1
|
Kim JM, Kim YS, Kim YR, Choi MJ, DasSarma P, DasSarma S. Bioengineering of Halobacterium sp. NRC-1 gas vesicle nanoparticles with GvpC fusion protein produced in E. coli. Appl Microbiol Biotechnol 2022; 106:2043-2052. [PMID: 35230496 PMCID: PMC8885775 DOI: 10.1007/s00253-022-11841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Abstract Gas vesicle nanoparticles (GVNPs) are hollow, buoyant prokaryotic organelles used for cell flotation. GVNPs are encoded by a large gas vesicle protein (gvp) gene cluster in the haloarchaeon, Halobacterium sp. NRC-1, including one gene, gvpC, specifying a protein bound to the surface of the nanoparticles. Genetically engineered GVNPs in the Halobacterium sp. have been produced by fusion of foreign sequences to gvpC. To improve the versatility of the GVNP platform, we developed a method for displaying exogenously produced GvpC fusion proteins on the haloarchaeal nanoparticles. The streptococcal IgG-binding protein domain was fused at or near the C-terminus of GvpC, expressed and purified from E. coli, and shown to bind to wild-type GVNPs. The two fusion proteins, GvpC3GB and GvpC4GB, without or with a highly acidic GvpC C-terminal region, were found to be able to bind nanoparticles equally well. The GVNP-bound GvpC-IgG-binding fusion protein was also capable of binding to an enzyme-linked IgG-HRP complex which retained enzyme activity, demonstrating the hybrid system capability for display and delivery of protein complexes. This is the first report demonstrating functional binding of exogenously produced GvpC fusion proteins to wild-type haloarchaeal GVNPs which significantly expands the capability of the platform to produce bioengineered nanoparticles for biomedical applications. Key points • Haloarchaeal gas vesicle nanoparticles (GVNPs) constitute a versatile display system. • GvpC-streptococcal IgG-binding fusion proteins expressed in E. coli bind to GVNPs. • IgG-binding proteins displayed on floating GVNPs bind and display IgG-HRP complex. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jong-Myoung Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.
| | - Youn-Sook Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea.,School of Medicine, Pusan National University, Yangsan, 50512, Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Mi-Jin Choi
- Department of Fisheries Biology, PuKyong National University, Busan, 48513, Korea
| | - Priya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall‐Smith M. Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754 T ) and the laboratory strains R1 and NRC-1. Microbiologyopen 2020; 9:e974. [PMID: 31797576 PMCID: PMC7002104 DOI: 10.1002/mbo3.974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/04/2023] Open
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Gerald Losensky
- Microbiology and ArchaeaDepartment of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | - Bianca Habermann
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- CNRSIBDM UMR 7288Aix Marseille UniversitéMarseilleFrance
| | - Mike Dyall‐Smith
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- Veterinary BiosciencesFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
3
|
DasSarma S, DasSarma P. Gas Vesicle Nanoparticles for Antigen Display. Vaccines (Basel) 2015; 3:686-702. [PMID: 26350601 PMCID: PMC4586473 DOI: 10.3390/vaccines3030686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
4
|
Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure. J Struct Biol 2012; 179:18-28. [PMID: 22580065 DOI: 10.1016/j.jsb.2012.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/15/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
The structure and assembly process of gas vesicles have received significant attention in recent decades, although relatively little is still known. This work combines state-of-the-art computational methods to develop a model for the major gas vesicle protein, GvpA, and explore its structure within the assembled vesicle. Elucidating this protein's structure has been challenging due to its adherent and aggregative nature, which has so far precluded in-depth biochemical analyses. Moreover, GvpA has extremely low similarity with any known protein structure, which renders homology modeling methods ineffective. Thus, alternate approaches were used to model its tertiary structure. Starting with the sequence from haloarchaeon Halobacterium sp. NRC-1, we performed ab initio modeling and threading to acquire a multitude of structure decoys, which were equilibrated and ranked using molecular dynamics and mechanics, respectively. The highest ranked predictions exhibited an α-β-β-α secondary structure in agreement with earlier experimental findings, as well as with our own secondary structure predictions. Afterwards, GvpA subunits were docked in a quasi-periodic arrangement to investigate the assembly of the vesicle wall and to conduct simulations of contact-mode atomic force microscopy imaging, which allowed us to reconcile the structure predictions with the available experimental data. Finally, the GvpA structure for two representative organisms, Anabaena flos-aquae and Calothrix sp. PCC 7601, was also predicted, which reproduced the major features of our GvpA model, supporting the expectation that homologous GvpA sequences synthesized by different organisms should exhibit similar structures.
Collapse
|
5
|
Chu LJ, Chen MC, Setter J, Tsai YS, Yang H, Fang X, Ting YS, Shaffer SA, Taylor GK, von Haller PD, Goodlett DR, Ng WV. New structural proteins of Halobacterium salinarum gas vesicle revealed by comparative proteomics analysis. J Proteome Res 2011; 10:1170-8. [PMID: 21158390 DOI: 10.1021/pr1009383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Halobacterium salinarum gas vesicle (GV) is an extremely stable intracellular organelle with air trapped inside a proteinaceous membrane. Reported here is a comparative proteomics analysis of GV and GV depleted lysate (GVD) to reveal the membrane structural proteins. Ten proteins encoded by gvp-1 (gvpMLKJIHGFED-1 and gvpACNO-1) and five proteins encoded by gvp-2 (gvpMLKJIHGFED-2 and gvpACNO-2) gene clusters for the biogenesis of spindle- and cylindrical-, respectively, shaped GV were identified by LC-MS/MS. The peptides of GvpA1, I1, J1, A2, and J2 were exclusively identified in purified GV, GvpD1, H1, L1, and F2 only in GVD, and GvpC1, N1, O1, F1, H2, and O2 in both samples. The identification of GvpA1, C1, F1, J1, and A2 in GV is in agreement with their previously known structural function. In addition, the detection of GvpI1, N1, O1, H2, J2, and O2 in GV suggested they are new structural proteins. Among these, the structural role of GvpI1 and N1 in GV was further validated by immuno-detection of protein A-tagged GvpI1 and N1 fusion proteins in purified GV. Thus, LC-MS/MS could reveal at least a half dozen gas vesicle structural proteins in the predominant spindle-shaped GV that may be helpful for studying its biogenesis.
