1
|
Scripture JB, Huber PW. Binding site for Xenopus ribosomal protein L5 and accompanying structural changes in 5S rRNA. Biochemistry 2011; 50:3827-39. [PMID: 21446704 DOI: 10.1021/bi200286e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the eukaryotic L5-5S rRNA complex was investigated in protection and interference experiments and is compared with the corresponding structure (L18-5S rRNA) in the Haloarcula marismortui 50S subunit. In close correspondence with the archaeal structure, the contact sites for the eukaryotic ribosomal protein are located primarily in helix III and loop C and secondarily in loop A and helix V. While the former is unique to L5, the latter is also a critical contact site for transcription factor IIIA (TFIIIA), accounting for the mutually exclusive binding of these two proteins to 5S RNA. The binding of L5 causes structural changes in loops B and C that expose nucleotides that contact the Xenopus L11 ortholog in H. marismortui. This induced change in the structure of the RNA reveals the origins of the cooperative binding to 5S rRNA that has been observed for the bacterial counterparts of these proteins. The native structure of helix IV and loop D antagonizes binding of L5, indicating that this region of the RNA is dynamic and also influenced by the protein. Examination of the crystal structures of Thermus thermophilus ribosomes in the pre- and post-translocation states identified changes in loop D and in the surrounding region of 23S rRNA that support the proposal that 5S rRNA acts to transmit information between different functional domains of the large subunit.
Collapse
Affiliation(s)
- J Benjamin Scripture
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
2
|
Lee BM, Xu J, Clarkson BK, Martinez-Yamout MA, Dyson HJ, Case DA, Gottesfeld JM, Wright PE. Induced fit and "lock and key" recognition of 5S RNA by zinc fingers of transcription factor IIIA. J Mol Biol 2005; 357:275-91. [PMID: 16405997 DOI: 10.1016/j.jmb.2005.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/06/2005] [Indexed: 11/19/2022]
Abstract
Transcription factor IIIA (TFIIIA) is a Cys2His2 zinc finger protein that regulates expression of the 5 S ribosomal RNA gene by binding specifically to the internal control element. TFIIIA also functions in transport and storage of 5 S RNA by binding directly to the RNA transcript. To obtain insights into the mechanism by which TFIIIA recognizes 5 S RNA, we determined the solution structure of the middle three zinc fingers bound to the central core of 5 S RNA. Finger 4 utilizes "lock and key" recognition to bind in the widened major groove of the pre-structured RNA loop E motif. This interaction is mediated by direct hydrogen bonding interactions with bases. In contrast, recognition of loop A, a flexible junction of three helices, occurs by an induced fit mechanism that involves reorganization of the conserved CAUA motif and structuring of the finger 5-finger 6 interface to form a complementary RNA binding surface.
Collapse
Affiliation(s)
- Brian M Lee
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Neely LS, Lee BM, Xu J, Wright PE, Gottesfeld JM. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. J Mol Biol 1999; 291:549-60. [PMID: 10448036 DOI: 10.1006/jmbi.1999.2985] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factor IIIA of Xenopuslaevis serves a dual function during oogenesis and early development: this zinc finger protein binds to the internal promoter element of the 5 S ribosomal RNA genes and acts as a positive transcription factor; additionally, the protein functions in 5 S RNA storage. The central four zinc fingers (zf4-7) of the nine-finger protein have been shown to bind 5 S rRNA with comparable or higher affinity than the full-length protein. The role of finger seven in binding affinity has been examined by deletion analysis. A zf4-6 protein binds 5 S RNA with about a sevenfold reduction in binding affinity, compared to zf4-7. The effect of non-specific competitor DNA on binding affinities of the zinc finger peptides was examined and found to have a significant effect on the measured affinities of these peptides for full-length and truncated versions of 5 S RNA. The interaction of zf4-6 with full-length 5 S RNA was far more sensitive to non-specific competitor concentration than was the zf4-7:5 S RNA interaction, suggesting that finger seven contributes to both affinity and specificity in this protein:RNA interaction. In order to map zinc finger binding sites on the 5 S RNA molecule, we generated truncated versions of the RNA and tested these molecules for their binding affinities with zf4-7 and zf4-6. Previous studies showed that a 75 nucleotide long RNA, comprising loop A, helix II, helix V, region E and helix IV, bound zf4-7 with high affinity. Selection and amplification binding assays (selex) have now been used to generate smaller high-affinity binding RNAs. We find that a 55 nucleotide long RNA, comprising loop A, helix V, region E and helix IV, but lacking helix II, retains high affinity for zf4-6. These data are consistent with the proposal that fingers 4-6 bind this central core of 5 S RNA and that finger seven binds the helix II region.
