1
|
Phukela B, Leonard H, Sapir Y. In silico analysis of R2R3-MYB transcription factors in the basal eudicot model, Aquilegia coerulea. 3 Biotech 2024; 14:284. [PMID: 39479299 PMCID: PMC11522220 DOI: 10.1007/s13205-024-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
R2R3-MYBs are an important group of transcription factors that regulate crucial developmental processes across the plant kingdom; yet no comprehensive analysis of the R2R3-MYBs in the early-diverging eudicot clade of Ranunculaceae has been conducted so far. In the present study, Aquilegia coerulea is chosen to understand the extent of conservation and divergence of R2R3-MYBs as a representative of the family by analysing the genomic distribution, organization, gene structure, physiochemical properties, protein architecture, evolution and possible mode of expansion. Genome-wide analysis showed the presence of 82 putative homologues classified into 21 subgroups, based on phylogenetic analysis of full-length protein sequences. The domain has remained largely conserved across all homologues with few differences from the characterized Arabidopsis thaliana R2R3-MYBs. The topology of the phylogenetic tree remains the same when full-length protein sequences are used, indicating that the evolution of R2R3-MYBs is driven by the domain region only. This is supported by the presence of similar structures of exon-intron and conserved motifs within the same subgroup. Furthermore, comparisons of the AqcoeR2R3-MYB members with monocots and core-eudicots revealed the evolutionary expansion of a few functional clades, such as A. thaliana R2R3-MYB subgroup 6 (SG6), the upstream regulatory factors of floral pigment biosynthesis and floral color. The reconstructed evolutionary history of SG6-like genes across angiosperms highlights the occurrence of independent duplication events in the genus Aquilegia. AqcoeR2R3-MYB genes are present in all seven chromosomes of A. coerulea, most of which result from local and segmental duplications. Selection analysis of these duplicated gene pairs indicates purifying selection except one, and the physiochemical analyses of R2R3-MYBs reveal differences among the MYBs signifying their functional diversification. This study paves the way for further investigation of paralogous copies and their probable role in the evolution of different floral traits in A. coerulea. It lays the foundation for functional genomic studies of R2R3-MYBs in the basal eudicots and facilitates comparative studies among angiosperms. The work also provides a framework for deciphering novel genetic regulatory pathways that govern the diversity of floral morphology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04119-y.
Collapse
Affiliation(s)
- Banisha Phukela
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Leonard
- Department of Botany, Miami University, Oxford, OH 45056 USA
| | - Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Weng J, Yang S, Shen J, Liu H, Xu Y, Hao D, Wang S. Molecular dynamics simulation reveals DNA-specific recognition mechanism via c-Myb in pseudo-palindromic consensus of mim-1 promoter. J Zhejiang Univ Sci B 2023; 24:883-895. [PMID: 37752090 PMCID: PMC10522569 DOI: 10.1631/jzus.b2200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 09/28/2023]
Abstract
This study aims to gain insight into the DNA-specific recognition mechanism of c-Myb transcription factor during the regulation of cell early differentiation and proliferation. Therefore, we chose the chicken myeloid gene, mitochondrial import protein 1 (mim-1), as a target to study the binding specificity between potential dual-Myb-binding sites. The c-Myb-binding site in mim-1 is a pseudo-palindromic sequence AACGGTT, which contains two AACNG consensuses. Simulation studies in different biological scenarios revealed that c-Myb binding with mim-1 in the forward strand (complex F) ismore stable than that inthereverse strand (complex R). The principal component analysis (PCA) dynamics trajectory analyses suggested an opening motion of the recognition helices of R2 and R3 (R2R3), resulting in the dissociation of DNA from c-Myb in complex R at 330 K, triggered by the reduced electrostatic potential on the surface of R2R3. Furthermore, the DNA confirmation and hydrogen-bond interaction analyses indicated that the major groove width of DNA increased in complex R, which affected on the hydrogen-bond formation ability between R2R3 and DNA, and directly resulted in the dissociation of DNA from R2R3. The steered molecular dynamics (SMD) simulation studies also suggested that the electrostatic potential, major groove width, and hydrogen bonds made major contribution to the DNA-specific recognition. In vitro trials confirmed the simulation results that c-Myb specifically bound to mim-1 in the forward strand. This study indicates that the three-dimensional (3D) structure features play an important role in the DNA-specific recognition mechanism by c-Myb besides the AACNG consensuses, which is beneficial to understanding the cell early differentiation and proliferation regulated by c-Myb, as well as the prediction of novel c-Myb-binding motifs in tumorigenesis.
Collapse
Affiliation(s)
- Jinru Weng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130021, China
| | - Jinkang Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun 130033, China.
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
3
|
Sengoku T, Shiina M, Suzuki K, Hamada K, Sato K, Uchiyama A, Kobayashi S, Oguni A, Itaya H, Kasahara K, Moriwaki H, Watanabe C, Honma T, Okada C, Baba S, Ohta T, Motohashi H, Yamamoto M, Ogata K. Structural basis of transcription regulation by CNC family transcription factor, Nrf2. Nucleic Acids Res 2022; 50:12543-12557. [PMID: 36454022 PMCID: PMC9756947 DOI: 10.1093/nar/gkac1102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022] Open
Abstract
Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.
Collapse
Affiliation(s)
- Toru Sengoku
- To whom correspondence should be addressed. Tel: +81 45 787 2590; Fax: +81 45 784 4530;
| | | | - Kae Suzuki
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Ko Sato
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akiko Uchiyama
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Asako Oguni
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hayato Itaya
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hirotomo Moriwaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan,JST PRESTO, Yokohama 230-0045, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Chikako Okada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shiho Baba
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tsutomu Ohta
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu 431-2102, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhiro Ogata
- Correspondence may also be addressed to Kazuhiro Ogata. Tel: +81 45 787 2590; Fax: +81 45 784 4530;
| |
Collapse
|
4
|
AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. Int J Mol Sci 2020; 21:ijms21165727. [PMID: 32785037 PMCID: PMC7460842 DOI: 10.3390/ijms21165727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.
Collapse
|
5
|
Wang G, Tian Y, Hu Q, Xiao X, Chen S. PML/RARa blocks the differentiation and promotes the proliferation of acute promyelocytic leukemia through activating MYB expression by transcriptional and epigenetic regulation mechanisms. J Cell Biochem 2019; 120:1210-1220. [PMID: 30335887 DOI: 10.1002/jcb.27077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
The promyelocytic leukemia (PML)/retinoic acid receptor-alpha (RARα) onco-fusion protein that is generated from t(15;17) chromosome translocation is crucial for the leukemogenesis of acute promyelocytic leukemia (APL) and is well documented as a transcriptional repressor. To understand the relationship between PML/RARα and the oncogene in the development of APL, we investigate the regulation mechanism of PML/RARα to MYB proto-oncogene and the role of this regulation on the proliferation and differentiation of APL cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays show that MYB expression was significantly higher in PML/RARα positive cell lines. Microarray data verify that the MYB expression was significantly higher in APL patient samples than in normal promyelocyte samples. Further expression analysis from RT-qPCR and microarray data verifies that the expression of MYB is upregulated by PML/RARα. Transcriptional factor binding analysis shows that MYB is directly bound by PML/RARα and its cofactors. Luciferase assays show that PML/RARα transactivated MYB promoter activity through the RARα binding site and the coexistence of CCAAT enhancer binding protein ε. We also find that PML/RARα increases the acetylation level of the promoter region of MYB. Further evidence demonstrates that PML/RARα regulates MYB expression through long-range interaction. Functionally, PML/RARα increases the cell proliferation and blocks the differentiation through activating MYB expression. Collectively, this study uncovers a novel mechanism of PML/RARα-mediated transcriptional activation and enriches our knowledge of the onco-fusion protein-mediated transcription activation.
