1
|
Robida MD, Rahn A, Singh R. Genome-wide identification of alternatively spliced mRNA targets of specific RNA-binding proteins. PLoS One 2007; 2:e520. [PMID: 17565373 PMCID: PMC1885218 DOI: 10.1371/journal.pone.0000520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Background Alternative splicing plays an important role in generating molecular and functional diversity in multi-cellular organisms. RNA binding proteins play crucial roles in modulating splice site choice. The majority of known binding sites for regulatory proteins are short, degenerate consensus sequences that occur frequently throughout the genome. This poses an important challenge to distinguish between functionally relevant sequences and a vast array of those occurring by chance. Methodology/Principal Findings Here we have used a computational approach that combines a series of biological constraints to identify uridine-rich sequence motifs that are present within relevant biological contexts and thus are potential targets of the Drosophila master sex-switch protein Sex-lethal (SXL). This strategy led to the identification of one novel target. Moreover, our systematic analysis provides a starting point for the molecular and functional characterization of an additional target, which is dependent on SXL activity, either directly or indirectly, for regulation in a germline-specific manner. Conclusions/Significance This approach has successfully identified previously known, new, and potential SXL targets. Our analysis suggests that only a subset of potential SXL sites are regulated by SXL. Finally, this approach should be directly relevant to the large majority of splicing regulatory proteins for which bonafide targets are unknown.
Collapse
Affiliation(s)
- Mark D. Robida
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Andrew Rahn
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2
|
Chang CC, Lin GW, Cook CE, Horng SB, Lee HJ, Huang TY. Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev Genes Evol 2007; 217:275-87. [PMID: 17333259 DOI: 10.1007/s00427-007-0142-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
In the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, germline specification depends on the germ plasm localized to the posterior region of the egg chamber before the formation of the blastoderm. During blastulation, germline segregation occurs at the egg posterior, and in early gastrulation germ cells are pushed inward by the invaginating germ band. Previous studies suggest that germ cells remain dorsal in the embryo in subsequent developmental stages. In fact, though, it is not known whether germ cells remain in place or migrate dynamically during katatrepsis and germ-band retraction. We cloned Apvasa, a pea aphid homologue of Drosophila vasa, and used it as a germline marker to monitor the migration of germ cells. Apvasa messenger RNA (mRNA) was first restricted to morphologically identifiable germ cells after blastoderm formation but that expression soon faded. Apvasa transcripts were again identified in germ cells from the stage when the endosymbiotic bacteria invaded the embryo, and after that, Apvasa mRNA was present in germ cells throughout all developmental stages. At the beginning of katatrepsis, germ cells were detected at the anteriormost region of the egg chamber as they were migrating into the body cavity. During the early period of germ-band retraction, germ cells were separated into several groups surrounded by a layer of somatic cells devoid of Apvasa staining, suggesting that the coalescence between migrating germ cells and the somatic gonadal mesoderm occurs between late katatrepsis and early germ-band retraction.
Collapse
Affiliation(s)
- Chun-Che Chang
- Laboratory for Genetics and Development, Department of Entomology, National Taiwan University, No. 27, Lane 113, Roosevelt Road, Sec. 4, Taipei 106, Taiwan.
| | | | | | | | | | | |
Collapse
|
3
|
Pradhan A, Chauhan VS, Tuteja R. Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 2005; 144:133-41. [PMID: 16165232 DOI: 10.1016/j.molbiopara.2005.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/07/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022]
Abstract
The fundamental biology and the biochemical processes at different developmental stages of the malaria parasite Plasmodium falciparum have not been explored in detail. As a step toward understanding the various mechanisms engaged in nucleic acid metabolism of this pathogen, particularly the essential enzymes involved in nucleic acid unwinding, recently, we have reported the isolation of the first P. falciparum DEAD-box DNA helicase 60 (PfDH60), which contained striking homology with p68 protein [Pradhan A, Chauhan VS, Tuteja R. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol Biochem Parasitol 2005;140:55-60]. In this study, we show novel important properties of PfDH60. Immunofluorescence assay studies revealed that the peak expression of PfDH60 is mainly in the schizont stages of the development of P. falciparum, where DNA replication is active. Interestingly, this is a bipolar DNA helicase, which unwinds dsDNA in both the directions. PfDH60 can also unwind RNA-DNA and RNA-RNA duplexes. PfDH60 is phosphorylated by protein kinase C at the Ser and Thr residues. The helicase and ATPase activities of PfDH60 were stimulated after this phosphorylation. The cell-cycle dependent expression, bipolar translocation and dual nature collectively suggest that PfDH60 may be involved in the process of DNA replication and distinct cellular processes in the parasite and this study should make an important contribution in our better understanding of DNA metabolic pathways such as repair, recombination and replication.