Collapse
Affiliation(s)
- L S Neely
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
4
|
Salavati R, Oliver D. Identification of elements on GeneX-secA RNA of Escherichia coli required for SecA binding and secA auto-regulation. J Mol Biol 1997; 265:142-52. [PMID: 9020978 DOI: 10.1006/jmbi.1996.0724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protein translocation ATPase of Escherichia coli, SecA protein, auto-regulates its translation by binding to its translation initiation region in geneX-secA mRNA. To analyze this regulation further the secondary structure of this portion of geneX-secA RNA was investigated utilizing structure-specific nucleases and chemical probing approaches. The results of this analysis were consistent with the existence of two adjacent helices, helix I and the lower portion of helix II, whose function in secA activation and repression, respectively, has been demonstrated. Binding of SecA protein to geneX-secA RNA or various mutant derivatives of this RNA was studied by measurement of affinity constants, RNA footprint analysis, and quantitation of auto-repression in vivo. This analysis showed that the SecA-binding site in geneX-secA RNA was remarkably large spanning a region of 96 nucleotides including a 3' portion of helix II, the secA translation initiation region and distal sequences. From the size of the SecA-binding site and the plasticity of its response to mutational alteration, it is suggested that SecA protein contains two distinct RNA-binding sites. Finally, it was shown that SecA binding was not sufficient to promote auto-regulation and that sequences both upstream (helix I) and within the binding site can contribute to auto-regulation without affecting SecA-binding affinity.
Collapse
Affiliation(s)
- R Salavati
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
5
|
Rawlings SL, Matt GD, Huber PW. Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene. J Biol Chem 1996; 271:868-77. [PMID: 8557698 DOI: 10.1074/jbc.271.2.869] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Binding of transcription factor IIIA (TFIIIA) to site-specific mutants of Xenopus oocyte 5 S rRNA has been used to identify important recognition elements in the molecule. The putative base triple G75:U76:A100 appears to determine the conformation of the loop E region whose integrity is especially important for binding of the factor. Proximal substitutions in helices IV and V indicate that the proper folding of loop E is also dependent on these structures. Mutations in helix V affect binding of TFIIIA to 5 S rRNA and to the gene similarly and provide evidence that zinc finger 5 makes sequence-specific contact through the major groove of both nucleic acids. Although fingers 1-3 are positioned along helix IV and loop D, mutations in this region, including those that disrupt the tetraloop or close the opening in the major groove of the helix created by the U80:U96 mismatch, have no impact on binding. Substitutions made at stem-loop junctions in the arm of the RNA comprised of helix II-loop B-helix III display minor decreases in affinity for TFIIIA. Despite the alignment of the factor along nearly the entire length of 5 S rRNA, the essential elements for high affinity binding are limited to the central region of the molecule. Analysis of the corresponding mutations in the gene confirm that box C and the intermediate element provide the high affinity sites for binding of the factor to the DNA. Despite the small thermodynamic contribution made by contacts to box A, mutations made in this element can cause substantial changes in the orientation of the carboxyl-terminal fingers along the 5'-end of the internal control region.
Collapse
Affiliation(s)
- S L Rawlings
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
6
|
Affiliation(s)
- K B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
7
|
Structural requirements of 5S rRNA for nuclear transport, 7S ribonucleoprotein particle assembly, and 60S ribosomal subunit assembly in Xenopus oocytes. Mol Cell Biol 1993. [PMID: 8413275 DOI: 10.1128/mcb.13.11.6819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural requirements of 5S rRNA for nuclear transport and RNA-protein interactions have been studied by analyzing the behavior of oocyte-type 5S rRNA and of 31 different in vitro-generated mutant transcripts after microinjection into the cytoplasm of Xenopus oocytes. Experiments reveal that the sequence and secondary and/or tertiary structure requirements of 5S rRNA for nuclear transport, storage in the cytoplasm as 7S ribonucleoprotein particles, and assembly into 60S ribosomal subunits are complex and nonidentical. Elements of loops A, C, and E, helices II and V, and bulged and hinge nucleotides in the central domain of 5S rRNA carry the essential information for these functional activities. Assembly of microinjected 5S rRNA into 60S ribosomal subunits was shown to occur in the nucleus; thus, the first requirement for subunit assembly is nuclear targeting. The inhibitory effects of ATP depletion, wheat germ agglutinin, and chilling on the nuclear import of 5S rRNA indicate that it crosses the nuclear envelope through the nuclear pore complex by a pathway similar to that used by karyophilic proteins.