Collapse
Affiliation(s)
- Genjie Wang
- Department of Hematology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Ying Tian
- Department of Hematology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Qingzhu Hu
- Department of Hematology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Xichun Xiao
- Department of Hematology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Shuxia Chen
- Department of Hematology, The First People's Hospital of Shangqiu, Shangqiu, China
| |
Collapse
|
6
|
Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex. Proc Natl Acad Sci U S A 2011; 108:17438-43. [PMID: 21969598 DOI: 10.1073/pnas.1111855108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics.
Collapse
|
7
|
c-myb has a character of oxidative stress resistance in aged human diploid fibroblasts: regulates SAPK/JNK and Hsp60 pathway consequently. Biogerontology 2009; 11:267-74. [PMID: 19707884 DOI: 10.1007/s10522-009-9244-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/13/2009] [Indexed: 01/26/2023]
Abstract
This study examined whether c-myb acts as a survival molecule in aged cells. A previous in vitro ageing model suggested that aged cells have a higher cell capacity for survival after exposure to oxidative stress, which involves blockage of the translocation of Hsp60 from the mitochondria to the cytoplasm followed by SAPK/JNK inactivation, than young cells. In human diploid fibroblasts (HDFs), c-myb expression increased gradually with ageing, and this increase had a significant influence on the cell survival capacity after exposure to oxidative stress. To clarify the role of c-myb in oxidative stress, young cells under 21 passages, which lacked c-myb expression, were transfected with adenovirus-mediated c-myb for express c-myb. These c-myb-over-expressed young cells showed increased cell viability upon exposure to oxidative stress to a similar extent to that of the aged cells. In addition, these c-myb-over-expressed young cells did not exhibit SAPK/JNK activation, Hsp60 displacement and cytochrome C release, as was observed in aged cells. The aged cells that had c-myb suppressed using siRNA c-myb showed reduced cell viability and increased apoptosis in a manner to that observed in young cells. From this study, c-myb blocked SAPK/JNK and Hsp60 translocation upon exposure to oxidative stress. This result suggests that c-myb might act as a modulator of cell survival in the ageing process by suppressing apoptosis in aged cells.
Collapse
|
8
|
Swindell WR. Genes regulated by caloric restriction have unique roles within transcriptional networks. Mech Ageing Dev 2008; 129:580-92. [PMID: 18634819 DOI: 10.1016/j.mad.2008.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/09/2008] [Accepted: 06/15/2008] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) has received much interest as an intervention that delays age-related disease and increases lifespan. Whole-genome microarrays have been used to identify specific genes underlying these effects, and in mice, this has led to the identification of genes with expression responses to CR that are shared across multiple tissue types. Such CR-regulated genes represent strong candidates for future investigation, but have been understood only as a list, without regard to their broader role within transcriptional networks. In this study, co-expression and network properties of CR-regulated genes were investigated using data generated by more than 600 Affymetrix microarrays. This analysis identified groups of co-expressed genes and regulatory factors associated with the mammalian CR response, and uncovered surprising network properties of CR-regulated genes. Genes downregulated by CR were highly connected and located in dense network regions. In contrast, CR-upregulated genes were weakly connected and positioned in sparse network regions. Some network properties were mirrored by CR-regulated genes from invertebrate models, suggesting an evolutionary basis for the observed patterns. These findings contribute to a systems-level picture of how CR influences transcription within mammalian cells, and point towards a comprehensive understanding of CR in terms of its influence on biological networks.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
9
|
Abstract
The v-Myb oncogene causes monoblastic leukemia and transforms only myelomonocytic cells in culture. The v-Myb protein is nuclear and binds to specific DNA sequences. To identify genes regulated by v-Myb, we utilized primary cells transformed by a retrovirus encoding a v-Myb-estrogen receptor (ER) fusion protein. The Ets-2 gene was not expressed in v-Myb-ER transformed cells in the presence of estradiol, but was expressed within 4 h after estradiol withdrawal. The expression of Ets-2 also increased dramatically following phorbol ester-induced differentiation of the v-Myb-transformed BM2 cell line. Conversely, CRYP-alpha, encoding a transmembrane tyrosine phosphatase, was expressed in the presence but not the absence of estradiol in v-Myb-ER transformed cells. CRYP-alpha was downregulated during the phorbol ester-induced differentiation of BM2 cells. Although LIM-3 expression was estradiol-inducible in v-Myb-ER transformed monoblasts, LIM-3 was expressed neither in primary yolk sac cells transformed by unfused v-Myb nor in BM2 cells. We conclude that although v-Myb has been intensively studied as a transcriptional activator, v-Myb can repress biologically relevant genes such as Ets-2, which promotes macrophage differentiation. In addition, we have shown that some genes that are regulated by a v-Myb-ER fusion protein may not be relevant to the biological function of the unfused v-Myb protein.
Collapse
Affiliation(s)
- D-M Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | | | | | |
Collapse
|
10
|
Lutwyche JK, Keough RA, Hunter J, Coles LS, Gonda TJ. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein. Biochem Biophys Res Commun 2006; 344:1300-7. [PMID: 16650815 DOI: 10.1016/j.bbrc.2006.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 04/12/2006] [Indexed: 11/26/2022]
Abstract
Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor.
Collapse
Affiliation(s)
- Jodi K Lutwyche
- Division of Human Immunology and Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Robert G Ramsay
- Differentiation and Transcription Group, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Victoria, and the University of Melbourne, Department of Pathology, Parkville, Australia.
| |
Collapse
|
12
|
Bartley PA, Keough RA, Lutwyche JK, Gonda TJ. Regulation of the gene encoding glutathione S-transferase M1 (GSTM1) by the Myb oncoprotein. Oncogene 2003; 22:7570-5. [PMID: 14576818 DOI: 10.1038/sj.onc.1207136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of Myb 'target' genes will not only aid in the understanding of how overexpression of Myb, or expression of activated forms of Myb, leads to cellular transformation but will also shed light on its role in normal cells. Using a combination of an estrogen-regulated Myb-transformed cell line (ERMYB) and PCR-based subtractive hybridization, we have identified the gene (GSTM1) encoding the detoxification enzyme glutathione S-transferase M1 as being transcriptionally upregulated by Myb. Functional analysis of the GSTM1 promoter using reporter assays indicated that both the DNA binding and transactivation domains of Myb were required for transcriptional activation. Mutational ana-lysis of consensus Myb-binding sites (MBS) in the promoter and electrophoretic mobility gel shift analysis indicated that one of the three potential MBS can bind Myb protein, and is the primary site involved in the regulation of this promoter by Myb.
Collapse
Affiliation(s)
- Paul A Bartley
- Hanson Institute and Division of Human Immunology, Institute of Medical and Veterinary Science, Adelaide 5000, Australia
| | | | | | | |
Collapse
|
13
|
Kattmann D, Klempnauer KH. Identification and characterization of the Myb-inducible promoter of the chicken adenosine receptor 2B gene. Oncogene 2002; 21:4663-72. [PMID: 12096342 DOI: 10.1038/sj.onc.1205579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Revised: 04/09/2002] [Accepted: 04/15/2002] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown that the retroviral oncogene v-myb encodes a transcription factor (v-Myb) which interferes with the differentiation program of myelomonocytic cells. It is generally thought that v-Myb deregulates the expression of specific target genes and thereby causes transformation of these cells. By using an estrogen-inducible version of v-Myb we have previously identified the gene for the chicken A2B adenosine receptor (A2B-AR), a member of the seven-pass transmembrane receptor superfamily, as a bona fide target gene for v-Myb. The chicken A2B-AR gene is expressed in v-myb transformed myeloblasts as well as in c-myb expressing erythroblasts, offering the opportunity to study how Myb transcription factors activate a target gene in two different hematopoietic lineages. Here, we report the characterization of the promoter of the A2B-AR gene. We show that the A2B-AR promoter region contains an exceptionally large number of Myb binding sites, many of which contribute to the Myb-inducibility of the promoter. The same sites were required for promoter activity in myelomonocytic and erythroid cells. In contrast to the promoters of other Myb target genes the A2B-AR promoter was not activated synergistically by Myb and other lineage-specific transcription factors that have been identified as Myb cooperation partners before. Taken together, our data suggest that the activation of the A2B-AR promoter by Myb depends on the simultaneous binding of a large number of Myb molecules.