Collapse
Affiliation(s)
- Arun Pradhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
4
|
Pradhan A, Chauhan VS, Tuteja R. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol Biochem Parasitol 2005; 140:55-60. [PMID: 15694486 DOI: 10.1016/j.molbiopara.2004.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/07/2004] [Accepted: 12/08/2004] [Indexed: 11/17/2022]
Affiliation(s)
- Arun Pradhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
5
|
Dorer DR, Rudnick JA, Moriyama EN, Christensen AC. A family of genes clustered at the Triplo-lethal locus of Drosophila melanogaster has an unusual evolutionary history and significant synteny with Anopheles gambiae. Genetics 2004; 165:613-21. [PMID: 14573474 PMCID: PMC1462804 DOI: 10.1093/genetics/165.2.613] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Within the unique Triplo-lethal region (Tpl) of the Drosophila melanogaster genome we have found a cluster of 20 genes encoding a novel family of proteins. This family is also present in the Anopheles gambiae genome and displays remarkable synteny and sequence conservation with the Drosophila cluster. The family is also present in the sequenced genome of D. pseudoobscura, and homologs have been found in Aedes aegypti mosquitoes and in four other insect orders, but it is not present in the sequenced genome of any noninsect species. Phylogenetic analysis suggests that the cluster evolved prior to the divergence of Drosophila and Anopheles (250 MYA) and has been highly conserved since. The ratio of synonymous to nonsynonymous substitutions and the high codon bias suggest that there has been selection on this family both for expression level and function. We hypothesize that this gene family is Tpl, name it the Osiris family, and consider possible functions. We also predict that this family of proteins, due to the unique dosage sensitivity and the lack of homologs in noninsect species, would be a good target for genetic engineering or novel insecticides.
Collapse
Affiliation(s)
- Douglas R Dorer
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | |
Collapse
|
6
|
Gendra E, Moreno A, Albà MM, Pages M. Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:875-886. [PMID: 15165181 DOI: 10.1111/j.1365-313x.2004.02095.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The maize RNA-binding MA16 protein is a developmentally and environmentally regulated nucleolar protein that interacts with RNAs through complex association with several proteins. By using yeast two-hybrid screening, we identified a DEAD box RNA helicase protein from Zea mays that interacted with MA16, which we named Z. maysDEAD box RNA helicase 1 (ZmDRH1). The sequence of ZmDRH1 includes the eight RNA helicase motifs and two glycine-rich regions with arginine-glycine-rich (RGG) boxes at the amino (N)- and carboxy (C)-termini of the protein. Both MA16 and ZmDRH1 were located in the nucleus and nucleolus, and analysis of the sequence determinants for their cellular localization revealed that the region containing the RGG motifs in both proteins was necessary for nuclear/nucleolar localization The two domains of MA16, the RNA recognition motif (RRM) and the RGG, were tested for molecular interaction with ZmDRH1. MA16 specifically interacted with ZmDRH1 through the RRM domain. A number of plant proteins and vertebrate p68/p72 RNA helicases showed evolutionary proximity to ZmDRH1. In addition, like p68, ZmDRH1 was able to interact with fibrillarin. Our data suggest that MA16, fibrillarin, and ZmDRH1 may be part of a ribonucleoprotein complex involved in ribosomal RNA (rRNA) metabolism.
Collapse
Affiliation(s)
- Elisenda Gendra
- Departament de Genetica Molecular, IBMB-CSIC, C/Jordi Girona 18, Barcelona 08034, Spain
| | | | | | | |
Collapse
|
7
|
Chang CC, Dearden P, Akam M. Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev Biol 2002; 252:100-18. [PMID: 12453463 DOI: 10.1006/dbio.2002.0840] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others.
