1
|
Lauterbach A, Geissler AJ, Eisenbach L, Behr J, Vogel RF. Novel diagnostic marker genes differentiate Saccharomyces
with respect to their potential application. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Lauterbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Andreas J. Geissler
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Lara Eisenbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Jürgen Behr
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| |
Collapse
|
2
|
Acetamidase as a dominant recyclable marker for Komagataella phaffii strain engineering. Appl Microbiol Biotechnol 2018; 102:2753-2761. [PMID: 29435619 DOI: 10.1007/s00253-018-8824-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
We have investigated the use of the gene coding for acetamidase (amdS) as a recyclable dominant marker for the methylotrophic yeast Komagataella phaffii in order to broaden its genetic toolbox. First, the endogenous constitutive AMD2 gene (a putative acetamidase) was deleted generating strain LA1. A cassette (amdSloxP) was constructed bearing a codon-optimized version of the Aspergillus nidulans amdS gene flanked by loxP sites for marker excision with Cre recombinase. This cassette was successfully tested as a dominant selection marker for transformation of the LA1 strain after selection on plates containing acetamide as a sole nitrogen source. Finally, amdSloxP was used to sequentially disrupt the K. phaffii ADE2 and URA5 genes. After each disruption event, a Cre-mediated marker recycling step was performed by plating cells on medium containing fluoroacetamide. In conclusion, amdS proved to be a suitable tool for K. phaffii transformation and marker recycling thus providing a new antibiotic-free system for genetic manipulation of this yeast.
Collapse
|
3
|
Ruan LT, Zheng RC, Zheng YG. Mining and characterization of two amidase signature family amidases from Brevibacterium epidermidis ZJB-07021 by an efficient genome mining approach. Protein Expr Purif 2016; 126:16-25. [DOI: 10.1016/j.pep.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
|
4
|
Solis-Escalante D, Kuijpers NGA, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 2012; 13:126-39. [PMID: 23253382 PMCID: PMC3563226 DOI: 10.1111/1567-1364.12024] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022] Open
Abstract
Despite the large collection of selectable marker genes available for Saccharomyces cerevisiae, marker availability can still present a hurdle when dozens of genetic manipulations are required. Recyclable markers, counterselectable cassettes that can be removed from the targeted genome after use, are therefore valuable assets in ambitious metabolic engineering programs. In the present work, the new recyclable dominant marker cassette amdSYM, formed by the Ashbya gossypii TEF2 promoter and terminator and a codon-optimized acetamidase gene (Aspergillus nidulans amdS), is presented. The amdSYM cassette confers S. cerevisiae the ability to use acetamide as sole nitrogen source. Direct repeats flanking the amdS gene allow for its efficient recombinative excision. As previously demonstrated in filamentous fungi, loss of the amdS marker cassette from S. cerevisiae can be rapidly selected for by growth in the presence of fluoroacetamide. The amdSYM cassette can be used in different genetic backgrounds and represents the first counterselectable dominant marker gene cassette for use in S. cerevisiae. Furthermore, using astute cassette design, amdSYM excision can be performed without leaving a scar or heterologous sequences in the targeted genome. The present work therefore demonstrates that amdSYM is a useful addition to the genetic engineering toolbox for Saccharomyces laboratory, wild, and industrial strains.
Collapse
|
5
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
Yoshida S, Hashimoto K, Tanaka-Kanai K, Yoshimoto H, Kobayashi O. Identification and characterization of amidase- homologousAMI1 genes of bottom-fermenting yeast. Yeast 2007; 24:1075-84. [DOI: 10.1002/yea.1551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Shrestha R, Dixon RA, Chapman KD. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 2003; 278:34990-7. [PMID: 12824167 DOI: 10.1074/jbc.m305613200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are endogenous constituents of plant and animal tissues, and in vertebrates their hydrolysis terminates their participation as lipid mediators in the endocannabinoid signaling system. The membrane-bound enzyme responsible for NAE hydrolysis in mammals has been identified at the molecular level (designated fatty acid amide hydrolase, FAAH), and although an analogous enzyme activity was identified in microsomes of cotton seedlings, no molecular information is available for this enzyme in plants. Here we report the identification, the heterologous expression (in Escherichia coli), and the biochemical characterization of an Arabidopsis thaliana FAAH homologue. Candidate Arabidopsis DNA sequences containing a characteristic amidase signature sequence (PS00571) were identified in plant genome data bases, and a cDNA was isolated by reverse transcriptase-PCR using Arabidopsis genome sequences to develop appropriate oligonucleotide primers. The cDNA was sequenced and predicted to encode a protein of 607 amino acids with 37% identity to rat FAAH within the amidase signature domain (18% over the entire length). Residues determined to be important for FAAH catalysis were conserved between the Arabidopsis and rat protein sequences. In addition, a single transmembrane domain near the N terminus was predicted in the Arabidopsis protein sequence, similar to that of the rat FAAH protein. The putative plant FAAH cDNA was expressed as an epitope/His-tagged fusion protein in E. coli and solubilized from cell lysates in the nonionic detergent, dodecyl maltoside. Affinity-purified recombinant protein was indeed active in hydrolyzing a variety of naturally occurring N-acylethanolamine types. Kinetic parameters and inhibition data for the recombinant Arabidopsis protein were consistent with these properties of the enzyme activity characterized previously in plant and animal systems. Collectively these data now provide support at the molecular level for a conserved mechanism between plants and animals for the metabolism of NAEs.