Collapse
Affiliation(s)
- Dana Kattmann
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | |
Collapse
|
14
|
Schlichter U, Kattmann D, Appl H, Miethe J, Brehmer-Fastnacht A, Klempnauer KH. Identification of the myb-inducible promoter of the chicken Pdcd4 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:99-104. [PMID: 11470166 DOI: 10.1016/s0167-4781(01)00252-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which disrupts the myelomonocytic differentiation program and transforms myelomonocytic cells in vivo and in vitro. It is thought that v-Myb exerts its biological effects by deregulating the expression of specific target genes, most of which are still unknown. c-myb, the cellular progenitor of v-myb, is expressed in all immature hematopoietic cells and is presumed to regulate the expression of genes that are essential for the development of the hematopoietic system. Recently, we have identified the chicken Pdcd4 gene as a novel v-myb target gene. Pdcd4 has originally been identified in a screen for genes upregulated in apoptotic cells and, more recently, has been implicated in tumor progression. As a myb-regulated gene Pdcd4 is of interest because unlike most other myb target genes it is expressed in a broad spectrum of hematopoietic cells. As a first step to study the regulation of Pdcd4 expression in more detail, we here report the identification and preliminary characterization of the myb-inducible promoter of the Pdcd4 gene.
Collapse
Affiliation(s)
- U Schlichter
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Cures A, House C, Kanei-Ishii C, Kemp B, Ramsay RG. Constitutive c-Myb amino-terminal phosphorylation and DNA binding activity uncoupled during entry and passage through the cell cycle. Oncogene 2001; 20:1784-92. [PMID: 11313925 DOI: 10.1038/sj.onc.1204345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 12/28/2022]
Abstract
The c-myb gene encodes a transcription factor that is central to hematopoietic cell growth. Phosphorylation of c-Myb by casein kinase 2 (CK2) at serines 11 and 12 has been variously implicated in the regulation of DNA binding. However, it is unclear when c-Myb phosphorylation at serines 11 and 12 occurs during the cell cycle and how this is regulated. We generated specific antisera that recognize phosphoserines 11 and 12 of c-Myb. C-Myb protein levels, extent of CK2 phosphorylation and DNA binding were then monitored following mitogenic stimulus and passage through the cell cycle in normal peripheral T-cells and the T leukemia cell line CCRF-CEM. We found that endogenous c-Myb is constitutively phosphorylated at serines 11 and 12. The amount of phosphorylated c-Myb correlates with DNA binding activity in cycling CEM cells but not upon entry of T-cells into the cell cycle. Exogenous expression of c-Myb with substitutions of serines 11 and 12 with glutamic acid or alanine had no effect on the transactivation of a c-Myb responsive reporter. These data strongly suggest that c-Myb is constitutively phosphorylated on serines 11 and 12 by CK2 or like activity and is not regulated during the cell cycle.
Collapse
Affiliation(s)
- A Cures
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Vic. Australia
| | | | | | | | | |
Collapse
|
16
|
Schlichter U, Burk O, Worpenberg S, Klempnauer KH. The chicken Pdcd4 gene is regulated by v-Myb. Oncogene 2001; 20:231-9. [PMID: 11313950 DOI: 10.1038/sj.onc.1204071] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Revised: 10/31/2000] [Accepted: 10/31/2000] [Indexed: 11/09/2022]
Abstract
The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which is responsible for the ability of avian myeloblastosis virus (AMV) to transform myelomonocytic cells. v-Myb is thought to disrupt the differentiation of myelomonocytic cells by affecting the expression of specific target genes. To identify such genes we have analysed the gene expression in a myelomonocytic chicken cell line that carries an estrogen inducible version of v-Myb by differential display. Here we describe the identification of the chicken homolog of the mouse Pdcd4 gene as a novel v-Myb target gene. Pdcd4 is also known as MA-3, TIS and H731 and has recently been shown to suppress the transformation of epidermal cells by tumor promoters. Our results provide the first evidence that v-Myb directly regulates the expression of a potential tumor suppressor gene.
Collapse
Affiliation(s)
- U Schlichter
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
17
|
Pongjaroenkit S, Jirajaroenrat K, Boonchauy C, Chanama U, Leetachewa S, Prapanthadara L, Ketterman AJ. Genomic organization and putative promoters of highly conserved glutathione S-transferases originating by alternative splicing in Anopheles dirus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:75-85. [PMID: 11102837 DOI: 10.1016/s0965-1748(00)00107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genomic DNA of a GST class I alternative splicing gene has been characterized from Anopheles dirus, a Thai malaria vector. This gene organization is highly conserved in An. dirus and Anopheles gambiae (aggst1alpha), with >80% nucleotide identity in the coding region. Their gene organization contains six exons for four mature GST transcripts, which share exon 1 and exon 2 but vary between four different exon 3 sequences (exon 3A-3D). The deduced amino acid sequence of the GST transcripts from these two genes also shows very high conservation, with 85-93% identity for each orthologous gene. Two putative promoters and possible regulatory elements were predicted by a combination of the TSSW and MatInspector programs. The Ad214 promoter is proposed to be involved in developmental stage regulation. The Ad2112 promoter would appear to respond to intra- or extracellular stimuli. These two Anopheline species appear to have diverged in the distant past based on gene neighbors and phylogenetic data, yet these GST genes are still conserved. Therefore it is highly probable that this GST gene organization has one or more important roles.