Collapse
Affiliation(s)
- Lichieh Julie Chu
- Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ng WV, Berquist BR, Coker JA, Capes M, Wu TH, DasSarma P, DasSarma S. Genome sequences of Halobacterium species. Genomics 2008; 91:548-52; author reply 553-4. [DOI: 10.1016/j.ygeno.2008.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
|
7
|
Gan RR, Yi EC, Chiu Y, Lee H, Kao YCP, Wu TH, Aebersold R, Goodlett DR, Ng WV. Proteome Analysis of Halobacterium sp. NRC-1 Facilitated by the Biomodule Analysis Tool BMSorter. Mol Cell Proteomics 2006; 5:987-97. [PMID: 16497792 DOI: 10.1074/mcp.m500367-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the extremely halophilic archaeon Halobacterium species NRC-1, we analyzed its soluble proteome by two-dimensional liquid chromatography coupled to electrospray ionization tandem mass spectrometry. A total of 888 unique proteins were identified with a ProteinProphet probability (P) between 0.9 and 1.0. To evaluate the biochemical activities of the organism, the proteomic data were subjected to a biological network analysis using our BMSorter software. This allowed us to examine the proteins expressed in different biomodules and study the interactions between pertinent biomodules. Interestingly an integrated analysis of the enzymes in the amino acid metabolism and citrate cycle networks suggested that up to eight amino acids may be converted to oxaloacetate, fumarate, or oxoglutarate in the citrate cycle for energy production. In addition, glutamate and aspartate may be interconverted from other amino acids or synthesized from citrate cycle intermediates to meet the high demand for the acidic amino acids that are required to build the highly acidic proteome of the organism. Thus this study demonstrated that proteome analysis can provide useful information and help systems analyses of organisms.
Collapse
Affiliation(s)
- Rueichi R Gan
- Institute of Biochemistry, National Yang Ming University, Taipei City Hospital, Taipei 112, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:3. [PMID: 16542428 PMCID: PMC1447603 DOI: 10.1186/1746-1448-2-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Brian R Berquist
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Priya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Jochen A Müller
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
9
|
|
10
|
Shukla HD, DasSarma S. Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 2004; 186:3182-6. [PMID: 15126480 PMCID: PMC400621 DOI: 10.1128/jb.186.10.3182-3186.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Halobacterium sp. strain NRC-1 contains a large gene cluster, gvpMLKJIHGFEDACNO, that is both necessary and sufficient for the production of buoyant gas-filled vesicles. Due to the resistance of gas vesicles to solubilization, only the major gas vesicle protein GvpA and a single minor protein, GvpC, were previously detected. Here, we used immunoblotting analysis to probe for the presence of gas vesicle proteins corresponding to five additional gvp gene products. Polyclonal antisera were raised in rabbits against LacZ-GvpF, -GvpJ, and -GvpM fusion proteins and against synthetic 15-amino-acid peptides from GvpG and -L. Immunoblotting analysis was performed on cell lysates of wild-type Halobacterium sp. strain NRC-1, gas vesicle-deficient mutants, and purified gas vesicles, after purification of LacZ fusion antibodies on protein A and beta-galactosidase affinity columns. Our results show the presence of five new gas vesicle proteins (GvpF, GvpG, GvpJ, GvpL, and GvpM), bringing the total number of proteins identified in the organelles to seven. Two of the new gas vesicle proteins are similar to GvpA (GvpJ and GvpM), and two proteins contain predicted coiled-coil domains (GvpF and GvpL). GvpL exhibited a multiplet ladder on sodium dodecyl sulfate-polyacrylamide gels indicative of oligomerization and self-assembly. We discuss the possible functions of the newly discovered gas vesicle proteins in biogenesis of these unique prokaryotic flotation organelles.
Collapse
Affiliation(s)
- Hem Dutt Shukla
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
11
|
Hofacker A, Schmitz KM, Cichonczyk A, Sartorius-Neef S, Pfeifer F. GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiology (Reading) 2004; 150:1829-1838. [PMID: 15184569 DOI: 10.1099/mic.0.27078-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription of the 14 p-gvp genes involved in gas vesicle formation of Halobacterium salinarum PHH1 is driven by the four promoters pA, pD, pF and pO. The regulation of these promoters was investigated in Haloferax volcanii transformants with respect to the endogenous regulatory proteins GvpE and GvpD. Northern analyses demonstrated that the transcription derived from the pA and pD promoters was enhanced by GvpE, whereas the activities of the pF and pO promoters were not affected. Similar results were obtained using promoter fusions with the bgaH reporter gene encoding an enzyme with β-galactosidase activity. The largest amount of specific β-galactosidase activity was determined for pA-bgaH transformants, followed by pF-bgaH and pD-bgaH transformants. The presence of GvpE resulted in a severalfold induction of the pA and pD promoter, whereas the pF promoter was not affected. A lower GvpE-induced pA promoter activity was seen in the presence of GvpD in the pA-bgaH/DEex transformants, suggesting a function of GvpD in repression. To determine the DNA sequences involved in the GvpE-mediated activation, a 50-nucleotide region of the pA promoter was investigated by 4-nucleotide scanning mutagenesis. Some of these mutations affected the basal transcription, especially mutations in the region of the TATA box and the putative BRE sequence element, and also around position −10. Mutant E, harbouring a sequence with greater identity to the consensus BRE element, showed a significantly enhanced basal promoter activity compared to wild-type. Mutations not affecting basal transcription, but yielding a reduced GvpE-mediated activation, were located immediately upstream of BRE. These results suggested that the transcription activation by GvpE is in close contact with the core transcription machinery.
