Nakatsu Y, Hattori K, Hayakawa H, Shimizu K, Sekiguchi M. Organization and expression of the human gene for O6-methylguanine-DNA methyltransferase.
Mutat Res 1993;
293:119-32. [PMID:
7678140 DOI:
10.1016/0921-8777(93)90063-m]
[Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
O6-Methylguanine-DNA methyltransferase plays an important role in cellular defence against mutagens and carcinogens with alkylating activity. Certain tumor-derived cell lines, termed Mer-, are defective in the enzyme activity and have an increased sensitivity to alkylating agents. We cloned the genomic sequence coding for the human O6-methylguanine-DNA methyltransferase and elucidated the structure. The gene consisted of 5 exons and spanned more than 170 kb, while mRNA for the enzyme was 950 nucleotides long. No or only little mRNA for the enzyme was formed in Mer- cells, though there was no gross difference in the coding and promoter regions of the gene between Mer+ and Mer- cells. The putative promoter region, derived from Mer+ cells, was placed upstream of the chloramphenicol acetyltransferase reporter gene and the constructs were introduced into Mer+ and Mer- cells. In Mer- cells, a lowered level of transient expression of the gene was observed as compared with Mer+ cells, but this difference alone does not account for the in vivo difference of expression of the gene in the two types of cells; there might be difference in cis-acting elements. The DNA sequence in the 5' upstream region of the gene was extremely GC-rich and there were no consensus sequences, such as the TATA and CAAT boxes. There were lower levels of methylation in the putative promoter of various Mer- cells, as compared with findings in Mer+ cells. Methylation in this region may be involved in regulating expression of the gene.
Collapse