Collapse
Affiliation(s)
- S Pongjaroenkit
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 73170, Nakorn Pathom, Thailand
| | | | | | | | | | | | | |
Collapse
|
18
|
Bies J, Feiková S, Bottaro DP, Wolff L. Hyperphosphorylation and increased proteolytic breakdown of c-Myb induced by the inhibition of Ser/Thr protein phosphatases. Oncogene 2000; 19:2846-54. [PMID: 10851088 DOI: 10.1038/sj.onc.1203613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The c-myb proto-oncogene encodes a nuclear phosphoprotein that plays a crucial role in normal hematopoiesis. It is a short-lived transcription factor rapidly degraded by the 26S proteasome. Although it has been shown that instability determinants reside in its carboxyl terminus, the molecular mechanism of c-Myb degradation is unknown. Here, we report the first evidence that phosphorylation plays a role in targeting the protein to the proteasome. Inhibition of cellular serine/threonine protein phosphatase activity by okadaic acid resulted in hyperphosphorylation of c-Myb and extremely rapid turnover. The hyperphosphorylation resulted in a protein with altered properties that was indicative of conformational changes. Its mobility on gel electrophoresis was altered as well as its recognition by specific monoclonal antibody. The altered hyperphosphorylated protein still bound to DNA with an affinity similar to that of the hypophosphorylated form. Phosphorylation of three previously identified sites, serines 11, 12, and 528, does not appear to be involved in the proposed changes in conformation or stability. However, phosphoamino acid analyses of the hyperphosphorylated form of c-Myb revealed increased c-Myb phosphorylation mainly on threonine residues that correlated with other okadaic acid-induced alterations of c-Myb. These findings indicate that Ser/Thr phosphatases prevent conformational changes that may play an important role in controlled degradation of c-Myb. Oncogene (2000) 19, 2846 - 2854
Collapse
Affiliation(s)
- J Bies
- Laboratory of Molecular Virology, Cancer Research Institute, Slovak Academy of Sciences, 833 92 Bratislava, Slovakia
| | | | | | | |
Collapse
|
19
|
Mink S, Jaswal S, Burk O, Klempnauer KH. The v-Myb oncoprotein activates C/EBPbeta expression by stimulating an autoregulatory loop at the C/EBPbeta promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:175-84. [PMID: 10542314 DOI: 10.1016/s0167-4781(99)00168-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Previous studies have implicated the CCAAT box/enhancer binding protein beta (C/EBPbeta) in the regulation of cell-type specific gene expression in myelomonocytic cells and in the activation of target genes by the transcription factor v-Myb. To better understand the role of C/EBPbeta in myelomonocytic cells we have cloned the chicken C/EBPbeta gene and studied its regulation. The chicken C/EBPbeta promoter contains a number of C/EBP binding sites and is activated by C/EBPbeta, suggesting that the C/EBPbeta gene is autoregulated by its own protein product. Interestingly, the C/EBPbeta promoter is not activated by C/EBPalpha, another C/EBP family member highly expressed in myelomonocytic cells, indicating that the autoregulation is specific for C/EBPbeta. Comparison of different C/EBP inducible promoters shows that the relative transactivation potential of C/EBPalpha and beta is extremely dependent on the promoter context. By using the promoters of the mim-1 and C/EBPbeta genes and by exchanging the DNA-binding domains between C/EBPalpha and beta we show that the observed promoter preferences of C/EBPalpha and beta are not due to differential DNA-binding but instead depend on the transactivation domains of these proteins. The C/EBPbeta promoter also contains several Myb binding motifs, suggesting that the C/EBPbeta gene is also myb-inducible. We show that the C/EBPbeta promoter is activated synergistically by v-Myb and C/EBPbeta and that transcription of the endogenous C/EBPbeta gene is increased by v-Myb. Thus, our results identify the C/EBPbeta gene as a novel v-Myb target gene. Taken together, our data suggest a model for the regulation of C/EBPbeta expression in which v-Myb stimulates the synthesis of C/EBPbeta by enhancing an autoregulatory loop acting on the C/EBPbeta promoter.
Collapse
Affiliation(s)
- S Mink
- Institut für Biochemie, Universität Münster, Wilhelm-Klemm-Str. 2, D-48149, Münster, Germany
| | | | | | | |
Collapse
|
20
|
Burk O, Klempnauer KH. Myb and Ets transcription factors cooperate at the myb-inducible promoter of the tom-1 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:243-52. [PMID: 10524199 DOI: 10.1016/s0167-4781(99)00097-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Transformation of myeloid cells by the retroviral oncogene v-myb is thought to be caused by deregulated expression of specific cellular genes that act as targets of v-Myb in myeloid cells. Recently, we have identified the chicken tom-1 gene as a direct target for v-Myb. tom-1 has two promoters, only one of which (the tom-1A promoter) is activated by v-Myb. Here, we show that v-Myb activates the tom-1A promoter by cooperating with Ets-2, a member of the Ets transcription factor family. Interestingly, we find that the ability of v-Myb to cooperate with Ets proteins differs from that of its non-oncogenic cellular counterpart c-Myb. c-Myb cooperates with Ets-1 and Ets-2, whereas v-Myb only cooperates with Ets-2. Truncation of the N-terminus of c-Myb, which is known to activate the oncogenic potential of c-Myb, specifically abrogates the ability of the protein to cooperate with Ets-1. Our findings, therefore, reveal a novel function for the N-terminus of c-Myb and raise the possibility that oncogenic activation of c-Myb is linked to the loss of cooperation between Myb and c-Ets-1.
Collapse
Affiliation(s)
- O Burk
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | |
Collapse
|
21
|
Affiliation(s)
- B Ganter
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
22
|
Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 1998; 9:1649-60. [PMID: 9658161 PMCID: PMC25402 DOI: 10.1091/mbc.9.7.1649] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell.
Collapse
Affiliation(s)
- S Isenmann
- Division of Human Immunology, Hanson Centre for Cancer Research, Adelaide 5000, South Australia, Australia
| | | | | | | | | |
Collapse
|
23
|
Tavner FJ, Simpson R, Tashiro S, Favier D, Jenkins NA, Gilbert DJ, Copeland NG, Macmillan EM, Lutwyche J, Keough RA, Ishii S, Gonda TJ. Molecular cloning reveals that the p160 Myb-binding protein is a novel, predominantly nucleolar protein which may play a role in transactivation by Myb. Mol Cell Biol 1998; 18:989-1002. [PMID: 9447996 PMCID: PMC108811 DOI: 10.1128/mcb.18.2.989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Collapse
Affiliation(s)
- F J Tavner
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- M K Saville
- Department of Medical Microbiology, Imperial College School of Medicine at St. Mary's, London, United Kingdom
| | | |
Collapse
|
25
|
Hosur RV, Radha PK, Madan A, Padhy LC. Biophysical investigations on the myb-DNA system. Biophys Chem 1997; 68:147-59. [PMID: 9468617 DOI: 10.1016/s0301-4622(97)00026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oncogene product c-myb is a transcriptional modulator and is known to play important roles in cell growth and differentiation. It binds to DNA in a sequence specific manner and its cognate sequence motifs have been detected in the genes of proteins implying its role in a variety of regulatory functions. The protein has a DNA binding domain consisting of three imperfect repeats with highly conserved tryptophans at regular spacings in each of the repeats. We have carried out a variety of investigations on the structure and interactions of the DNA binding domain of Drosophila c-myb and its cognate DNA target sequences. The domain has been bacterially over-expressed by subcloning a segment of the gene coding for the domain in a pET 11d vector and transforming it into E. coli BL21 (DE3). Circular dichroism of the protein has revealed that the domain is largely helical in nature. Fluorescence investigations indicated that three out of the nine tryptophans are solvent exposed and the others are buried in the interior. The recombinant protein is able to distinguish between specific and non-specific DNA targets in its binding and the interaction is largely electrostatic in nature in both cases. Dynamic fluorescence quenching experiments suggested that the DNA binding sites on the protein for specific and non-specific DNA targets are physically different. Most of the conserved tryptophans are associated with the specific DNA binding site. Simulated annealing and molecular dynamic simulations in a water matrix have been used to predict an energetically favoured conformation for the protein. Calculation of surface accessibilities of the individual residues shows that nearly 60% of the residues are less than 50% accessible to the solvent. Two and three dimensional NMR experiments with isotopically labelled protein have enabled spin system identification for many residue type and the types of residues involved in hydrophobic core formation in the protein. In an attempt to see the DNA surface possibly involved in specific interaction with the protein, a three-dimensional structure of a 12 mer cognate DNA has been determined by NMR in conjunction with restrained energy minimization. The recognition sequence shows interesting structural characteristics that may have important roles in specific interaction.
Collapse
Affiliation(s)
- R V Hosur
- Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | |
Collapse
|
26
|
Oda M, Furukawa K, Ogata K, Sarai A, Ishii S, Nishimura Y, Nakamura H. Investigation of the pyrimidine preference by the c-Myb DNA-binding domain at the initial base of the consensus sequence. J Biol Chem 1997; 272:17966-71. [PMID: 9218422 DOI: 10.1074/jbc.272.29.17966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The principal determinant of the pyrimidine preference by the c-Myb DNA-binding domain at the initial base of the consensus sequence was investigated by mutation of both the protein and the DNA base pairs, with analysis by a filter binding assay. Amino acid residue 187 was revealed to interact with the pyrimidine base position, as estimated from our previous complex structure. Unexpectedly, since the pyrimidine preference is retained even in the Gly187 mutant, the principal origin of the base specificity should not occur via the direct-readout mechanism, but by an indirect-readout mechanism, namely in the intrinsic "bendability" of the pyrimidine-purine step of the DNA duplex. A significant but rather small positive base pair roll is detectable in the conformation of DNA in complex with the c-Myb DNA-binding domain. Following the conventional chemical rules of the direct-readout mechanism, amino acid mutagenesis at position 187 yielded several new base preferences for the protein.