Collapse
Affiliation(s)
- Annette Hofacker
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Kerstin-Maike Schmitz
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Alexander Cichonczyk
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Simone Sartorius-Neef
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
12
|
Mlouka A, Comte K, Castets AM, Bouchier C, Tandeau de Marsac N. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 2004; 186:2355-65. [PMID: 15060038 PMCID: PMC412153 DOI: 10.1128/jb.186.8.2355-2365.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcystis aeruginosa is a planktonic unicellular cyanobacterium often responsible for seasonal mass occurrences at the surface of freshwater environments. An abundant production of intracellular structures, the gas vesicles, provides cells with buoyancy. A 8.7-kb gene cluster that comprises twelve genes involved in gas vesicle synthesis was identified. Ten of these are organized in two operons, gvpA(I)A(II)A(III)CNJX and gvpKFG, and two, gvpV and gvpW, are individually expressed. In an attempt to elucidate the basis for the frequent occurrence of nonbuoyant mutants in laboratory cultures, four gas vesicle-deficient mutants from two strains of M. aeruginosa, PCC 7806 and PCC 9354, were isolated and characterized. Their molecular analysis unveiled DNA rearrangements due to four different insertion elements that interrupted gvpN, gvpV, or gvpW or led to the deletion of the gvpA(I)-A(III) region. While gvpA, encoding the major gas vesicle structural protein, was expressed in the gvpN, gvpV, and gvpW mutants, immunodetection revealed no corresponding GvpA protein. Moreover, the absence of a gas vesicle structure was confirmed by electron microscopy. This study brings out clues concerning the process driving loss of buoyancy in M. aeruginosa and reveals the requirement for gas vesicle synthesis of two newly described genes, gvpV and gvpW.
Collapse
Affiliation(s)
- Alyssa Mlouka
- Unité des Cyanobactéries (URA-CNRS 2172), Département de Microbiologie fondamentale et médicale, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
13
|
Napoli A, van der Oost J, Sensen CW, Charlebois RL, Rossi M, Ciaramella M. An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. J Bacteriol 1999; 181:1474-80. [PMID: 10049378 PMCID: PMC93536 DOI: 10.1128/jb.181.5.1474-1480.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of gene expression in the domain Archaea, and specifically hyperthermophiles, has been poorly investigated so far. Biochemical experiments and genome sequencing have shown that, despite the prokaryotic cell and genome organization, basal transcriptional elements of members of the domain Archaea (i.e., TATA box-like sequences, RNA polymerase, and transcription factors TBP, TFIIB, and TFIIS) are of the eukaryotic type. However, open reading frames potentially coding for bacterium-type transcription regulation factors have been recognized in different archaeal strains. This finding raises the question of how bacterial and eukaryotic elements interact in regulating gene expression in Archaea. We have identified a gene coding for a bacterium-type transcription factor in the hyperthermophilic archaeon Sulfolobus solfataricus. The protein, named Lrs14, contains a potential helix-turn-helix motif and is related to the Lrp-AsnC family of regulators of gene expression in the class Bacteria. We show that Lrs14, expressed in Escherichia coli, is a highly thermostable DNA-binding protein. Bandshift and DNase I footprint analyses show that Lrs14 specifically binds to multiple sequences in its own promoter and that the region of binding overlaps the TATA box, suggesting that, like the E. coli Lrp, Lrs14 is autoregulated. We also show that the lrs14 transcript is accumulated in the late growth stages of S. solfataricus.
Collapse
Affiliation(s)
- A Napoli
- Institute of Protein Biochemistry and Enzymology, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Offner S, Wanner G, Pfeifer F. Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles. J Bacteriol 1996; 178:2071-8. [PMID: 8606186 PMCID: PMC177907 DOI: 10.1128/jb.178.7.2071-2078.1996] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gas vesicle (Vac) synthesis in Halobacterium salinarium PHH1 involves the expression of the plasmid pHH1-encoded vac (p-vac) region consisting of 14 different gvp genes that are arranged in two clusters, p-gvpACNO and, oriented in the direction opposite to that of gvpA, p-gvpDEFGHIJKLM. The p-gvpACNO region was analyzed at the transcriptional and functional levels in H. salinarium and in Haloferax volcanii transformants containing subfragments of the p-vac region. The p-gvpACNO genes were transcribed as several mRNAs: the 270-nucleotide (nt) p-gvpA transcript, encoding the major structural protein, occurred in large amounts, and minor amounts of three different readthrough transcripts (p-gvpACN, and p-gvpACNO mRNA) were found. In addition, the p-gvpO gene gave rise to two separate mRNA species: a 550-nt mRNA starting at the ATG and spanning the entire reading frame and a 420-nt RNA encompassing the second half of the p-gvpO gene. The requirement of p-gvpC, p-gvpN, and p-gvpO gene expression for gas vesicle synthesis was assessed by transformation experiments using the VAC- species Haloferax volcanii as the recipient. A delta C transformant, harboring the p-vac region with a deletion of the p-gvpC gene, produced large amounts of irregularly shaped gas vesicles. A shape-forming function of p-GvpC was demonstrated by complementation of the delta C transformant with the p-gvpC gene, resulting in wild-type-shaped gas vesicles. In the delta N transformant, the level of gas vesicle synthesis was very low, indicating that the p-GvpN protein is not required for gas vesicle assembly but may enhance gas vesicle synthesis. The p-gvpN deletion did not affect accumulation of p-gvpACO mRNA but reduced the separate p-gvpO transcription. The delta O transformant was Vac- and had a strongly decreased level of p-gvpACN mRNAs, demonstrating that the p-GvpO protein is required for gas vesicle synthesis and may affect transcription of this DNA region.