Collapse
Affiliation(s)
- Rhidaya Shrestha
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
8
|
Martínková L, Kren V, Cvak L, Ovesná M, Prepechalová I. Hydrolysis of lysergamide to lysergic acid by Rhodococcus equi A4. J Biotechnol 2001; 84:63-6. [PMID: 11035188 DOI: 10.1016/s0168-1656(00)00332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
From a mixture of lysergamide and its epimer isolysergamide, Rhodococcus equi A4 containing amidase preferentially hydrolyzed lysergamide into lysergic acid.
Collapse
Affiliation(s)
- L Martínková
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20 4, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Koo HM, Choi SO, Kim HM, Kim YS. Identification of active-site residues in Bradyrhizobium japonicum malonamidase E2. Biochem J 2000; 349:501-7. [PMID: 10880349 PMCID: PMC1221173 DOI: 10.1042/0264-6021:3490501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malonamidase (MA) E2 was previously purified and characterized from Bradyrhizobium japonicum USDA 110. The gene encoding this enzyme has been cloned, sequenced and expressed in Escherichia coli. The recombinant MAE2 was purified to homogeneity from the transformed E. coli. The biochemical properties of the recombinant enzyme are essentially identical to those from wild-type B. japonicum. A database search showed that the MAE2 protein has a high sequence similarity with the common signature sequences of the amidase family. The only exception is that the aspartic residue in these signature sequences is replaced by a glutamine residue. In order to identify amino acid residues essential for enzyme activity, a series of site-directed mutagenesis studies and steady-state kinetic experiments were performed. Gln(195), Ser(199), Cys(207) and Lys(213) of the common signature sequences were selected for site-directed mutagenesis. Among the mutants, Q195D, Q195E and S199C showed less than 0.02% of the k(cat) value of the wild-type enzyme, and S199A, Q195L and Q195N exhibited no detectable catalytic activities. Mutants (K213L, K213R and K213H) obtained by replacement of the only conserved basic residue, Lys(213), in the signature sequences, also displayed significant reductions (approx. 380-fold) in k(cat) value, whereas C207A kept full activity. These results suggest that MAE2 may catalyse hydrolysis of malonamate by a novel catalytic mechanism, in which Gln(195), Ser(199) and Lys(213) are involved.
Collapse
Affiliation(s)
- H M Koo
- Department of Biochemistry, College of Science, Bioproducts Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
10
|
Erdman S, Lin L, Malczynski M, Snyder M. Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 1998; 140:461-83. [PMID: 9456310 PMCID: PMC2140177 DOI: 10.1083/jcb.140.3.461] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Revised: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.
Collapse
Affiliation(s)
- S Erdman
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
11
|
Kobayashi M, Fujiwara Y, Goda M, Komeda H, Shimizu S. Identification of active sites in amidase: evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc Natl Acad Sci U S A 1997; 94:11986-91. [PMID: 9342349 PMCID: PMC23678 DOI: 10.1073/pnas.94.22.11986] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 --> Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 --> Asn substitution as well as Ser195 --> Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | |
Collapse
|
12
|
Chebrou H, Bigey F, Arnaud A, Galzy P. Study of the amidase signature group. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1298:285-93. [PMID: 8980653 DOI: 10.1016/s0167-4838(96)00145-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Computer methods for database search, multiple alignment and cluster analysis indicated significant homology between amino-acid sequences of 21 amidases or amidohydrolases (EC 3.5). All of them were found to be involved in the reduction of organic nitrogen compounds and ammonia production. A conserved motif was found which may be important in amide binding and in catalytic mechanisms. Homology studies between these amidases and some ureases, nitrilases and acyl-transferases or enzymes with unknown functions provided new insight into the evolution of these proteins. Dissemination of these genes seemed to be facilitated by transfer of genetic elements such as transposons and plasmids.