Collapse
Affiliation(s)
- M Oda
- Biomolecular Engineering Research Institute, Furuedai, Suita, Osaka 565, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Dixit M, Yang JL, Poirier MC, Price JO, Andrews PA, Arteaga CL. Abrogation of cisplatin-induced programmed cell death in human breast cancer cells by epidermal growth factor antisense RNA. J Natl Cancer Inst 1997; 89:365-73. [PMID: 9060958 DOI: 10.1093/jnci/89.5.365] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGF-R) perturbation by receptor ligand(s), e.g., epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), or receptor-specific antibodies accentuates cisplatin-induced toxicity in tumor cells. This sensitization occurs only in tumor cells with high expression of EGF-R but not in those with low expression of EGF-R. PURPOSE Therefore, we have studied the role of EGF-R expression on cisplatin-mediated cytotoxicity. METHODS MDA-468 human breast cancer cells were stably transfected with a p-chloramphenicol acetyl transferase (pact[p]-CAT) vector containing a 4.1-kilobase full-length antisense EGF-R complementary DNA. EGF-R content was assessed by 125I-EGF binding and EGF-R immunoblot assays. Cisplatin sensitivity was evaluated by (a) colony-forming assay in vitro, (b) xenograft growth in nude mice, (c) cell cycle distribution of propidium iodide-labeled DNA, (d) DNA fragmentation in agarose gels, and (e) terminal deoxynucleotidyl transferase (Tdt) fluorescence in situ. Cisplatin uptake was measured by atomic absorption spectroscopy, and the levels of drug-DNA intrastrand adducts were determined by a dissociation-enhanced fluoroimmunoassay that utilizes an antibody against cisplatin-modified DNA. RESULTS Selected clones (MDA-468/AS-EGFR) exhibited more than 90% loss of both 125I-EGF binding and receptor content determined by western blot analysis, whereas clones transfected with the vector alone (MDA-468/p-CAT) had EGF-R levels similar to those of the parent cells. By use of a colony-forming assay, the 1-hour IC50 (i.e., the concentration of drug required for 1 hour to achieve 50% cell kill) for cisplatin was 2 microM or less for parental and vector-transfected clones (n = 4), whereas it was 25 microM or more for all MDA-468/AS-EGFR clones (n = 3). MDA-468/p-CAT clones exhibited internucleosomal DNA fragmentation, enhanced Tdt-end labeling in situ, and G2 arrest 48 hours after a 1-hour incubation with 3-30 microM cisplatin. Under these conditions, apoptosis and G2 arrest were undetectable in all MDA-468/AS-EGFR clones. An MDA-468 subline selected after long-term treatment with a TGF-alpha-Pseudomonas exotoxin A fusion protein 40 lacked EGF binding and also exhibited cisplatin resistance (1-hour IC50: > 30 microM) compared with parental cells. This EGF-R-dependent difference in cisplatin response was confirmed in a nude mouse xenograft model by use of high- and low-EGF-R-expressing cell clones. Total intracellular drug accumulation after a 1-hour cisplatin exposure, as measured by atomic absorption spectroscopy, was identical in both groups of cells. Intrastrand drug-DNA adducts, however, were statistically higher in high EGF-R expressors than in low-EGF-R-expressing clones. CONCLUSIONS These data indicate that a critical level of EGF-R signaling, which is amplified in some common human cancers, is necessary for cisplatin-mediated apoptosis in tumor cells and suggest an inhibitory effect of this pathway on the repair of cisplatin-damaged DNA.
Collapse
Affiliation(s)
- M Dixit
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-5536, USA
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S A Ness
- Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, IL 60208-3500, USA.
| |
Collapse
|
29
|
Furukawa K, Oda M, Nakamura H. A small engineered protein lacks structural uniqueness by increasing the side-chain conformational entropy. Proc Natl Acad Sci U S A 1996; 93:13583-8. [PMID: 8942977 PMCID: PMC19356 DOI: 10.1073/pnas.93.24.13583] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A small globular protein, the third repeat of the c-Myb DNA-binding domain, which is composed of 54 amino acid residues, was engineered so as to understand the structural uniqueness of native proteins. This small protein has three alpha-helices that form a helix-turn-helix structure, which is maintained by the hydrophobic core with three Ile residues. One of the mutant proteins, with two of the buried Ile (Ile-155 and Ile-181) substituted with Leu residues, showed multiple conformations, as monitored by heteronuclear magnetic resonance spectroscopy for 13C- and 15N-labeled proteins. The increase in the side-chain conformational entropy, caused by changing the Ile to a Leu residue on an alpha-helix, could engender the lack of structural uniqueness. In native proteins, the conformations of not only the beta-branched side chains, but also those of the neighboring bulky side chains, can be greatly restricted, depending upon the local backbone structure.
Collapse
Affiliation(s)
- K Furukawa
- Biomolecular Engineering Research Institute, Osaka, Japan
| | | | | |
Collapse
|
30
|
Oelgeschläger M, Janknecht R, Krieg J, Schreek S, Lüscher B. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 1996; 15:2771-80. [PMID: 8654374 PMCID: PMC450213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The oncoprotein v-Myb is a potent inducer of myeloid leukemias, and its cellular homolog c-Myb plays a crucial role in the regulation of hematopoiesis. Both proteins function as transcriptional regulators. We demonstrate that this function is mediated at least in part by the nuclear co-activator CREB binding protein (CBP). This protein interacts directly with both c-Myb and v-Myb and potentiates Myb-specific transcription as measured on the mim-1 promoter. In contrast, dominant negative mutants of CBP lead to repression, as does E1A, an antagonist of CBP function. Phosphorylation of c-Myb does not appear to be required for interaction with CBP, thus indicating that the binding may be constitutive. Furthermore, the C/EBP family member NF-M, which cooperates with c-Myb in transactivating the mim-1 promoter through an adjacent DNA binding site, is co-activated by CBP in a Ras-dependent manner. Not only the individual activities of c-Myb and NF-M are stimulated by CBP, but also their synergistic transcriptional function, while it is negatively regulated by dominant negative forms of CBP. These data suggest that CBP is recruited by both Myb proteins and NF-M and potentiates their transcriptional activity. We suggest that CBP can bridge between c-Myb and NF-M, thus providing an explanation for the strong synergism between these two proteins.
Collapse
Affiliation(s)
- M Oelgeschläger
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
31
|
Dooley S, Seib T, Welter C, Blin N. c-myb intron I protein binding and association with transcriptional activity in leukemic cells. Leuk Res 1996; 20:429-39. [PMID: 8683983 DOI: 10.1016/0145-2126(96)00012-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Specific binding of nuclear proteins to the region of transcriptional attenuation has been shown to modulate the expression of c-myb, a nuclear proto-oncogene preferentially expressed in lympho-hematopoietic cells. Here, it plays an important role in processes of differentiation and proliferation. The mechanism that regulates c-myb expression is not yet fully understood. The block of transcriptional elongation which has been mapped to a 1 kb region within murine intron 1 may represent one regulatory pathway. The DNA sequences containing the transcriptional pause site are well conserved between murine and human species, thus Implying similar transcription-control strategies. We compared the binding potential of nuclear extracts (from human fibroblasts and MOLT4 as well as murine NIH3T3- and 70Z/3B- cell lines) to oligonucleotide sequences previously shown to be target binding sites in the murine system. One complex containing a 70 D protein was found to be associated specifically with transcriptionally active leukemia cells. We performed transient expression studies with a CAT reporter construct containing this putative enhancer sequence and yielded significant CAT activity. We identified further a putative 20 kD repressor protein in transcriptionally silent cells and demonstrated that c-Jun is part of an ubiquitously present complex. Our results confirm the participation of intron 1 in transcriptional regulation of the c-myb gene (in mouse and human) and implicate multiple and complex regulatory mechanisms of activation during myelomonocytic differentiation and leukemic cell growth control.