Collapse
Affiliation(s)
- S Offner
- Institut für Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Germany
| | | | | |
Collapse
|
15
|
Offner S, Pfeifer F. Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes. Mol Microbiol 1995; 16:9-19. [PMID: 7651141 DOI: 10.1111/j.1365-2958.1995.tb02387.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gas-vesicle (Vac) synthesis in Halobacterium salinarium PHH1 involves the expression of the p-vac region consisting of 14 different gvp genes that are arranged in two clusters: p-gvpACNO and, oppositely oriented, p-gvpDEFGHIJKLM. The latter cluster of genes is transcribed as two units: p-gvpDE and p-gvpF-M. The 5'-terminus of the p-gvpF-M mRNA was located 169 nucleotides upstream of p-gvpF within p-gvpE. The p-gvpG and p-gvpK gene was expressed in Escherichia coli and antibodies to proteins obtained were raised in rabbits. Both proteins could be detected in halobacterial cell lysates; in gas-vesicle preparations, however, neither GvpG nor GvpK could be found. The requirement for single p-gvp gene expression for gas-vesicle synthesis was determined by transformation experiments using the Vac- species Haloferax volcanii as recipient. Construct delta A containing all p-gvp genes except for p-gvpA, encoding the major gas-vesicle structural protein, produced Vac- transformants, but the addition of p-gvpA on a second vector restored gas-vesicle synthesis to wild-type level (Vac++). Similarly, double transformants containing p-gvpD-M plus p-gvpACNO, or p-gvpG-M (fused to the promoter of the halobacterial ferredoxin gene for expression) plus p-gvpFED-ACNO were Vac++. Transformants containing the p-vac region either lacking gvpA, gvpF, or gvpGHI were Vac-, indicating the absolute requirement of these gvp genes (or at least one in the case of gvpGHI) for gas-vesicle formation. Double transformants containing the constructs p-gvpF-M plus p-gvpACNO (delta DE) accumulated gas vesicles (Vac+) but synthesized fewer than the wild type, showing that the p-gvpDE genes are not necessary for gas-vesicle assembly. A repressor function affecting the synthesis of the p-gvpF-M mRNA could be suggested for p-gvpD and the 5'-region of its mRNA.
Collapse
Affiliation(s)
- S Offner
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
16
|
Abstract
We have used a plasmid-based transcriptional reporter system to examine the transcriptional effects of 33 single point mutations in the box A region (TATA-like sequence) of the Haloferax volcanii tRNA(Lys) promoter. The most pronounced effects on transcriptional efficiency were found when the nucleotides corresponding to the TATA-like region were altered. Promoters with wild-type or higher levels of transcriptional activity conformed to the general archaeal box A consensus, 5'-T/CTTAT/AA-3'. The preference for a pyrimidine residue in the 5' position of this region and the exclusion of guanine and cytosine in the next four positions in the 3' direction are defining characteristics shared by all efficient archaeal promoters. We have also observed that replacement of a 10-nucleotide purine-rich sequence, located 5' of the H. volcanii tRNA(Lys) box A element, completely abolished transcription from this promoter. These data show that the H. volcanii tRNA(Lys) promoter is dependent on two separate, and essential, sequence elements. The possible functions of these sequences, in view of the recent descriptions of eucaryal-like transcription factors for Archaea, are discussed.
Collapse
Affiliation(s)
- J R Palmer
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
17
|
DasSarma S, Arora P, Lin F, Molinari E, Yin LR. Wild-type gas vesicle formation requires at least ten genes in the gvp gene cluster of Halobacterium halobium plasmid pNRC100. J Bacteriol 1994; 176:7646-52. [PMID: 8002589 PMCID: PMC197222 DOI: 10.1128/jb.176.24.7646-7652.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To study the functions of the 13 gvp genes, gvpMLKJIHGFEDACN, on plasmid pNRC100 of Halobacterium halobium in gas vesicle formation, we carried out linker scanning mutagenesis of the gene cluster. We constructed a 24.5-kb Escherichia coli-H. halobium shuttle plasmid, pFL2, containing the gvp gene cluster and introduced a kanamycin resistance (kappa) cassette into each gene (except for gvpA). Transformation of H. halobium SD109, which had the entire gvp gene cluster deleted, with pFL2 and mutated pFL2 derivatives showed that while the unmutated gene cluster successfully programmed gas vesicle formation, derivatives with insertion of the kappa cassette in any of the gvp genes, except gvpM, did not lead to production of normal gas vesicles. Insertions in gvpL, -K, -J, -I, and -F resulted in a complete block in gas vesicle synthesis, while insertions in gvpH, -G, -E, -D, -C, and -N resulted in greatly reduced gas vesicle synthesis. In most cases, the block in gas vesicle synthesis did not result from polar effects, since similar results were obtained for derivatives of the insertion mutants in which most of the internal portion of the kappa cassette was deleted and only small (15 to 54-bp) insertions remained. The only exceptions were for gvpH and gvpD, where deletion of the internal portion of the kappa insertions resulted in phenotypic reversion. Electron microscopic analysis of the kappa mutants revealed that interruptions of gvpC and gvpN result in the formation of smaller gas vesicle than in the wild type, while interruptions of gvpF, -G, -H, -J, -K, and -L produce no discernible vesicle intermediates. These results indicate the gvpA, -C, and -N, which have the rightward transcriptional orientation, encode structural proteins, with gvpC and gvpN necessary for late stages of vesicle formation, and gvpL, -K, -J, -I, -H, -G, and -F, which have the leftward transcriptional orientation encode proteins involved in early steps in the assembly of gas vesicles.