Collapse
Affiliation(s)
- H Chebrou
- Chaire de Microbiologie Industrielle et de Génétique des Micro-organismes, E.N.S.A.-I.N.R.A., Montpellier, France
| | | | | | | |
Collapse
|
13
|
Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996; 384:83-7. [PMID: 8900284 DOI: 10.1038/384083a0] [Citation(s) in RCA: 1613] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.
Collapse
Affiliation(s)
- B F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92307, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chang TH, Baum B. Mapping the putative RNA helicase genes by sequence overlapping. Yeast 1992; 8:973-5. [PMID: 1481572 DOI: 10.1002/yea.320081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An 'electronic' gene mapping procedure based on computer-aided search for overlapping gene sequences was used to identify adjacent genes and localize several putative RNA helicase genes to different chromosomes. PRP28 and AMD1 genes map to the right arm of chromosome IV next to sup2, which encodes a tyrosine tRNA. PRP16, previously mapped to chromosome XI, is tightly linked to MRP-L20. PRP22 is adjacent to PRE1, whose chromosomal location is currently unknown. The utility of this approach in yeast gene mapping is evaluated.
Collapse
Affiliation(s)
- T H Chang
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
15
|
Gomi K, Kitamoto K, Kumagai C. Cloning and molecular characterization of the acetamidase-encoding gene (amdS) from Aspergillus oryzae. Gene 1991; 108:91-8. [PMID: 1840550 DOI: 10.1016/0378-1119(91)90491-s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have isolated an acetamidase-encoding gene (amdS) from Aspergillus oryzae by heterologous hybridization using the corresponding Aspergillus nidulans gene as a probe. The gene is located on a 3.5-kb SacI fragment and its nucleotide (nt) sequence was determined. Compared with the A. nidulans amdS gene, the coding region of A. oryzae gene consists of seven exons interrupted by six introns and encodes 545 amino acid (aa) residues. The deduced aa sequence has a high degree of homology with that of the A. nidulans acetamidase protein. Three introns (IVS-1, IVS-2, and IVS-4) exist at the same positions as those of A. nidulans amdS, whilst three additional introns (IVS-3, IVS-5, and IVS-6) are also present. There is no preference in its codon usage (G + C content in the third position of codons is 51%). Gene disruption experiments demonstrate that the resulting mutants show significantly reduced growth on acetamide-containing medium, indicating that the A. oryzae amdS gene encodes a functional acetamidase that is required for acetamide utilization. Transcriptional analysis by Northern blot reveals a 1.8-kb transcript in RNA extracted from mycelium grown in medium containing acetamide or acetate plus beta-alanine as the sole carbon and nitrogen sources.
Collapse
Affiliation(s)
- K Gomi
- National Research Institute of Brewing, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Pétré D. Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 1991; 173:6694-704. [PMID: 1938876 PMCID: PMC209017 DOI: 10.1128/jb.173.21.6694-6704.1991] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new enantiomer-selective amidase active on several 2-aryl propionamides was identified and purified from a newly isolated Rhodococcus strain. The characterized amidase is an apparent homodimer, each molecule of which has an Mr of 48,554; it has a specific activity of 16.5 mumol of S(+)-2-phenylpropionic acid formed per min per mg of enzyme from the racemic amide under our conditions. An oligonucleotide probe was deduced from limited peptide information and was used to clone the corresponding gene, named amdA. As expected, significant homologies were found between the amino acid sequences of the enantiomer-selective amidase of Rhodococcus sp., the corresponding enzyme from Brevibacterium sp. strain R312, and several known amidases, thus confirming the existence of a structural class of amidase enzymes. Genes probably coding for the two subunits of a nitrile hydratase, albeit in an inverse order, were found 39 bp downstream of amdA, suggesting that such a genetic organization might be conserved in different microorganisms. Although we failed to express an active Rhodococcus amidase in Escherichia coli, even in conditions allowing the expression of an active R312 enzyme, the high-level expression of the active recombinant enzyme could be demonstrated in Brevibacterium lactofermentum by using a pSR1-derived shuttle vector.
Collapse
Affiliation(s)
- J F Mayaux
- Département Biotechnologie, Centre de Recherche de Vitry-Alfortville, Vitry sur Seine, France
| | | | | | | | | | | |
Collapse
|