Collapse
Affiliation(s)
- S Dooley
- Institut für Humangenetik, Universität des Saarlandes, Homburg, Germany.
| | | | | | | |
Collapse
|
32
|
Mink S, Kerber U, Klempnauer KH. Interaction of C/EBPbeta and v-Myb is required for synergistic activation of the mim-1 gene. Mol Cell Biol 1996; 16:1316-25. [PMID: 8657104 PMCID: PMC231115 DOI: 10.1128/mcb.16.4.1316] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which activates the myelomonocyte-specific mim-1 gene, a natural myb target gene, by cooperating with members of the C/EBP transcription factor family. The finding that v-Myb, together with C/EBP, is sufficient to activate the mim-1 gene in heterologous cell types has implicated Myb and C/EBP as a bipartite molecular switch, which regulates the expression of myelomonocyte-specific genes. To understand the relationship between v-Myb and C/EBP in more detail, we have examined the molecular basis of the activation of the mim-1 promoter by v-Myb and C/EBPbeta, a member of the C/EBP transcription factor family highly expressed in myelomonocytic cells. We have identified a composite Myb and C/EBP response element which mediates synergistic activation of the mim-1 promoter by both factors and consists of closely spaced Myb- and C/EBP-binding sites. In vitro and in vivo protein-binding studies indicate that v-Myb and C/EBPbeta interact with each other via their DNA-binding domains. We show that this interaction is essential for the synergistic activation of the mim-1 promoter by v-Myb and C/EBPbeta. Our work therefore identifies C/EBPbeta as an interaction partner of v-Myb involved in myelomonocyte gene expression.
Collapse
Affiliation(s)
- S Mink
- Hans Spemann Laboratory, Max Planck Institute for Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
33
|
Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C, Takahashi T, Ishii S. CBP as a transcriptional coactivator of c-Myb. Genes Dev 1996; 10:528-40. [PMID: 8598284 DOI: 10.1101/gad.10.5.528] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CBP (CREB-binding protein) is a transcriptional coactivator of CREB (cAMP response element-binding) protein, which is directly phosphorylated by PKA (cAMP-dependent protein kinase A). CBP interacts with the activated phosphorylated form of CREB but not with the nonphosphorylated form. We report here that CBP is also a coactivator of the c-myb proto-oncogene product (c-Myb), which is a sequence-specific transcriptional activator. CBP directly binds to the region containing the transcriptional activation domain of c-Myb in a phosphorylation-independent manner in vitro. The domain of CBP that touches c-Myb is also required for binding to CREB. A c-Myb/CBP complex in vivo was demonstrated by a yeast two-hybrid assay. CBP stimulates the c-Myb-dependent transcriptional activation. Conversely, the expression of antisense RNA of CBP represses c-Myb-induced transcriptional activation. In addition, adenovirus EIA, which binds to CBP, inhibits c-Myb-induced transcriptional activation. Our data thus identify CBP as a coactivator of c-Myb. These results suggest that CBP functions as a coactivator for more transcriptional activators than were thought previously.
Collapse
Affiliation(s)
- P Dai
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kanei-Ishii C, Nomura T, Ogata K, Sarai A, Yasukawa T, Tashiro S, Takahashi T, Tanaka Y, Ishii S. Structure and function of the proteins encoded by the myb gene family. Curr Top Microbiol Immunol 1996; 211:89-98. [PMID: 8585968 DOI: 10.1007/978-3-642-85232-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C Kanei-Ishii
- Tsukuba Life Science Center, Institute of Physical & Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gonda TJ, Favier D, Ferrao P, Macmillan EM, Simpson R, Tavner F. The c-myb negative regulatory domain. Curr Top Microbiol Immunol 1996; 211:99-109. [PMID: 8585969 DOI: 10.1007/978-3-642-85232-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T J Gonda
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Takahashi T, Nakagoshi H, Sarai A, Nomura N, Yamamoto T, Ishii S. Human A-myb gene encodes a transcriptional activator containing the negative regulatory domains. FEBS Lett 1995; 358:89-96. [PMID: 7821437 DOI: 10.1016/0014-5793(94)01402-m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The myb gene family has three members, c-myb, A-myb, and B-myb. A-myb mRNA is mainly expressed in testis and peripheral blood leukocytes. A-Myb can activate transcription from the promoter containing Myb-binding sites in all cells examined. In addition to the two domains (a DNA-binding domain and a transcriptional activation domain), two negative regulatory domains have been identified in A-Myb. These results indicate that A-Myb functions as a transcriptional activator mainly in testis and peripheral blood cells, and the regulatory mechanism of A-Myb activity is similar to that of c-Myb.
Collapse
Affiliation(s)
- T Takahashi
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ, Hume DA, Ostrowski MC. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med 1994; 180:2309-19. [PMID: 7964503 PMCID: PMC2191783 DOI: 10.1084/jem.180.6.2309] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The receptor for macrophage colony stimulating factor (CSF-1), the c-fms gene product, is a key determinant in the differentiation of monocytic phagocytes. Dissection of the human and mouse c-fms proximal promoters revealed opposing roles for nuclear protooncogenes in the transcriptional regulation of this gene. On the one hand, c-ets-1, c-ets-2, and the macrophage-specific factor PU.1, but not the ets-factor PEA3, trans-activated the c-fms proximal promoter. On the other hand c-myb repressed proximal promoter activity in macrophages and blocked the action of c-ets-1 and c-ets-2. Basal c-fms promoter activity was almost undetectable in the M1 leukaemia line, which expressed high levels of c-myb, but was activated as cells differentiated in response to leukemia inhibitory factor and expressed c-fms mRNA. The repressor function of c-myb depended on the COOH-terminal domain of the protein. We propose that ets-factors are necessary for the tissue-restricted expression of c-fms and that c-myb acts to ensure correct temporal expression of c-fms during myeloid differentiation.
Collapse
Affiliation(s)
- M A Reddy
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Seib T, Welter C, Engel M, Theisinger B, Dooley S. Presence of regulatory sequences within intron 4 of human and murine c-myb genes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:285-92. [PMID: 7918623 DOI: 10.1016/0167-4781(94)90050-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular mechanisms that modulate c-myb mRNA transcription in hematopoietic cells appear to involve intron regulatory sequences. We have characterized the fourth of ten introns from both human and murine c-myb genes in regard to nucleotide sequence and specific protein binding. For this approach complete genomic c-myb intron 4 fragments were isolated from mouse and human DNA using PCR amplification with flanking exon-primers derived from the mouse gene. Comparison of the obtained sequences revealed strong homology between the two species. Using crude nuclear protein extracts from mouse and human myb expressing cells (70Z/3B; Molt4) and gel shift experiments we found specific protein interaction for both introns and to determine the protein binding site in detail, we performed DNase I footprinting. Our results indicate that the binding factor is absent in control cell lines without c-myb transcriptional activity, suggesting a possible positive regulatory function of the DNA-protein complex. To confirm these findings we introduced the human c-myb intron 4 DNA sequence into the EcoRI site of the pCAT-Promoter plasmid and transfected Molt4 cells with this chimeric construct. The transient expression studies revealed that intron 4 sequences possess enhancer activity. Thus, we have demonstrated that intron 4 sequences can be important for the regulation of c-myb proto-oncogene expression.
