles, and it is stable at high copy number in both S. solfataricus and E. coli. The classification of otherwise unidentifiable ORFs in SSV1 facilitates genetic analysis of this virus, and the shuttle vector should be useful for the development of genetic systems for Crenarchaeota.
Collapse
Affiliation(s)
- K M Stedman
- Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
46
|
Yin Z, Purschke WG, Schäfer G, Schmidt CL. The glutamine synthetase from the hyperthermoacidophilic crenarcheon Sulfolobus acidocaldarius: isolation, characterization and sequencing of the gene. Biol Chem 1998; 379:1349-54. [PMID: 9865608 DOI: 10.1515/bchm.1998.379.11.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glutamine synthetase (EC 6.3.1.2) from the hyperthermoacidophilic crenarcheon Sulfolobus acidocaldarius (DSM 639) was purified to homogeneity, characterized and the glnA gene isolated and sequenced. The amount of enzyme present in the cytosolic fraction from Sulfolobus cells showed a strong variation depending on the carbon and nitrogen sources in the growth medium. The enzyme was found to be a dodecameric protein composed of identical subunits of 52 kDa. It was stable at 78 degrees C in the presence of Mn2+ ions. The catalytic activity was regulated solely by feed-back inhibition through L-alanine and glycine and not by adenylylation. No evidence for the presence of isoenzymes was found. Sequence comparison showed that the Sulfolobus protein is most closely related to the glutamine synthetases of the I-beta type despite its regulatory properties and the finding that the known euryarcheal glutamine synthetase sequences belong to the I-alpha subgroup of these enzymes. Our phylogenetic analysis suggests that the gene duplication leading to the development of the I-alpha and I-beta enzymes preceded the separation of the archea and the bacteria.
Collapse
Affiliation(s)
- Z Yin
- Institut für Biochemie, Medizinische Universität zu Lübeck, Germany
| | | | | | | |
Collapse
|
47
|
Krüger K, Hermann T, Armbruster V, Pfeifer F. The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol 1998; 279:761-71. [PMID: 9642059 DOI: 10.1006/jmbi.1998.1795] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The GvpE protein involved in the regulation of gas vesicles synthesis in halophilic archaea has been identified as the transcriptional activator for the promoter located upstream of the gvpA gene encoding the major gas vesicle structural protein GvpA. A closer inspection of the GvpE protein sequence revealed that GvpE resembles basic leucine-zipper proteins typically involved in the gene regulation of eukarya. A molecular modelling study of the C-terminal part implied a cluster of basic amino acid residues constituting the DNA-binding site (DNAB) followed by an amphiphilic helix, suitable for the formation of a leucine-zipper structure within a GvpE dimer. The model of a GvpE dimer docked onto DNA indicated that the side-chains of the basic residues could perfectly interact with the negatively charged phosphate groups of the DNA backbone. Substitution of three basic amino acid residues of this putative DNAB by alanine and/or glutamate generated mutated GvpE proteins. None of these was able to activate the c-gvpA promoter in vivo, indicating that these basic residues are required for GvpE activity. This identification of an archaeal gene regulator displaying similarity to eukaryal regulatory proteins implies that the basic transcription machinery of eukarya and archaea are closely related, and that the regulatory proteins have evolved according to common principles.
Collapse
Affiliation(s)
- K Krüger
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt, D-64287, Germany
| | | | | | | |
Collapse
|
48
|
Prangishvili D, Klenk HP, Jakobs G, Schmiechen A, Hanselmann C, Holz I, Zillig W. Biochemical and phylogenetic characterization of the dUTPase from the archaeal virus SIRV. J Biol Chem 1998; 273:6024-9. [PMID: 9497317 DOI: 10.1074/jbc.273.11.6024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The derived amino acid sequence from a 474-base pair open reading frame in the genome of the Sulfolobus islandicus rod-shaped virus SIRV shows striking similarity to bacterial dCTP deaminases and to dUTPases from eukaryotes, bacteria, Poxviridae, and Retroviridae. The putative gene was expressed in Escherichia coli, and dUTPase activity of the recombinant enzyme was demonstrated by hydrolysis of dUTP to dUMP. Deamination of dCTP by the enzyme was not detected. Phylogenetic analysis based on amino acid sequences of the characterized enzyme and its homologues showed that the dUTPase-encoding dut genes and the dCTP deaminase-encoding dcd genes constitute a paralogous gene family. This report is the first identification and functional characterization of an archaeal dUTPase and the first phylogeny derived for the dcd-dut gene family.
Collapse
Affiliation(s)
- D Prangishvili
- Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Federal Republic of Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Durbecq V, Legrain C, Roovers M, Piérard A, Glansdorff N. The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc Natl Acad Sci U S A 1997; 94:12803-8. [PMID: 9371756 PMCID: PMC24219 DOI: 10.1073/pnas.94.24.12803] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbial carbamoyl phosphate synthetases (CPS) use glutamine as nitrogen donor and are composed of two subunits (or domains), one exhibiting glutaminase activity, the other able to synthesize carbamoyl phosphate (CP) from bicarbonate, ATP, and ammonia. The pseudodimeric organization of this synthetase suggested that it has evolved by duplication of a smaller kinase, possibly a carbamate kinase (CK). In contrast to other prokaryotes the hyperthermophilic archaeon Pyrococcus furiosus was found to synthesize CP by using ammonia and not glutamine. We have purified the cognate enzyme and found it to be a dimer of two identical subunits of Mr 32,000. Its thermostability is considerable, 50% activity being retained after 1 h at 100 degrees C or 3 h at 95 degrees C. The corresponding gene was cloned by PCR and found to present about 50% amino acid identity with known CKs. The stoichiometry of the reaction (two ATP consumed per CP synthesized) and the ability of the enzyme to catalyze at high rate a bicarbonate-dependent ATPase reaction however clearly distinguish P. furiosus CPS from ordinary CKs. Thus the CPS of P. furiosus could represent a primeval step in the evolution of CPS from CK. Our results suggest that the first event in this evolution was the emergence of a primeval synthetase composed of subunits able to synthesize both carboxyphosphate and CP; this step would have preceded the duplication assumed to have generated the two subdomains of modern CPSs. The gene coding for this CK-like CPS was called cpkA.
Collapse
Affiliation(s)
- V Durbecq
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
50
|
Dong G, Vieille C, Savchenko A, Zeikus JG. Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 1997; 63:3569-76. [PMID: 9293008 PMCID: PMC168662 DOI: 10.1128/aem.63.9.3569-3576.1997] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).
Collapse
Affiliation(s)
- G Dong
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|