Collapse
Affiliation(s)
- S DasSarma
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | | | | | |
Collapse
|
18
|
Abstract
The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins.
Collapse
Affiliation(s)
- A E Walsby
- Department of Botany, University of Bristol, England
| |
Collapse
|
19
|
Abstract
We have identified the replication origin of pNRC100, a 200-kb plasmid of Halobacterium halobium, by assaying for replication ability of miniplasmids containing cloned fragments of pNRC100 and the mevinolin resistance selectable marker of Haloferax volcanii. First, we showed the replication ability of plasmid pNGHCMEV1, which contains the 19-kb HindIII-C fragment of pNRC100, by recovery of plasmid DNA from mevinolin-resistant transformants of H. halobium. The minimal replication origin of approximately 3.9 kb was defined by subcloning successively smaller regions of pNGHCMEV1 and assaying for plasmid replication in either H. halobium or H. volcanii. The same replication origin was also recovered after transformation of H. volcanii with a library of partial Sau3AI fragments of pNRC100. The nucleotide sequence of the minimal replication origin was determined and found to contain a long open reading frame, named repH, transcribed away from a highly A+T-rich region. The transcription start site was identified by primer extension analysis to be 17 to 18 nucleotides 5' to a putative repH start codon. The predicted product of the repH gene, an acidic protein with a molecular weight of 113,442, showed 24 to 27% identity with predicted gene products of H. volcanii plasmid pHV2 and H. halobium plasmid p phi HL, suggesting that each is involved in plasmid replication. One pNRC100 minireplicon, pNG11 delta 12, was analyzed by linker scanning mutagenesis, which showed the requirement of repH for replication. Restoration of the repH reading frame of one replication-defective pNG11 delta 12 derivative by introduction of a second small insertion resulted in reversion to replication proficiency. The replication ability of pNG11delta12 was lost when the entire A+T-rich region, about 550 bp long, was deleted but not when small insertions or deletions were introduced into this region. The presence of only 52 bp of the A+T-rich segment was sufficient to permit replication. The pNG11delta12 minireplicon was lost at high frequency from cells grown without mevinolin selection, suggesting that the plasmid partitioning locus of pNRC100 is absent in the minimal replication origin region. We discuss the possible roles of the repH gene and the A+T-rich region in replication of pNRC100.
Collapse
Affiliation(s)
- W L Ng
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
20
|
DasSarma S. Identification and analysis of the gas vesicle gene cluster on an unstable plasmid of Halobacterium halobium. EXPERIENTIA 1993; 49:482-6. [PMID: 8335077 DOI: 10.1007/bf01955149] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In our efforts to elucidate the mechanism of high-frequency mutation of Halobacterium halobium to a gas vesicle deficient state, we discovered insertions, deletions, inversions, and complex DNA rearrangements associated with a large endogenous plasmid, pNRC100. The rearrangements are mostly IS element-mediated, and when they occur in a region of pNCRC100 containing a cluster of thirteen genes, gas vesicle mutants result. We have characterized the structure and expression of this gas vesicle protein (gvp) gene cluster and demonstrated its requirement for gas vesicle synthesis and cell flotation by genetic transformation.
Collapse
Affiliation(s)
- S DasSarma
- Department of Microbiology, University of Massachusetts, Amherst 01003
| |
Collapse
|
21
|
Pfeifer F, Ghahraman P. Plasmid pHH1 of Halobacterium salinarium: characterization of the replicon region, the gas vesicle gene cluster and insertion elements. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:193-200. [PMID: 8386798 DOI: 10.1007/bf00279547] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60-70% A+T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | |
Collapse
|
22
|
Halladay JT, Jones JG, Lin F, MacDonald AB, DasSarma S. The rightward gas vesicle operon in Halobacterium plasmid pNRC100: identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J Bacteriol 1993; 175:684-92. [PMID: 8423144 PMCID: PMC196206 DOI: 10.1128/jb.175.3.684-692.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The extreme halophile Halobacterium halobium synthesizes intracellular gas-filled vesicles that confer buoyancy. A cluster of 13 genes on the 200-kb endogenous plasmid pNRC100 has been implicated in the biosynthesis of gas vesicles. Here, we show that two gas vesicle proteins are encoded by genes in the rightward operon, gvpA and gvpC, by Western blotting (immunoblotting) analysis with antibodies directed against LacZ-GvpA and LacZ-GvpC fusion proteins. Our results are consistent with previous data showing that the gvpA gene product is the major gas vesicle protein and demonstrate for the first time that the gvpC gene product is also present in H. halobium gas vesicles. Northern (RNA) blotting analysis showed two RNA species, an abundant 0.35-kb transcript of gvpA and a minor 2.5-kb transcript of gvpAC, and a third gene 3' to gvpAC, named gvpN. The gvpN gene encodes a hypothetical acidic protein with a molecular weight of 39,000 and a nucleotide binding motif. We used a site-directed mutagenesis method involving double recombination in Escherichia coli to insert a kanamycin resistance cassette just beyond the stop codon of gvpN. Introduction of the mutated gene cluster into an H. halobium mutant with a deletion of the entire gas vesicle gene cluster resulted in gas vesicle-positive transformants; this result suggests that gvpN is the last gene of the rightward gas vesicle transcription unit. We discuss the design and utility of the kanamycin resistance cassette for the mutagenesis of other genes in large operons.