Collapse
Affiliation(s)
- Chun-che Chang
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | |
Collapse
|
8
|
Seufert DW, Kos R, Erickson CA, Swalla BJ. p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:193-204. [PMID: 11069138 DOI: 10.1002/1097-010x(20001015)288:3<193::aid-jez1>3.0.co;2-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The p68 DEAD-box RNA helicases have been identified in diverse organisms, including yeast, invertebrates, and mammals. DEAD-box RNA helicases are thought to unwind duplexed RNAs, and the p68 family may participate in initiating nucleolar assembly. Recent evidence also suggests that they are developmentally regulated in chordate embryos. bobcat, a newly described member of this gene family, has been found in eggs and developing embryos of the ascidian urochordate, Molgula oculata. Antisense RNA experiments have implicated this gene in establishing basic chordate features, including the notochord and neural tube in ascidians (Swalla et al. 1999). We have isolated p68 homologs from chick and Xenopus in order to investigate their possible role in vertebrate development. We show that embryonic expression of p68 in chick, frog, and ascidian embryos is high in the developing brain and spinal cord as well as in the sensory vesicles. In frog embryos, p68 expression also marks the streams of migrating cranial neural crest cells throughout neural tube development and in tailbud stages, but neural crest expression is faint in chick embryos. Ascidian embryos also show mesodermal p68 expression during gastrulation and neurulation, and we document some p68 mesodermal expression in both chick and frog. Thus, as shown in these studies, p68 is expressed in early neural development and in various mesodermal tissues in a variety of chordate embryos, including chick, frog, and ascidian. Further functional experiments will be necessary to understand the role(s) p68 may play in vertebrate development.
Collapse
Affiliation(s)
- D W Seufert
- Institute for Molecular and Evolutionary Genetics, Biology Department, Pennsylvania State University, University Park 16802, USA.
| | | | | | | |
Collapse
|
9
|
Schmucker D, Vorbrüggen G, Yeghiayan P, Fan HQ, Jäckle H, Gaul U. The Drosophila gene abstrakt, required for visual system development, encodes a putative RNA helicase of the DEAD box protein family. Mech Dev 2000; 91:189-96. [PMID: 10704843 DOI: 10.1016/s0925-4773(99)00298-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms underlying axonal pathfinding are not well understood. In a genetic screen for mutations affecting the projection of the larval optic nerve we isolated the abstrakt locus. abstrakt is required for pathfinding of the larval optic nerve, and it also affects development in both the adult visual system and the embryonic CNS. Here we report the molecular characterization of abstrakt. It encodes a putative ATP-dependent RNA helicase of the DEAD box protein family, with two rare substitutions in the PTRELA and the RG-D motifs, thought to be involved in oligonucleotide binding: serine for threonine, and lysine for arginine, respectively. Two mutant alleles of abstrakt show amino acid exchanges in highly conserved positions. A glycine to serine exchange in the HRIGR motif, which is involved in RNA binding and ATP hydrolysis, results in a complete loss of protein function; and a proline to leucine exchange located between the highly conserved ATPase A and PTRELA motifs results in temperature-sensitive protein function. Both the broad requirement for abstrakt gene function and its ubiquitous expression are consistent with a molecular function of the abstrakt protein in mRNA splicing or translational control.
Collapse
Affiliation(s)
- D Schmucker
- Laboratory of Developmental Neurogenetics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
10
|
Swalla BJ, Just MA, Pederson EL, Jeffery WR. A multigene locus containing the Manx and bobcat genes is required for development of chordate features in the ascidian tadpole larva. Development 1999; 126:1643-53. [PMID: 10079227 DOI: 10.1242/dev.126.8.1643] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Manx gene is required for the development of the tail and other chordate features in the ascidian tadpole larva. To determine the structure of the Manx gene, we isolated and sequenced genomic clones from the tailed ascidian Molgula oculata. The Manx gene contains 9 exons and encodes both major and minor Manx mRNAs, which differ in the length of their 5′ untranslated regions. The coding region of the single-copy bobcat gene, which encodes a DEAD-box RNA helicase, is embedded within the first Manx intron. The organization of the bobcat and Manx transcription units was determined by comparing genomic and cDNA clones. The Manx-bobcat gene locus has an unusual organization in which a non-coding first exon is alternatively spliced at the 5′ end of two different mRNAs. The bobcat and Manx genes are expressed coordinately during oogenesis and embryogenesis, but not during spermatogenesis, in which bobcat mRNA accumulates independently of Manx mRNA. Similar to Manx, zygotic bobcat transcripts accumulate in the embryonic primordia responsible for generating chordate features, including the dorsal neural tube and notochord, are downregulated during embryogenesis in the tailless species Molgula occulta and are upregulated in M. occulta X M. oculata hybrids, which restore these chordate features. Antisense experiments indicate that zygotic bobcat expression is required for development of the same suite of chordate features as Manx. The results show that the Manx-bobcat gene complex has a role in the development of chordate features in ascidian tadpole larvae.
