1
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
2
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
4
|
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, Burgos R, Scarpa M, Serrano L, Lluch-Senar M. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Res 2022; 50:e127. [PMID: 36215032 PMCID: PMC9825166 DOI: 10.1093/nar/gkac836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Collapse
Affiliation(s)
| | | | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Correspondence may also be addressed to Maria Lluch-Senar. Tel: +34 661963680;
| |
Collapse
|
5
|
Jiang S, Tang Y, Xiang L, Zhu X, Cai Z, Li L, Chen Y, Chen P, Feng Y, Lin X, Li G, Sharif J, Dai J. Efficient de novo assembly and modification of large DNA fragments. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1445-1455. [PMID: 34939159 DOI: 10.1007/s11427-021-2029-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes. The construction of the large, gigabase (Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly. But for the synthesis and assembly of such large-scale genomes, the development of new or expanded methods is required. In this study, we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases (kb) or above from scratches and describe an efficient method for "scar-free" engineering of the assembled sequences. Our method, therefore, should provide a standard framework for producing long DNA molecules, which are critical materials for synthetic genomics and metabolic engineering.
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanwei Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liang Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinlu Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingxi Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peishuang Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuge Feng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Lin
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guoqiang Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jafar Sharif
- Developmental Genetics Laboratory, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang J, Lu C, Wei S. Whole-genome sequencing identifies I-SceI-mediated transgene integration sites in Xenopus tropicalis snai2:eGFP line. G3 (BETHESDA, MD.) 2022; 12:jkac037. [PMID: 35171990 PMCID: PMC9073676 DOI: 10.1093/g3journal/jkac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Transgenesis with the meganuclease I-SceI is a safe and efficient method, but the underlying mechanisms remain unclear due to the lack of information on transgene localization. Using I-SceI, we previously developed a transgenic Xenopus tropicalis line expressing enhanced green fluorescent protein driven by the neural crest-specific snai2 promoter/enhancer, which is a powerful tool for studying neural crest development and craniofacial morphogenesis. Here, we carried out whole-genome shotgun sequencing for the snai2:eGFP embryos to identify the transgene integration sites. With a 19x sequencing coverage, we estimated that 6 copies of the transgene were inserted into the Xenopus tropicalis genome in the hemizygous transgenic embryos. Two transgene integration loci adjacent to each other were identified in a noncoding region on chromosome 1, possibly as a result of duplication after a single transgene insertion. Interestingly, genomic DNA at the boundaries of the transgene integration loci contains short sequences homologous to the I-SceI recognition site, suggesting that the integration was not random but probably mediated by sequence homology. To our knowledge, our work represents the first genome-wide sequencing study on a transgenic organism generated with I-SceI, which is useful for evaluating the potential genetic effects of I-SceI-mediated transgenesis and further understanding the mechanisms underlying this transgenic method.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Congyu Lu
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
8
|
Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. The Role of Recombinant AAV in Precise Genome Editing. Front Genome Ed 2022; 3:799722. [PMID: 35098210 PMCID: PMC8793687 DOI: 10.3389/fgeed.2021.799722] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The replication-defective, non-pathogenic, nearly ubiquitous single-stranded adeno-associated viruses (AAVs) have gained importance since their discovery about 50 years ago. Their unique life cycle and virus-cell interactions have led to the development of recombinant AAVs as ideal genetic medicine tools that have evolved into effective commercialized gene therapies. A distinctive property of AAVs is their ability to edit the genome precisely. In contrast to all current genome editing platforms, AAV exclusively utilizes the high-fidelity homologous recombination (HR) pathway and does not require exogenous nucleases for prior cleavage of genomic DNA. Together, this leads to a highly precise editing outcome that preserves genomic integrity without incorporation of indel mutations or viral sequences at the target site while also obviating the possibility of off-target genotoxicity. The stem cell-derived AAV (AAVHSCs) were found to mediate precise and efficient HR with high on-target accuracy and at high efficiencies. AAVHSC editing occurs efficiently in post-mitotic cells and tissues in vivo. Additionally, AAV also has the advantage of an intrinsic delivery mechanism. Thus, this distinctive genome editing platform holds tremendous promise for the correction of disease-associated mutations without adding to the mutational burden. This review will focus on the unique properties of direct AAV-mediated genome editing and their potential mechanisms of action.
