Peabody GL, Elmore JR, Martinez-Baird J, Guss AM. Engineered
Pseudomonas putida KT2440 co-utilizes galactose and glucose.
BIOTECHNOLOGY FOR BIOFUELS 2019;
12:295. [PMID:
31890023 PMCID:
PMC6927180 DOI:
10.1186/s13068-019-1627-0]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND
Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose.
RESULTS
In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose.
CONCLUSIONS
We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.
Collapse