Collapse
Affiliation(s)
- B J Swalla
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA.
| | | | | | | |
Collapse
|
11
|
Lopato S, Gattoni R, Fabini G, Stevenin J, Barta A. A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. PLANT MOLECULAR BIOLOGY 1999; 39:761-773. [PMID: 10350090 DOI: 10.1023/a:1006129615846] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An important group of splicing factors involved in constitutive and alternative splicing contain an arginine/serine (RS)-rich domain. We have previously demonstrated the existence of such factors in plants and report now on a new family of splicing factors (termed the RSZ family) from Arabidopsis thaliana which additionally harbor a Zn knuckle motif similar to the human splicing factor 9G8. Although only around 20 kDa in size, members of this family possess a multi-domain structure. In addition to the N-terminal RNA recognition motif (RRM), a Zn finger motif of the CCHC-type is inserted in an RGG-rich region; all three motifs are known to contribute to RNA binding. The C-terminal domain has a characteristic repeated structure which is very arginine-rich and centered around an SP dipeptide. One member of this family, atRSZp22, has been shown to be a phosphoprotein with properties similar to SR proteins. Furthermore, atRSZp22 was able to complement efficiently splicing deficient mammalian S100 as well as h9G8-depleted extracts. RNA binding assays to selected RNA sequences indicate an RNA binding specificity similar to the human splicing factors 9G8 and SRp20. Taken together, these result show that atRSZp22 is a true plant splicing factor which combines structural and functional features of both h9G8 and hSRp20.
Collapse
Affiliation(s)
- S Lopato
- Institut für Biochemie, Universität Wien, Vienna, Austria
| | | | | | | | | |
Collapse
|
12
|
Okanami M, Meshi T, Iwabuchi M. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 1998; 26:2638-43. [PMID: 9592148 PMCID: PMC147611 DOI: 10.1093/nar/26.11.2638] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have isolated cDNAs encoding a novel member of the DEAD box RNA helicase family from Arabidopsis. The protein, named AtDRH1, is composed of 619 amino acids and the central portion has high similarity with the helicase core region of a prototypic RNA helicase, the human nuclear protein p68. The N- and C-terminal regions are considerably diverged from the animal and yeast p68 homologs at the amino acid sequence level, but like the p68 subfamily members, an RGG box-like domain is present near the C-terminus. RNA blot analysis showed that the AtDRH1 transcript accumulates at a high level and almost equally in every part of the Arabidopsis plant. The purified, recombinant AtDRH1 was capable of unwinding double-stranded RNA in the presence of ATP or dATP and of hydrolyzing ATP. The ATPase activity was stimulated by some single-stranded RNAs and DNAs, including poly(A) and poly(dT), but not by poly(dA). The ability of the polynucleotides to stimulate the ATPase activity was largely consistent with their affinity for AtDRH1. These results show that AtDRH1 is a novel type of ATP/dATP-dependent RNA helicase and polynucleotide-dependent ATPase.
Collapse
Affiliation(s)
- M Okanami
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
13
|
Eisen A, Sattah M, Gazitt T, Neal K, Szauter P, Lucchesi J. A novel DEAD-box RNA helicase exhibits high sequence conservation from yeast to humans. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:131-6. [PMID: 9565667 DOI: 10.1016/s0167-4781(97)00213-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have identified a novel Drosophila protein, DBP80, that exhibits significant similarity to mouse mDEAD5, yeast TIF1/2, and mammalian eIF-4A. DBP80 is a member of a subclass of DEAD-box proteins that contains a distinct domain, PX(I/R)ILLKR(E/D)EETLEGIKQ(F/Y)(F/Y), in addition to the seven canonical helicase domains.