Collapse
|
8
|
Allison LA, North MT, Murdoch KJ, Romaniuk PJ, Deschamps S, le Maire M. Structural requirements of 5S rRNA for nuclear transport, 7S ribonucleoprotein particle assembly, and 60S ribosomal subunit assembly in Xenopus oocytes. Mol Cell Biol 1993; 13:6819-31. [PMID: 8413275 PMCID: PMC364744 DOI: 10.1128/mcb.13.11.6819-6831.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Structural requirements of 5S rRNA for nuclear transport and RNA-protein interactions have been studied by analyzing the behavior of oocyte-type 5S rRNA and of 31 different in vitro-generated mutant transcripts after microinjection into the cytoplasm of Xenopus oocytes. Experiments reveal that the sequence and secondary and/or tertiary structure requirements of 5S rRNA for nuclear transport, storage in the cytoplasm as 7S ribonucleoprotein particles, and assembly into 60S ribosomal subunits are complex and nonidentical. Elements of loops A, C, and E, helices II and V, and bulged and hinge nucleotides in the central domain of 5S rRNA carry the essential information for these functional activities. Assembly of microinjected 5S rRNA into 60S ribosomal subunits was shown to occur in the nucleus; thus, the first requirement for subunit assembly is nuclear targeting. The inhibitory effects of ATP depletion, wheat germ agglutinin, and chilling on the nuclear import of 5S rRNA indicate that it crosses the nuclear envelope through the nuclear pore complex by a pathway similar to that used by karyophilic proteins.
Collapse
Affiliation(s)
- L A Allison
- Department of Zoology, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
9
|
Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA. Mol Cell Biol 1993. [PMID: 7689146 DOI: 10.1128/mcb.13.9.5149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor IIIA (TFIIIA) employs an array of nine N-terminal zinc fingers to bind specifically to both 5S RNA and 5S DNA. The binding of TFIIIA to 5S RNA and 5S DNA was studied by using a protease footprinting technique. Brief treatment of free or bound TFIIA with trypsin or chymotrypsin generated fragments which were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fragments retaining the N terminus of TFIIA were identified by immunoblotting with an antibody directed against the N terminus of TFIIIA. Proteolytic footprinting of TFIIIA complexed with 5S DNA derivatives reinforced other evidence that the three N-terminal zinc fingers of TFIIIA bind most tightly to 5S DNA. Proteolytic footprinting of TFIIIA in reconstituted 7S ribonucleoprotein particles revealed different patterns of trypsin sensitivity for TFIIIA bound to oocyte versus somatic 5S RNA. Trypsin cleaved TFIIIA between zinc fingers 3 and 4 more readily when the protein was bound to somatic 5S RNA than when it was bound to oocyte 5S RNA. A tryptic fragment of TFIIIA containing zinc fingers 4 through 7 remained tightly associated with somatic 5S RNA. Zinc fingers 4 through 7 may represent a tightly binding site for 5S RNA in the same sense that fingers 1 through 3 represent a tightly binding site for 5S DNA.
Collapse
|
10
|
Bogenhagen DF. Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA. Mol Cell Biol 1993; 13:5149-58. [PMID: 7689146 PMCID: PMC360203 DOI: 10.1128/mcb.13.9.5149-5158.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription factor IIIA (TFIIIA) employs an array of nine N-terminal zinc fingers to bind specifically to both 5S RNA and 5S DNA. The binding of TFIIIA to 5S RNA and 5S DNA was studied by using a protease footprinting technique. Brief treatment of free or bound TFIIA with trypsin or chymotrypsin generated fragments which were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fragments retaining the N terminus of TFIIA were identified by immunoblotting with an antibody directed against the N terminus of TFIIIA. Proteolytic footprinting of TFIIIA complexed with 5S DNA derivatives reinforced other evidence that the three N-terminal zinc fingers of TFIIIA bind most tightly to 5S DNA. Proteolytic footprinting of TFIIIA in reconstituted 7S ribonucleoprotein particles revealed different patterns of trypsin sensitivity for TFIIIA bound to oocyte versus somatic 5S RNA. Trypsin cleaved TFIIIA between zinc fingers 3 and 4 more readily when the protein was bound to somatic 5S RNA than when it was bound to oocyte 5S RNA. A tryptic fragment of TFIIIA containing zinc fingers 4 through 7 remained tightly associated with somatic 5S RNA. Zinc fingers 4 through 7 may represent a tightly binding site for 5S RNA in the same sense that fingers 1 through 3 represent a tightly binding site for 5S DNA.