Collapse
Affiliation(s)
- J T Halladay
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Chapter 15 Halobacterial genes and genomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Chapter 12 Transcription in archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
26
|
Pfeifer F, Englert C. Function and biosynthesis of gas vesicles in halophilic Archaea. J Bioenerg Biomembr 1992; 24:577-85. [PMID: 1459989 DOI: 10.1007/bf00762350] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The proteinaceous gas vesicles produced by various microorganisms including halophilic Archaea are hollow, gas-filled structures with a hydrophobic inner and a hydrophilic outer surface. The structural components of gas vesicles and their biosynthesis are still under investigation; an 8-kDa polypeptide appears to be the major constituent of the gas-vesicle envelope. Genetic analysis of the halobacterial gas-vesicle synthesis revealed an unexpected complexity: about 14 genes organized in three transcription units are involved in gas-vesicle structure, assembly, and gene regulation. Here we describe the comparison of three different genomic regions encoding gas vesicles in Halobacterium salinarium (p-vac and c-vac regions) and Haloferax mediterranei (mc-vac region) and speculate on the function of the gene products involved in gas-vesicle synthesis.
Collapse
Affiliation(s)
- F Pfeifer
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
27
|
Hain J, Reiter WD, Hüdepohl U, Zillig W. Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res 1992; 20:5423-8. [PMID: 1279520 PMCID: PMC334351 DOI: 10.1093/nar/20.20.5423] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The sequence requirements for specific and efficient transcription from the 16S/23S rRNA promoter of Sulfolobus shibatae were analysed by point mutations and by cassette mutations using an in vitro transcription system. The examination of the box A-containing distal promoter element (DPE) showed the great importance of the TA sequence in the center of box A for transcription efficiency and the influence of the sequence upstream of box A on determining the distance between the DPE and the start site. In most positions of box A, replacement of the wild type bases by adenines or thymines are less detrimental than replacements by cytosines or guanines. The effectiveness of the proximal promoter element (PPE) was not merely determined by its high A + T content but appeared to be directly related to its nucleotide sequence. At the start site a pyrimidine/purine (py/pu) sequence was necessary for unambiguous initiation as shown by analysis of mutants where the wild type start base was replaced. The sequence of box A optimal for promoter function in vitro is identical to the consensus of 84 mapped archaeal promoter sequences.
Collapse
Affiliation(s)
- J Hain
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
28
|
Halladay JT, Ng WL, DasSarma S. Genetic transformation of a halophilic archaebacterium with a gas vesicle gene cluster restores its ability to float. Gene X 1992; 119:131-6. [PMID: 1398080 DOI: 10.1016/0378-1119(92)90078-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The halophilic archaebacterium, Halobacterium halobium, and many other aquatic bacteria synthesize gas-filled vesicles for flotation. We recently identified a cluster of 13 genes (gvpMLKJIHGFEDACN) on a 200-kb H. halobium plasmid, pNRC100, involved in gas vesicle synthesis. We have cloned and reconstructed the gvp gene cluster on an H. halobium-E. coli shuttle plasmid. Transformation of H. halobium Vac- mutants lacking the entire gas vesicle gene region with the gvp gene cluster results in restoration of their ability to float. These results open the way toward further genetic analysis of gas vesicle gene functions and directed flotation of other microorganisms with potential biotechnological applications.
Collapse
Affiliation(s)
- J T Halladay
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
29
|
Englert C, Krüger K, Offner S, Pfeifer F. Three different but related gene clusters encoding gas vesicles in halophilic archaea. J Mol Biol 1992; 227:586-92. [PMID: 1404376 DOI: 10.1016/0022-2836(92)90914-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present an analysis of the chromosomal region comprising the gene cluster involved in gas vesicle (Vac) synthesis in Haloferax mediterranei (mc-vac-region) and Halobacterium salinarium (c-vac-region) and compare both of them to the plasmid located p-vac-region of H. salinarium. The p-vac-region of 9000 base-pairs (9 kb) is more related to mc-vac (9.4 kb) of Hf. mediterranei than it is to the c-vac-region (8.3 kb) present in the same cell. The Vac- species Hf. volcanii becomes Vac+ following transformation with a fragment containing the entire mc-vac-region. Also the p-vac-region transforms Hf. volcanii to a Vac+ phenotype, indicating that this gene cluster is sufficient for gas vesicle synthesis and does not depend on products of the c-vac-region. Each of these vac-regions contains, in addition to gvpA encoding the major gas vesicle protein, 13 open reading frames named gvpC through gvpO. Ten of these, gvpD through gvpM, are located upstream from gvpA in opposite orientation, while gvpC, gvpN and gvpO are found 3' to gvpA. The absolute requirement of gvpO for gas vesicle synthesis was demonstrated by transformation experiments. Northern analyses with RNA samples isolated during the growth cycle of Hf. mediterranei or of H. salinarium PHH4 revealed that the mc-gvpD or c-gvpD mRNAs occur similar to the respective gvpA mRNA in stationary growth phase, while gvpF-gvpM are transcribed mainly during logarithmic growth. S1-nuclease mapping was performed to determine the transcriptional start site of the gvpD mRNA. The distance between the two divergent start sites of gvpA and gvpD mRNA is 109 base-pairs in mc-vac and p-vac, while in the case of c-vac this distance is 22 base-pairs larger. The conservation of the various gvp products, characteristic features and their possible functions in gas vesicle synthesis are discussed.