Collapse
Affiliation(s)
- A Eisen
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Full-length human nuclear DNA helicase II (NDH II) was cloned and overexpressed in a baculovirus-derived expression system. Recombinant NDH II unwound both DNA and RNA. Limited tryptic digestion produced active helicases with molecular masses of 130 and 100 kDa. The 130-kDa helicase missed a glycine-rich domain (RGG-box) at the carboxyl terminus, while the 100-kDa form missed both its double-stranded RNA binding domains (dsRBDs) at the amino terminus and its RGG-box. Hence, the dsRBDs and the RGG-box were dispensable for unwinding. On the other hand, the isolated DEXH core alone could neither hydrolyze ATP nor unwind nucleic acids. These enzymatic activities were not regained by fusing a complete COOH or NH2 terminus to the helicase core. Hence, an active helicase required part of the NH2 terminus, the DEXH core, and a C-terminal extension of the core. Both dsRBDs and the RGG-box were bacterially expressed as glutathione S-transferase fusion proteins. The two dsRBDs had a strong affinity to double-stranded RNA and cooperated upon RNA binding, while the RGG-box bound preferentially to single-stranded DNA. A model is suggested in which the flanking domains influence and regulate the unwinding properties of NDH II.
Collapse
Affiliation(s)
- S Zhang
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| | | |
Collapse
|
15
|
Lamm GM, Nicol SM, Fuller-Pace FV, Lamond AI. p72: a human nuclear DEAD box protein highly related to p68. Nucleic Acids Res 1996; 24:3739-47. [PMID: 8871553 PMCID: PMC146168 DOI: 10.1093/nar/24.19.3739] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
P72, a novel human member of the DEAD box family of putative RNA-dependent ATPases and ATP-dependent RNA helicases was isolated from a HeLa cDNA library. The predicted amino acid sequence of p72 is highly homologous to that of the prototypic DEAD box protein p68. In addition to the conserved core domains characteristic of DEAD box proteins, p72 contains several N-terminal RGG RNA-binding domains and a serine/glycine rich C-terminus likely involved in mediating protein-protein interactions. A p72-specific probe detects two mRNAs of approximately 5300 and 9300 bases which, although ubiquitously expressed, show variability in their expression levels in different tissues. Purified recombinant p72 exhibits ATPase activity in the presence of a range of RNA moieties. Immunocytochemical studies of p68 and p72 show that these proteins localise to similar locations in the nucleus of HeLa cells, suggesting their involvement in a nuclear process.
Collapse
Affiliation(s)
- G M Lamm
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Missel A, Nörskau G, Shu HH, Göringer HU. A putative RNA helicase of the DEAD box family from Trypanosoma brucei. Mol Biochem Parasitol 1995; 75:123-6. [PMID: 8720182 DOI: 10.1016/0166-6851(95)02511-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Missel
- Laboratorium für molekulare Biologie--Genzentrum der LMU München am Max Planck Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
17
|
Dorer DR, Ezekiel DH, Christensen AC. The Triplo-lethal locus of Drosophila: reexamination of mutants and discovery of a second-site suppressor. Genetics 1995; 141:1037-42. [PMID: 8582610 PMCID: PMC1206827 DOI: 10.1093/genetics/141.3.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the genome of Drosophila melanogaster there is a single locus, Triplo-lethal (Tpl), that causes lethality when present in either one or three copies in an otherwise diploid animal. Previous attempts to mutagenize Tpl produced alleles that were viable over a chromosome bearing a duplication of Tpl, but were not lethal in combination with a wild-type chromosome, as deficiencies for Tpl are. These mutations were interpreted as hypomorphic alleles of Tpl. In this work, we show that these alleles are not mutations at Tpl; rather, they are dominant mutations in a tightly linked, but cytologically distant, locus that we have named Suppressor-of-Tpl (Sul(Tpl)). Su(Tpl) mutations suppress the lethality associated with three copies of the Triplo-lethal locus and are recessive lethal. We have mapped Su(Tpl) to the approximate map position 3-46.5, within the cytological region 76B-76D.