Collapse
|
9
|
Stracy M, Schweizer J, Sherratt DJ, Kapanidis AN, Uphoff S, Lesterlin C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol Cell 2021; 81:1499-1514.e6. [PMID: 33621478 PMCID: PMC8022225 DOI: 10.1016/j.molcel.2021.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%–99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins. Protein motion was compared between unperturbed cells and DNA-free cells Protein mobility was dictated by DNA interactions rather than molecular weight The nucleoid is not a physical barrier for protein diffusion The proteins studied spend most (58%–99%) of their search time bound to DNA
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Jakob Schweizer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France.
| |
Collapse
|
10
|
Song C, Luan J, Li R, Jiang C, Hou Y, Cui Q, Cui T, Tan L, Ma Z, Tang YJ, Stewart AF, Fu J, Zhang Y, Wang H. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res 2021; 48:e130. [PMID: 33119745 PMCID: PMC7736807 DOI: 10.1093/nar/gkaa956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.
Collapse
Affiliation(s)
- Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yu Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Long Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zaichao Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
11
|
|
12
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
13
|
Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020; 10:biom10050734. [PMID: 32397082 PMCID: PMC7278167 DOI: 10.3390/biom10050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.
Collapse
|
14
|
Alanyl-tRNA Synthetase Quality Control Prevents Global Dysregulation of the Escherichia coli Proteome. mBio 2019; 10:mBio.02921-19. [PMID: 31848288 PMCID: PMC6918089 DOI: 10.1128/mbio.02921-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others are clearly detrimental. Here, we show that while it has been suggested that regulated Thr-to-Ser substitutions may be beneficial, there is a threshold beyond which these errors are detrimental. In contrast, we show that errors mediated by alanyl-tRNA synthetase (AlaRS) are not well tolerated and induce a global stress response that leads to gross perturbation of the Escherichia coli proteome, with potentially catastrophic effects on fitness and viability. Tolerance for Ala mistranslation appears to be much lower than with other translational errors, consistent with previous reports of multiple proofreading mechanisms targeting mischarged tRNAAla These results demonstrate the essential role of aminoacyl-tRNA proofreading in optimizing cellular fitness and suggest that any potentially beneficial effects of mistranslation may be confined to specific amino acid substitutions.IMPORTANCE Errors in protein synthesis have historically been assumed to be detrimental to the cell. While there are many reports that translational errors are consequential, there is a growing body of evidence that some mistranslation events may be tolerated or even beneficial. Using two models of mistranslation, we compare the direct phenotypic effects of these events in Escherichia coli This work provides insight into the threshold for tolerance of specific mistranslation events that were previously predicted to be broadly neutral to proteome integrity. Furthermore, these data reveal the effects of mistranslation beyond the general unfolded stress response, leading to global translational reprogramming.
Collapse
|
15
|
Klein CA, Emde L, Kuijpers A, Sobetzko P. MoCloFlex: A Modular Yet Flexible Cloning System. Front Bioeng Biotechnol 2019; 7:271. [PMID: 31750294 PMCID: PMC6843054 DOI: 10.3389/fbioe.2019.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/30/2019] [Indexed: 02/04/2023] Open
Abstract
Modern cloning solutions are gradually replacing classical cloning methods. Current systems make use of libraries with predefined DNA parts that are joined by Golden-Gate reactions. However, these systems still suffer from specific inflexibilities and the lack of inter-compatibility. Here, we present Flexible Modular Cloning (MoCloFlex) which overcomes this inflexibility by introducing a set of linker- and position-vectors allowing free unit arrangement. Our system, therefore, provides a convenient way to design and build custom plasmids, and iterative assembly of large constructs. To support standardization in synthetic biology, MoCloFlex is compatible with the well-established Modular Cloning standard. Here, we present and characterize MoCloFlex for various applications with up to 12 fragments in a single restriction-ligation reaction.