Collapse
Affiliation(s)
- T Seib
- Human Genetics Department, University of Saarland, Homburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Takemoto Y, Tashiro S, Handa H, Ishii S. Multiple nuclear localization signals of the B-myb gene product. FEBS Lett 1994; 350:55-60. [PMID: 8062924 DOI: 10.1016/0014-5793(94)00733-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nuclear entry of the B-myb gene product (B-Myb) is dependent on multiple nuclear localization signals (NLS's). Mutagenesis of the putative NLS's of B-Myb has identified two separate NLS's, NLS1 and NLS2. Each of the two NLS's is essential for efficient nuclear targeting. NLS2 contains two interdependent basic domains separated by 8 intervening spacer amino acids, and both basic domains are required for nuclear entry. Thus, NLS2 belongs to a class of bipartite NLS's. Like the NLS's in yeast transcription factor SW15, NLS2 contains a putative cdc2 kinase site. However, unlike the case of SW15, phosphorylation at this site did not affect the nuclear targeting of B-Myb.
Collapse
Affiliation(s)
- Y Takemoto
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | |
Collapse
|
40
|
Vorbrueggen G, Kalkbrenner F, Guehmann S, Moelling K. The carboxyterminus of human c-myb protein stimulates activated transcription in trans. Nucleic Acids Res 1994; 22:2466-75. [PMID: 8041607 PMCID: PMC308197 DOI: 10.1093/nar/22.13.2466] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cellular c-myb gene encodes a transcription factor composed of a DNA-binding domain, a transactivating domain and a regulatory domain located at its carboxy (C-) terminus. The latter one is deleted in the transforming viral protein v-Myb. Here we show that deletion of the C-terminus of c-Myb increases the transcriptional transactivation activity of c-Myb defining it as cis-acting negative regulatory domain. Cotransfection of the C-terminus in an in vivo competition assay causes stimulation of the transcriptional activity of various v- and c-Myb expression constructs in trans. The effect is dose-dependent and independent of the kind of DNA-binding domain, since c-Myb as well as GAL4-c-Myb chimaeras can be stimulated in trans. Other transcription factors, such as GAL4-VP16, GAL4, c-Jun or C/EBP beta are also stimulated by the cotransfected C-terminus. In contrast, human B-Myb is not stimulated by the c-Myb C-terminus in trans. The data suggest that the C-terminus of c-Myb may interact with a cellular inhibitor which is part of the protein complex mediating activated transcription and may stimulate in trans by sequestering away such an inhibitor. Binding of c-Myb to a putative inhibitor would explain differences between c-Myb in comparison to B- and v-Myb in transcriptional regulation.
Collapse
Affiliation(s)
- G Vorbrueggen
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Jacobs SM, Gorse KM, Kennedy SJ, Westin EH. Characterization of a rearrangement in the c-MYB promoter in the acute lymphoblastic leukemia cell line CCRF-CEM. CANCER GENETICS AND CYTOGENETICS 1994; 75:31-9. [PMID: 8039161 DOI: 10.1016/0165-4608(94)90212-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the frequent description of 6q- structural abnormalities in human leukemias and lymphomas, rearrangements of the c-MYB locus have not been detected. We have detected a rearrangement in the c-MYB proto-oncogene in the cell line CCRF-CEM, an immature T-cell leukemia cell line which is not 6q-. Due to this rearrangement, a large portion of the c-MYB promoter conserved between the human and murine c-MYB genes is lost. The rearranged locus, which we have designated MRR (MYB rearranged region), has been cloned and mapped to chromosome 6. Field inversion gel electrophoresis (FIGE) studies reveal that the MRR sequence is linked to the c-MYB locus, suggesting that the rearrangement is due to a submicroscopic deletion. The rearrangement appears to have no effect on c-MYB promoter activity as analyzed in CCRF-CEM cells. The normal locus of the MRR sequence has been cloned from a human placental genomic library. Partial sequence analysis of this clone reveals that a portion of the DNA lost in the rearrangement shows a high degree of homology to a member of the myc family of oncogenes. Thus the characterization of this rearrangement has yielded a new set of probes for the study of chromosome 6q abnormalities in human leukemias and lymphomas and provides the first evidence for potential involvement of the c-MYB locus itself in submicroscopic deletions within chromosome 6.
Collapse
Affiliation(s)
- S M Jacobs
- Department of Microbiology/Immunology, Virginia Commonwealth University/Medical College of Virginia, Richmond
| | | | | | | |
Collapse
|
42
|
c-Myb-induced trans-activation mediated by heat shock elements without sequence-specific DNA binding of c-Myb. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40747-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Wang Z, Takenaka M, Imai E, Yamada K, Tanaka T, Noguchi T. Transcriptional regulatory regions for expression of the rat pyruvate kinase M gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:301-7. [PMID: 8125088 DOI: 10.1111/j.1432-1033.1994.tb18626.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To study the regulatory mechanism of pyruvate kinase M gene transcription, we analyzed its chromatin structure and cis-acting DNA regions. Two DNase-I-hypersensitive sites were detected in dRLh-84 hepatoma cells, but not in hepatocytes, which coincides with expression of the M gene in the two types of cells. These sites, designated HS2 and HS1, were located around the major transcription start site and about 2.9 kb downstream from this site, respectively. A transient chloramphenicol acetyltransferase expression assay indicated that the region around HS1 did not show any activity, whereas the upstream region up to -457 had promoter activity in hepatoma cells. Most of this activity was lost by a 5'-deletion from -286 to -225. Further analysis identified a cluster of three cis-acting regions from -279 to -216, which are named boxes A, B and C. These regions did not have any independent effect, but the inclusion of all regions were synergistic. These regions were not active in hepatocytes, suggesting that they have cell-type specificity. A gel mobility shift assay indicated that unidentified, but distinct, nuclear proteins bound to the three boxes. These results suggest that transcriptional regulation of the M gene involves alteration of chromatin structure and binding of proteins to three cis-acting elements.
Collapse
Affiliation(s)
- Z Wang
- Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 1994. [PMID: 8264615 DOI: 10.1128/mcb.14.1.473] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A T-cell-specific transcriptional enhancer lies within the J delta 3-C delta intron of the human T-cell receptor (TCR) delta gene. The 30-bp minimal enhancer element denoted delta E3 carries a core sequence (TGTGGTTT) that binds a T-cell-specific factor, and that is necessary but not sufficient for transcriptional activation. Here we demonstrate that the transcription factor c-Myb regulates TCR delta enhancer activity through a binding site in delta E3 that is adjacent to the core site. Both v-Myb and c-Myb bind specifically to delta E3. The Myb site is necessary for enhancer activity, because a mutation that eliminates Myb binding abolishes transcriptional activation by the delta E3 element and by the 370-bp TCR delta enhancer. Transfection of cells with a c-Myb expression construct upregulates delta E3 enhancer activity, whereas treatment of cells with an antisense c-myb oligonucleotide inhibits delta E3 enhancer activity. Since intact Myb and core sites are both required for delta E3 function, our data argue that c-Myb and core binding factors must cooperate to mediate transcriptional activation through delta E3. Efficient cooperation depends on the relative positioning of the Myb and core sites, since only one of two overlapping Myb sites within delta E3 is functional and alterations of the distance between this site and the core site disrupt enhancer activity. Cooperative regulation by c-Myb and core-binding factors is likely to play an important role in the control of gene expression during T-cell development.