Collapse
Affiliation(s)
- D R Dorer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5541, USA
| | | | | |
Collapse
|
18
|
Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol 1994; 13:125-47. [PMID: 8179820 DOI: 10.1089/dna.1994.13.125] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
G0S8 is a member of a set of putative G0/G1 switch regulatory genes (G0S genes) selected by screening cDNA libraries prepared from blood mononuclear cells cultured for 2 hr with lectin and cycloheximide. Comparison of a full-length cDNA sequence with the corresponding genomic sequence reveals an open reading frame of 211 amino acids, distributed across 5 exons. The 24-kD protein has a basic domain preceding a potential helix-loop-helix domain which contains a QTK motif found about 60 amino acids from the carboxyl terminus in the loop region of several helix-loop-helix proteins. There are potential phosphorylation sites for protein kinase C, creatine kinase II, and protein tyrosine kinases and regions of sequence similarity to helix-loop-helix proteins, tyrosine phosphatases, and RNA and DNA polymerases. The genomic sequence contains a CpG island, suggesting expression in the germ line. Potential binding sites for transcription factors are present in the 5' flank and introns; these include Zif268/NGFI-A/EGR1/G0S30, NGFI-B, Ap1, and factors that react with retroviral long terminal repeats (LTRs). There are several potential interferon response elements and a serum response element in the 3' flank overlapping a region of similarity to a cytomegalovirus immediate-early gene enhancer. Many of these motifs are found in immediate-early G0/G1 switch genes; however, we were unable to demonstrate an increase in G0S8 mRNA in response to lectin alone. Sequence similarities are noted between G0S8 and a variety of genes involved in the immune system, in the regulation of retroviruses, and in the cell cycle.
Collapse
Affiliation(s)
- D P Siderovski
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
19
|
Itadani H, Sugita M, Sugiura M. Structure and expression of a cDNA encoding an RNA helicase-like protein in tobacco. PLANT MOLECULAR BIOLOGY 1994; 24:249-52. [PMID: 8111024 DOI: 10.1007/bf00040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The human P68 protein is an ATP-dependent RNA helicase and thought to be involved in cell growth and division. We have isolated a Nicotiana sylvestris cDNA which encodes a p68-like protein. Northern blot analysis showed that the transcript from the gene is accumulated in N. sylvestris leaves, roots and flowers, but not in N. tabacum-cultured cells.
Collapse
Affiliation(s)
- H Itadani
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
20
|
Lavoie CA, Harvey M, Lasko PF. Dbp45A encodes a Drosophila DEAD box protein with similarity to a putative yeast helicase involved in ribosome assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:140-4. [PMID: 7692973 DOI: 10.1016/0167-4781(93)90052-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proteins of the DEAD family of putative ATP-dependent RNA helicases have been implicated in translation initiation, ribosome assembly, and RNA processing in a variety of organisms from Escherichia coli to man. Among these proteins are eIF-4A, an essential component of the cap-binding complex, numerous yeast proteins required for pre-mRNA splicing, and proteins from yeast and E. coli necessary for ribosome assembly. We report the isolation of a new DEAD gene from Drosophila, Dbp45A, which is most abundantly expressed in 6-12 h embryos and adults. The predicted amino acid sequence of the Dbp45A product contains all eight highly conserved DEAD family motifs, and most closely resembles the Saccharomyces cerevisiae DRS1p among known DEAD box proteins. DRS1p has been implicated in ribosomal RNA processing.