Collapse
Affiliation(s)
- D F Bogenhagen
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794-8651
| |
Collapse
|
11
|
Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene. Mol Cell Biol 1992. [PMID: 1620123 DOI: 10.1128/mcb.12.7.3155] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.
Collapse
|
12
|
Darby MK, Joho KE. Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene. Mol Cell Biol 1992; 12:3155-64. [PMID: 1620123 PMCID: PMC364530 DOI: 10.1128/mcb.12.7.3155-3164.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.
Collapse
Affiliation(s)
- M K Darby
- Jefferson Cancer Institute, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
13
|
Bogenhagen DF, Sands MS. Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site. Nucleic Acids Res 1992; 20:2639-45. [PMID: 1614850 PMCID: PMC336902 DOI: 10.1093/nar/20.11.2639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The repetitive zinc finger domain of transcription factor IIIA binds 5S DNA and 5S RNA with similar affinity. Site directed mutagenesis of the Xenopus borealis somatic 5S RNA gene has been used to produce a series of derivatives of 5S RNA containing local sequence substitutions or sequence deletions. Gel mobility shift analyses of the binding of TFIIIA to these altered 5S RNAs revealed that all three of the helical stems of the 5S RNA secondary structure are required for binding. TFIIIA was observed to bind with normal affinity to RNAs lacking 12 nucleotides at either the loop c or loop e/helix V regions of 5S RNA, as well as to a double mutant containing both deletions. The secondary structure of the resulting 96-nucleotide RNA, studied using structure-specific ribonucleases, was found to resemble the central portion of 5S RNA.
Collapse
Affiliation(s)
- D F Bogenhagen
- Department of Pharmacological Sciences, SUNY, Stony Brook 11794-8651
| | | |
Collapse
|
14
|
Abstract
The structures of several classes of DNA-binding domains reveal a variety of designs for recognizing a specific site on DNA.
Collapse
Affiliation(s)
- S C Harrison
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
15
|
Ryan PC, Lu M, Draper DE. Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 1991; 221:1257-68. [PMID: 1942050 DOI: 10.1016/0022-2836(91)90932-v] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antibiotic thiostrepton, a thiazole-containing peptide, inhibits translation and ribosomal GTPase activity by binding directly to a limited and highly conserved region of the large subunit ribosomal RNA termed the GTPase center. We have previously used a filter binding assay to examine the binding of ribosomal protein L11 to a set of ribosomal RNA fragments encompassing the Escherichia coli GTPase center sequence. We show here that thiostrepton binding to the same RNA fragments can also be detected in a filter binding assay. Binding is relatively independent of monovalent salt concentration and temperature but requires a minimum Mg2+ concentration of about 0.5 mM. To help determine the RNA features recognized by L11 and thiostrepton, a set of over 40 RNA sequence variants was prepared which, taken together, change every nucleotide within the 1051 to 1108 recognition domain while preserving the known secondary structure of the RNA. Binding constants for L11 and thiostrepton interaction with these RNAs were measured. Only a small number of sequence variants had more than fivefold effects on L11 binding affinities, and most of these were clustered around a junction of helical segments. These same mutants had similar effects on thiostrepton binding, but more than half of the other sequence changes substantially reduced thiostrepton binding. On the basis of these data and chemical modification studies of this RNA domain in the literature, we propose that L11 makes few, if any, contacts with RNA bases, but recognizes the three-dimensional conformation of the RNA backbone. We also argue from the data that thiostrepton is probably sensitive to small changes in RNA conformation. The results are discussed in terms of a model in which conformational flexibility of the GTPase center RNA is functionally important during the ribosome elongation cycle.