Collapse
|
45
|
Hernandez-Munain C, Krangel MS. Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 1994; 14:473-83. [PMID: 8264615 PMCID: PMC358397 DOI: 10.1128/mcb.14.1.473-483.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A T-cell-specific transcriptional enhancer lies within the J delta 3-C delta intron of the human T-cell receptor (TCR) delta gene. The 30-bp minimal enhancer element denoted delta E3 carries a core sequence (TGTGGTTT) that binds a T-cell-specific factor, and that is necessary but not sufficient for transcriptional activation. Here we demonstrate that the transcription factor c-Myb regulates TCR delta enhancer activity through a binding site in delta E3 that is adjacent to the core site. Both v-Myb and c-Myb bind specifically to delta E3. The Myb site is necessary for enhancer activity, because a mutation that eliminates Myb binding abolishes transcriptional activation by the delta E3 element and by the 370-bp TCR delta enhancer. Transfection of cells with a c-Myb expression construct upregulates delta E3 enhancer activity, whereas treatment of cells with an antisense c-myb oligonucleotide inhibits delta E3 enhancer activity. Since intact Myb and core sites are both required for delta E3 function, our data argue that c-Myb and core binding factors must cooperate to mediate transcriptional activation through delta E3. Efficient cooperation depends on the relative positioning of the Myb and core sites, since only one of two overlapping Myb sites within delta E3 is functional and alterations of the distance between this site and the core site disrupt enhancer activity. Cooperative regulation by c-Myb and core-binding factors is likely to play an important role in the control of gene expression during T-cell development.
Collapse
Affiliation(s)
- C Hernandez-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
46
|
Yano T, Teruya K, Shirahata S, Watanabe J, Osada K, Tachibana H, Ohashi H, Kim EH, Murakami H. Ras oncogene enhances the production of a recombinant protein regulated by the cytomegalovirus promoter in BHK-21 cells. Cytotechnology 1994; 16:167-78. [PMID: 7766145 DOI: 10.1007/bf00749904] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to enhance recombinant protein productivity in animal cells, we developed the oncogene activated production (OAP) system. The OAP system is based on the premise that oncogenes are able to enhance promoter activity. To this end, we constructed reported plasmids by fusing various promoters to the human interleukin-6 (hIL-6) cDNA, and the effector plasmids by inserting individual oncogenes, for example c-myc, c-fos, v-jun, v-myb and c-Ha-ras, downstream from the human cytomegalovirus immediate early (CMV) promoter. Results of transient expression experiments with BHK-21 cells suggest that the CMV promoter is the most potent promoter examined and that the ras product is able to transactivate the beta-actin, CMV and SR alpha promoters. Recombinant BHK-21 cells producing hIL-6 under the control of the CMV promoter were contransfected with the ras oncogene and dihydrofolate reductase gene, then selected with 50 nM methotrexate to coamplify the ras oncogene. We were able to rapidly establish a stable and highly productive clone which exhibited a 35-times higher production rate as compared to the control value.
Collapse
Affiliation(s)
- T Yano
- Laboratory of Cellular Regulation Technology, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A. Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain. Proc Natl Acad Sci U S A 1993; 90:9320-4. [PMID: 8415700 PMCID: PMC47559 DOI: 10.1073/pnas.90.20.9320] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The DNA-binding domain of c-Myb consists of three homologous tandem repeats of 52 amino acids. The structure of the third (C-terminal) repeat obtained by NMR analysis has a conformation related to the helix-turn-helix motif. To identify the role of each repeat in the sequence recognition of DNA, we analyzed specific interactions between c-Myb and DNA by measuring binding affinities for systematic mutants of Myb-binding DNA sites and various truncated c-Myb mutants. We found that specific interactions are localized unevenly in the AACTGAC region in the consensus binding site of c-Myb: The first adenine, third cytosine, and fifth guanine are involved in very specific interactions, in which any base substitutions reduce the binding affinity by > 500-fold. On the other hand, the interaction at the second adenine is less specific, with the affinity reduction in the range of 6- to 15-fold. The seventh cytosine involves a rather peculiar interaction, in which only guanine substitution abolishes the specific binding. The binding analyses, together with the chemical protection analyses, showed that the c-Myb fragment containing the second and third repeats covers the AACTGAC region from the major groove of DNA in such an orientation that the third repeat covers the core AAC sequence. These results suggest that the third repeat recognizes the core AAC sequence very specifically, whereas the second repeat recognizes the GAC sequence in a more redundant manner. The first (N-terminal) repeat, which covers the major groove of DNA only partially, is not significant in the sequence recognition, but it contributes to increase the stability of the Myb-DNA complex. The presence of an N-terminal acidic region upstream of the first repeat, which is important for the activation of c-myb protooncogene, was found to reduce the binding affinity by interfering with the first repeat in binding to DNA.
Collapse
Affiliation(s)
- J Tanikawa
- Graduate School of Integrated Science, Yokohama City University, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Nomura T, Sakai N, Sarai A, Sudo T, Kanei-Ishii C, Ramsay R, Favier D, Gonda T, Ishii S. Negative autoregulation of c-Myb activity by homodimer formation through the leucine zipper. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80628-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Sarai A, Uedaira H, Morii H, Yasukawa T, Ogata K, Nishimura Y, Ishii S. Thermal stability of the DNA-binding domain of the Myb oncoprotein. Biochemistry 1993; 32:7759-64. [PMID: 8347585 DOI: 10.1021/bi00081a022] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA-binding domain of the c-myb protooncogene product consists of three homologous tandem repeats of 51-52 amino acids (denoted as R1, R2, and R3 from the N-terminal side). In order to analyze conformational and thermodynamic characteristics of the homologous repeats, we have examined the DNA-binding domain by circular dichroism (CD) and differential scanning calorimetry (DSC). The CD spectra for the three individual repeats are significantly different in the fine profiles, indicating subtle differences in their conformations. The melting analyses for the fragments show that the thermal stability of each fragment is different from one another, with the following order of stability: R1(Tm = 61 degrees C) approximately greater than R3(57 degrees C) >> R2(43 degrees C), where R2 is much less stable than the other repeats. The denaturing process for the whole DNA-binding domain, measured by DSC, is characterized by a very broad transition ranging from 30 to 80 degrees C. The denaturation curve can be fit well by a three-state transition with one intermediate state. The transition temperature for the native-to-intermediate transition coincides with the melting temperature of R2, indicating that the intermediate state corresponds to the unfolding of unstable R2. The CD spectrum of the whole domain is almost identical to the sum of the individual spectra. Thus, these results suggest that the individual repeats in the whole DNA-binding domain behave independently in terms of conformation and stability. The addition of DNA to the DNA-binding fragment drastically changed the melting profile, in which the broad transition curve was replaced by a sharp peak at 58 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sarai
- Life Science Center, Institute of Chemical & Physical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Differential transcriptional activation by v-myb and c-myb in animal cells and Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8321242 DOI: 10.1128/mcb.13.7.4423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The v-myb oncogene and its cellular homolog c-myb encode sequence-specific DNA-binding proteins which regulate transcription from promoters containing Myb-binding sites in animal cells. We have developed a Saccharomyces cerevisiae system to assay transcriptional activation by v-Myb and c-Myb. In yeast strains containing integrated reporter genes, activation was strictly dependent upon both the Myb DNA-binding domain and the Myb recognition element. BAS1, an endogenous Myb-related yeast protein, was not required for transactivation by animal Myb proteins and by itself had no detectable effect on a Myb reporter gene. Deletion analyses demonstrated that a domain of v-Myb C terminal to the previously mapped Myb transcriptional activation domain was required for transactivation in animal cells but not in S. cerevisiae. The same domain is also required for the efficient transformation of myeloid cells by v-Myb. In contrast to results in animal cells, in S. cerevisiae the full-length c-Myb was a much stronger transactivator than a protein bearing the oncogenic N- and C-terminal truncations of v-Myb. These results imply that negative regulation of c-Myb by its own termini requires an additional animal cell protein or small molecule that is not present in S. cerevisiae.
Collapse
|