Collapse
Affiliation(s)
- C A Lavoie
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
21
|
Londoño-Vallejo JA, Dubnau D. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 1993; 9:119-31. [PMID: 8412657 DOI: 10.1111/j.1365-2958.1993.tb01674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have sequenced and genetically characterized comF, a Bacillus subtilis competence locus, previously identified by Tn917 transposon insertion mutagenesis. Expression of the locus, in which three open reading frames (ORFs) were found, is driven by a single sigma A-like promoter in front of comFORF1 and is dependent on early regulatory competence genes and only expressed in competence medium. The predicted amino acid sequences of two of the ORFs showed similarities to known proteins in the GenBank and SwissProt databases: ComFORF1 is similar to an extensive family of ATP-dependent RNA/DNA helicases with closer similarity to the DEAD protein subfamily and to the PriA protein in Escherichia coli. The latter is a DNA translocase/helicase required for primosome assembly at the replication fork of phage phi X174. ComFORF3 is 22% identical to Com101, a protein required for genetic competence in Haemophilus influenzae, a naturally competent Gram-negative bacterium. In-frame comFORF1 deletions were 1000-fold deficient in transformability compared to the wild-type, whereas disruptions of the other two ORFs were only five- to 10-fold lower. These observations allow us to hypothesize that the ComFORF1 late gene product plays an essential role during the binding and uptake events involved in Bacillus subtilis transformation.
Collapse
|
22
|
Abstract
The complete cDNA coding for mouse P68 RNA helicase was cloned and its nucleotide sequence was determined. The sequence is about 95% identical to the human equivalent. Whereas the 5'-untranslated region is less conserved (71%), the 3'-ends of mouse and human mRNAs are nearly identical. Between stop codon and poly(A)-tail both sequences are 97% conserved. At the level of amino acid sequence, the similarity of both, mouse and human, DEAD box family proteins is as high as 98%. In situ hybridizations using cDNA subfragments as probes revealed a testis-selective expression of P68 RNA helicase mRNA. The signal was restricted to late pachytene spermatocytes and haploid spermatids. Northern blot analyses corroborated these results but suggested that expression of related mRNA species occurs in a variety of other tissues.
Collapse
Affiliation(s)
- L Lemaire
- Institut für Genetik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
23
|
|
24
|
Kiledjian M, Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 1992; 11:2655-64. [PMID: 1628625 PMCID: PMC556741 DOI: 10.1002/j.1460-2075.1992.tb05331.x] [Citation(s) in RCA: 450] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity.
Collapse
Affiliation(s)
- M Kiledjian
- Howard Hughes Medical Institute, Philadelphia, PA
| | | |
Collapse
|
25
|
Daniels DL, Plunkett G, Burland V, Blattner FR. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 1992; 257:771-8. [PMID: 1379743 DOI: 10.1126/science.1379743] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The DNA sequence of 91.4 kilobases of the Escherichia coli K-12 genome, spanning the region between rrnC at 84.5 minutes and rrnA at 86.5 minutes on the genetic map (85 to 87 percent on the physical map), is described. Analysis of this sequence identified 82 potential coding regions (open reading frames) covering 84 percent of the sequenced interval. The arrangement of these open reading frames, together with the consensus promoter sequences and terminator-like sequences found by computer searches, made it possible to assign them to proposed transcriptional units. More than half the open reading frames correlated with known genes or functions suggested by similarity to other sequences. Those remaining encode still unidentified proteins. The sequenced region also contains several RNA genes and two types of repeated sequence elements were found. Intergenic regions include three "gray holes," 0.6 to 0.8 kilobases, with no recognizable functions.
Collapse
Affiliation(s)
- D L Daniels
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
26
|
Abstract
RNA metabolism plays a central role in cell growth. It is essential to regulate RNA synthesis, processing, stability and degradation. Conformational changes in RNA are key elements in regulating cellular processes. Recently, an increasing number of putative RNA helicases from different organisms ranging from Escherichia coli to humans and viruses have been identified. They are involved in diverse cellular functions such as RNA splicing, ribosome assembly, initiation of translation, spermatogenesis, embryogenesis, and cell growth and division. Based on sequence homologies these proteins were grouped in a family, the D-E-A-D box protein family (D-E-A-D = Asp-Glu-Ala-Asp). Some of the better characterized members have been shown to possess ATP-binding and hydrolysing activities as well as ATP-dependent RNA helicase activities. Most of the genes encoding such proteins have been isolated from yeast, on which we will focus in this review. From sequence data, three of the members form a subfamily, the D-E-A-H subfamily.