Collapse
Affiliation(s)
- C Englert
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
30
|
Jones JG, Young DC, DasSarma S. Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 1991; 102:117-22. [PMID: 1864501 DOI: 10.1016/0378-1119(91)90549-q] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Halobacterium halobium strain NRC-1 contains intracellular gas-filled vesicles (GVs) that confer buoyancy to the cells. Cloning of the major GV protein (GvpA)-encoding gene, gvpA, and analysis of GV-deficient mutants (Vac-) of H. halobium led to the identification of a region of a 200-kb plasmid, pNRC100, important for GV synthesis. We report here the nucleotide sequence of an 8520-bp region which, including gvpA, contains twelve open reading frames (ORFs) that are organized into two divergent transcription units, gvpAC oriented rightward, and gvpD, E, F, G, H, I, J, K, L, and M located upstream from gvpAC and oriented leftward. Insertions into the gvpA promoter and gvpD and E resulted in the Vac- phenotype. The overall gene organization is highly compact with the end of one ORF overlapping with the beginning of the next in most cases. The gene cluster is bracketed by two ISH8 element copies in inverted orientation, an organization suggestive of a composite transposon. Comparison of predicted amino acid sequences showed homology between GvpA, and the gvpJ and gvpM putative gene products. The putative gvpC gene product contains eight copies of an imperfectly repeated sequence with similarity to repeats in a cyanobacterial GvpC plus a highly acidic C-terminal region not found in the cyanobacterial homologue.
Collapse
Affiliation(s)
- J G Jones
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
31
|
Horne M, Englert C, Wimmer C, Pfeifer F. A DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol Microbiol 1991; 5:1159-74. [PMID: 1956294 DOI: 10.1111/j.1365-2958.1991.tb01889.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We determined the minimal size of the genomic region necessary for gas vesicle synthesis in halophilic archaebacteria by transformation experiments, comparative DNA sequence analysis and investigation of gas vesicle (Vac) mutants. The comparison of the three genomic regions encoding gas vesicles in Halobacterium halobium (p-vac- and c-vac-region) and Haloferax mediterranei (mc-vac-region) indicates high DNA sequence similarity throughout a contiguous sequence of 9 kbp. In each case, this area encompassed at least 13 open reading frames (ORFs). Ten of these ORFs (gvpD to gvpM) were located 5' to the vac gene encoding the major gas vesicle protein, but were transcribed from the opposite strand. At least two ORFs (gvpC, and gvpN) were located 3' to each vac gene and transcribed from the same strand as the respective vac gene. In the p-vac-region present on plasmid pHH1 these ORFs were transcribed as at least three units, one transcript encompassing gvpD-gvpE, the second encompassing ORFs gvpF to gvpM, and the third unit comprising the ORFs located 3' to the p-vac gene. In H. halobium Vac mutants copies of the insertion elements ISH2, ISH23, ISH26 or ISH27 were found to be integrated throughout the p-vac-region. The de novo synthesis of gas vesicles was tested by transformation of the Vac-negative species, Haloferax volcanii, with various subfragments of the mc-vac- or p-vac-region cloned into vector plasmids. In contrast to a fragment containing the entire 9 kbp region, none of the subfragments tested was sufficient to promote gas vesicle synthesis. However, gas vesicle synthesis could be restored in each Vac mutant containing an ISH element when the entire transcription unit encompassing the mutated gene on pHH1 was present in the wild-type form on the vector construct.
Collapse
Affiliation(s)
- M Horne
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
32
|
EKER APM, FORMENOY L, WIT LEADE. PHOTOREACTIVATION IN THE EXTREME HALOPHILIC ARCHAEBACTERIUM Halobacterium cutirubrum. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb08492.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
EKER APM, FORMENOY L, WIT LEADE. PHOTOREACTIVATION IN THE EXTREME HALOPHILIC ARCHAEBACTERIUM Halobacterium cutirubrum. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb08921.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Damerval T, Castets AM, Houmard J, Tandeau de Marsac N. Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp.: occurrence of a single photoregulated gene. Mol Microbiol 1991; 5:657-64. [PMID: 1904525 DOI: 10.1111/j.1365-2958.1991.tb00737.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gas vesicles are subcellular inclusions found in a large number of aquatic prokaryotes. The gvpA gene, which frequently occurs as a multigene family, encodes the major gas vesicle structural protein. In several cyanobacteria, another gene, gvpC, encodes a different protein which might be a dispensable element for gas vesicle formation. We report here the molecular characterization of a gvpA gene in Pseudanabaena sp. PCC 6901. In this planktonic cyanobacterium, it is the only gvp gene which could be detected, and electrophoretic analysis of isolated gas vesicles revealed the presence of a single protein. A monocistronic mRNA species corresponds to the transcription of the gvpA gene and the abundance of the gvpA mRNA is inversely correlated with photosynthetic photon flux indicating that a light-dependent transcriptional regulation is likely to be involved in the control of gas vacuolation in this strain.