Collapse
Affiliation(s)
- P C Ryan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
16
|
You QM, Veldhoen N, Baudin F, Romaniuk PJ. Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry 1991; 30:2495-500. [PMID: 2001375 DOI: 10.1021/bi00223a028] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects on TFIIIA binding affinity of a series of substitution mutations in the Xenopus laevis oocyte 5S RNA gene were quantified. These data indicate that TFIIIA binds specifically to 5S DNA by forming sequence-specific contacts with three discrete sites located within the classical A and C boxes and the intermediate element of the internal control region. Substitution of the nucleotide sequence at any of the three sites significantly reduces TFIIIA binding affinity, with a 100-fold reduction observed for substitutions in the box C subregion. These results are consistent with a direct interaction of TFIIIA with specific base pairs within the major groove of the DNA. A comparison of the TFIIIA binding data for the same mutations expressed in 5S RNA indicates that the protein does not make any strong sequence-specific contacts with the RNA. Although the protein footprinting sites on the 5S DNA and 5S RNA are coincident, nucleotide substitutions in 5S RNA which moderately reduce TFIIIA binding affinity do not correspond at all to the three specific TFIIIA interaction sites within the gene. The implications of these results for models which attempt to reconcile the DNA and RNA binding activities of TFIIIA by proposing a common structural motif for the two nucleic acids are discussed.
Collapse
Affiliation(s)
- Q M You
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
17
|
Baudin F, Romaniuk PJ, Romby P, Brunel C, Westhof E, Ehresmann B, Ehresmann C. Involvement of "hinge" nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. J Mol Biol 1991; 218:69-81. [PMID: 2002508 DOI: 10.1016/0022-2836(91)90874-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleotides in the bifurcation region of the 5 S rRNA, the junction of the three helical domains, play a central role in determining the coaxial stacking interactions and tertiary structure of the RNA. We have used site-directed mutagenesis of Xenopus laevis oocyte 5 S rRNA to make all possible nucleotide substitutions at three positions in loop A (10, 11 and 13) and at the G66.U109 base-pair at the beginning of helix V. Certain double point mutations were constructed to ascertain the relationship between loop A nucleotides and the G.U base-pair. The importance of the size of the bifurcation region was tested by the creation of a single nucleotide deletion mutant and two single nucleotide insertion mutants. The effects of these mutations on the structure and function of the 5 S rRNA were determined by solution structure probing of approximately half of the mutants with chemical reagents, and by measuring the relative binding affinity of each mutant for transcription factor TFIIIA. Proposed structural rearrangements in the bifurcation region were tested by using a graphic modeling method combining stereochemical constraints and chemical reactivity data. From this work, several insights were obtained into the general problem of helix stacking and RNA folding at complex bifurcation regions. None of the mutations caused an alteration of the coaxial stacking of helix V on helix II proposed for the wild-type 5 S rRNA. However, the formation of a Watson-Crick pair between nucleotide 13 of loop A and nucleotide 66 at the top of helix V does cause a destabilization of the proximal part of this helix. Also, nucleotide 109 at the top of helix V will preferentially pair with nucleotide 10 of loop A rather than nucleotide 66 when both possibilities are provided, without affecting the stability of helix V, even though the G.U pair is disrupted. The effects of these mutations on TFIIIA binding indicate that the bifurcation region is critical for protein recognition. One important feature of the relationship between 5 S rRNA structure and TFIIIA recognition resulting from this study was the observation that any mutation that constrains the bifurcation loop results in a reduced affinity of the RNA for TFIIIA, unless it is compensated for by an increased flexibility elsewhere.
Collapse
Affiliation(s)
- F Baudin
- University of Victoria, Department of Biochemistry and Microbiology, Victoria, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Shastry BS. Xenopus transcription factor IIIA (XTFIIIA): after a decade of research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1991; 56:135-44. [PMID: 1947129 DOI: 10.1016/0079-6107(91)90017-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Xenopus transcription factor IIIA (XTFIIIA) is the first eukaryotic transcription factor purified to homogeneity and is specifically required for the 5S RNA gene transcription. It contains two structural domains and nine zinc finger motifs through which it recognizes the promoter region of the 5S RNA gene. It also binds to 5S RNA and serves to store 5S RNA in the form of 7S ribonucleoprotein particles in oocytes. Additionally, it forms a metastable complex with 5S DNA and promotes the formation of stable and competent transcription complexes. Its expression is developmentally controlled at the level of transcription and translation. Moreover, it participates in the assembly of active chromatin templates and at least, in part, is responsible for the developmental regulation of two kinds of 5S RNA genes in Xenopus.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute of Oakland University, Rochester, MI 48309
| |
Collapse
|