Collapse
Affiliation(s)
- S R Schmid
- Department of Microbiology, Biozentrum, Basel, Switzerland
| | | |
Collapse
|
27
|
|
28
|
Dorer DR, Anane-Firempong A, Christensen AC. Ribosomal protein S14 is not responsible for the Minute phenotype associated with the M(1)7C locus in Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:8-11. [PMID: 1745245 DOI: 10.1007/bf00290642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A locus associated with a severe Minute effect has been mapped at 7C on the X chromosome of Drosophila melanogaster. Previous work has suggested that this Minute encodes ribosomal proteins S14A and S14B. We have made a chromosomal deficiency that removes the S14 ribosomal protein genes, yet does not display the Minute phenotype. These data suggest that the S14 genes do not actually correspond to the Minute locus.
Collapse
Affiliation(s)
- D R Dorer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | |
Collapse
|
29
|
Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases. Mol Cell Biol 1991. [PMID: 2046664 DOI: 10.1128/mcb.11.7.3463] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.
Collapse
|
30
|
Schmid SR, Linder P. Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases. Mol Cell Biol 1991; 11:3463-71. [PMID: 2046664 PMCID: PMC361078 DOI: 10.1128/mcb.11.7.3463-3471.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.
Collapse
Affiliation(s)
- S R Schmid
- Department of Microbiology, Biozentrum, Basel, Switzerland
| | | |
Collapse
|
31
|
p68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 1991. [PMID: 1996094 DOI: 10.1128/mcb.11.3.1326] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human p68 protein is an RNA-dependent ATPase and RNA helicase which was first identified because of its immunological cross-reaction with a viral RNA helicase, simian virus 40 large T antigen. It belongs to a recently discovered family of proteins (DEAD box proteins) that share extensive regions of amino acid sequence homology, are ubiquitous in living organisms, and are involved in many aspects of RNA metabolism, including splicing, translation, and ribosome assembly. We have shown by immunofluorescent microscopy that mammalian p68, which is excluded from the nucleoli during interphase, translocates to prenucleolar bodies during telophase. We have cloned 55% identical genes from both Schizosaccharomyces pombe and Saccharomyces cerevisiae and shown that they are essential in both yeasts. The human and yeast genes contain a large intron whose position has been precisely conserved. In S. cerevisiae, the intron is unusual both because of its size and because of its location near the 3' end of the gene. We discuss possible functional roles for such an unusual intron in an RNA helicase gene.
Collapse
|
32
|
p68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 1991; 11:1326-33. [PMID: 1996094 PMCID: PMC369403 DOI: 10.1128/mcb.11.3.1326-1333.1991] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human p68 protein is an RNA-dependent ATPase and RNA helicase which was first identified because of its immunological cross-reaction with a viral RNA helicase, simian virus 40 large T antigen. It belongs to a recently discovered family of proteins (DEAD box proteins) that share extensive regions of amino acid sequence homology, are ubiquitous in living organisms, and are involved in many aspects of RNA metabolism, including splicing, translation, and ribosome assembly. We have shown by immunofluorescent microscopy that mammalian p68, which is excluded from the nucleoli during interphase, translocates to prenucleolar bodies during telophase. We have cloned 55% identical genes from both Schizosaccharomyces pombe and Saccharomyces cerevisiae and shown that they are essential in both yeasts. The human and yeast genes contain a large intron whose position has been precisely conserved. In S. cerevisiae, the intron is unusual both because of its size and because of its location near the 3' end of the gene. We discuss possible functional roles for such an unusual intron in an RNA helicase gene.
Collapse
|
33
|
Abstract
The maternal messenger RNA An3 was originally identified localized to the animal hemisphere of Xenopus laevis oocytes, eggs and early embryos. Xenopus embryos depend on mRNA and protein present in the egg before fertilization (maternal molecules) to provide the information needed for early development. Localization of maternal mRNA gives cells derived from different regions of the egg distinctive capacities for protein synthesis. We show here that An3 mRNA encodes a protein with 74% identity to a protein encoded by the testes-specific mRNA PL10 found in mouse, which is proposed to have RNA helicase activity. Because the gene encoding An3 mRNA is reactivated after gastrulation and remains active throughout embryogenesis, we have examined its distribution in embryonic and adult tissues. Unlike PL10 mRNA, which is primarily restricted to the testes, An3 mRNA is broadly distributed in later development.
Collapse
|
34
|
|
35
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1990; 18:7473-6. [PMID: 2259654 PMCID: PMC332916 DOI: 10.1093/nar/18.24.7473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|