Collapse
Affiliation(s)
- T Damerval
- Département de Biochimie et Génétique Moléculaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
35
|
Ng WL, Kothakota S, DasSarma S. Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 1991; 173:1958-64. [PMID: 1848217 PMCID: PMC207727 DOI: 10.1128/jb.173.6.1958-1964.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Halobacterium-halobium NRC-1 harbors a 200-kb plasmid, pNRC100, which contains a cluster of genes for synthesis of buoyant gas-filled vesicles. Physical mapping of pNRC100 by using pulsed-field gel electrophoresis showed the presence of a large (35 to 38-kb) inverted repeat (IR) sequence. Inversion isomers of pNRC100 were demonstrated by Southern hybridization analysis using two restriction enzymes, AflII and SfiI, that cut asymmetrically within the intervening small single-copy region and the large single-copy region, respectively, but not within the large IRs. No inversion isomers were observed for a deletion derivative of pNRC100 lacking one IR, which suggests that both copies are required for inversion to occur. Additionally, the identities and approximate positions of 17 insertion sequences (IS) in pNRC100 were determined by Southern hybridization and limited nucleotide sequence analysis across the IS element-target site junctions: ISH2, a 0.5-kb element, was found in four copies; ISH3, a 1.4-kb heterogeneous family of elements, was present in seven copies; ISH8, a 1.4-kb element, was found in five copies; and ISH50, a 1.0-kb element, was present in a single copy. The large IRs terminated at an ISH2 element at one end and an ISH3 element at the other end. pNRC100 is similar in structure to chloroplast and mitochondrial genomes, which contain large IRs and other large halobacterial and prokaryotic plasmids that are reservoirs of IS elements but lack the large IRs.
Collapse
Affiliation(s)
- W L Ng
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
36
|
Blaseio U, Pfeifer F. Transformation of Halobacterium halobium: development of vectors and investigation of gas vesicle synthesis. Proc Natl Acad Sci U S A 1990; 87:6772-6. [PMID: 11607099 PMCID: PMC54619 DOI: 10.1073/pnas.87.17.6772] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed vector plasmids for the transformation of Halobacterium halobium, using the replicon region from the halobacterial phage H or from the plasmid pHH1 together with a DNA fragment conferring resistance to mevinolin. H. halobium P03, a strain lacking pHH1 as well as the restriction endonuclease activity found in wild-type H. halobium, was used as the recipient strain. All H. halobium fragments tested for autonomous replication as well as the Haloferax volcanii vector pWL102 enabled stable plasmid maintenance in this strain. A frequent loss of all vectors (including pWL102) was observed in Hf. volcanii, where >90% of the mevinolin-resistant colonies obtained after transformation had lost the vector, presumably because of restriction endonuclease activity and concomitant recombination of the mevinolin resistance marker with the chromosome. The expression of gas vesicle-encoding genes (vac) was analyzed by using a 4.5-kilobase-pair (kbp) fragment containing the plasmid-encoded p-vac gene from H. halobium or an 11-kbp fragment containing the mc-vac chromosomal gene from Haloferax mediterranei for transformation experiments with H. halobium and Hf. volcanii. These experiments indicated that the mc-vac fragment contains all information necessary to synthesize gas vesicles, whereas in the case of the smaller p-vac fragment, complementation by other genes was required for a Vac+ phenotype.
Collapse
Affiliation(s)
- U Blaseio
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
37
|
Englert C, Horne M, Pfeifer F. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:225-32. [PMID: 1703266 DOI: 10.1007/bf00633822] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the moderately to extremely halophilic archaebacterium Haloferax mediterranei gas vacuoles are not observed before the stationary phase of growth, and only when the cells are grown in media containing more than 17% total salt. Under the electron microscope, isolated gas vesicles appear as cylindrical structures with conical ends that reach a maximal length of 1.5 microns; this morphology is different from the spindle-shaped gas vesicles found in the Halobacterium halobium wild type which expresses the plasmid-borne p-vac gene, but resembles that of gas vesicles isolated from H. halobium strains expressing the chromosomal c-vac gene. Both the p-vac and the c-vac genes encode very similar structural proteins accounting for the major part of the "membrane" of the respective gas vesicles. The homologous mc-vac gene was isolated from Hf. mediterranei using the p-vac gene as probe. The mc-vac coding region indicates numerous nucleotide differences compared to the p-vac anc c-vac genes; the encoded protein is, however, almost identical to the c-vac gene product. The start point of the 310 nucleotide mc-vac transcript determined by primer extension analysis and S1 mapping was located 20 bp upstream of the ATG start codon, which is at the same relative position as found for the other two vac mRNAs. During the growth cycle, mc-vac mRNA was detectable in Hf. mediterranei cells grown in 15% as well as 25% total salt, with a maximal level in the early stationary phase of growth. The relative abundance of mc-vac mRNA in cells grown at 25% salt was sevenfold higher than in cells grown in 15% total salt.
Collapse
Affiliation(s)
- C Englert
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
38
|
Yang CF, DasSarma S. Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor. J Bacteriol 1990; 172:4118-21. [PMID: 2163398 PMCID: PMC213402 DOI: 10.1128/jb.172.7.4118-4121.1990] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have investigated the expression of the bacteriorhodopsin gene (bop) and the gas vesicle protein gene (gvpA) in the extremely halophilic archaebacterium Halobacterium halobium, using primer-directed reverse transcription of RNA to quantify message levels. The level of gvpA gene transcript was found to increase about 5-fold from early to mid-logarithmic growth phase, while the level of bop gene transcript increased about 20-fold from mid-logarithmic to stationary phase. Transcriptional induction of both the gvpA and bop genes was significantly reduced by aeration and almost completely blocked by the DNA gyrase inhibitor novobiocin.
Collapse
Affiliation(s)
- C F Yang
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
39
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1989; 17:9511-24. [PMID: 2587282 PMCID: PMC335188 DOI: 10.1093/nar/17.22.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|