Collapse
Affiliation(s)
- Carlo A. Klein
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Leonie Emde
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Aaron Kuijpers
- Department of Biology, University of Kassel, Kassel, Germany
| | - Patrick Sobetzko
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Yang G, Liu C, Chen SH, Kassab MA, Hoff JD, Walter NG, Yu X. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 2019; 46:3446-3457. [PMID: 29447383 PMCID: PMC5909444 DOI: 10.1093/nar/gky088] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors. Using super-resolved fluorescent particle tracking, we further examine the relocation kinetics of PARP1 and the Ku70/80 complex to a single DSB, and find that PARP1 and the Ku70/80 complex are recruited to the DSB almost at the same time. Notably, only the Ku70/80 complex occupies the DSB exclusively in the G1 phase; whereas PARP1 competes with the Ku70/80 complex at the DSB in the S/G2 phase. Moreover, in the S/G2 phase, PARP1 removes the Ku70/80 complex through its enzymatic activity, which is further confirmed by in vitro DSB-binding assays. Taken together, our results reveal PARP1 and the Ku70/80 complex as critical DSB sensors, and suggest that PARP1 may function as an important regulator of the Ku70/80 complex at the DSBs in the S/G2 phase.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Muzaffer A Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - J Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Wiktor J, van der Does M, Büller L, Sherratt DJ, Dekker C. Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo. Nucleic Acids Res 2019; 46:1821-1833. [PMID: 29294118 PMCID: PMC5829741 DOI: 10.1093/nar/gkx1290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
The formation of 3′ single-stranded DNA overhangs is a first and essential step during homology-directed repair of double-stranded breaks (DSB) of DNA, a task that in Escherichia coli is performed by RecBCD. While this protein complex has been well characterized through in vitro single-molecule studies, it has remained elusive how end resection proceeds in the crowded and complex environment in live cells. Here, we develop a two-color fluorescent reporter to directly observe the resection of individual inducible DSB sites within live E. coli cells. Real-time imaging shows that RecBCD during end resection degrades DNA with remarkably high speed (∼1.6 kb/s) and high processivity (>∼100 kb). The results show a pronounced asymmetry in the processing of the two DNA ends of a DSB, where much longer stretches of DNA are degraded in the direction of terminus. The microscopy observations are confirmed using quantitative polymerase chain reaction measurements of the DNA degradation. Deletion of the recD gene drastically decreased the length of resection, allowing for recombination with short ectopic plasmid homologies and significantly increasing the efficiency of horizontal gene transfer between strains. We thus visualized and quantified DNA end resection by the RecBCD complex in live cells, recorded DNA-degradation linked to end resection and uncovered a general relationship between the length of end resection and the choice of the homologous recombination template.
Collapse
Affiliation(s)
- Jakub Wiktor
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Marit van der Does
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Lisa Büller
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Schmidt C, Pacher M, Puchta H. DNA Break Repair in Plants and Its Application for Genome Engineering. Methods Mol Biol 2019; 1864:237-266. [PMID: 30415341 DOI: 10.1007/978-1-4939-8778-8_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome engineering is a biotechnological approach to precisely modify the genetic code of a given organism in order to change the context of an existing sequence or to create new genetic resources, e.g., for obtaining improved traits or performance. Efficient targeted genome alterations are mainly based on the induction of DNA double-strand breaks (DSBs) or adjacent single-strand breaks (SSBs). Naturally, all organisms continuously have to deal with DNA-damaging factors challenging the genetic integrity, and therefore a wide range of DNA repair mechanisms have evolved. A profound understanding of the different repair pathways is a prerequisite to control and enhance targeted gene modifications. DSB repair can take place by nonhomologous end joining (NHEJ) or homology-dependent repair (HDR). As the main outcome of NHEJ-mediated repair is accompanied by small insertions and deletions, it is applicable to specifically knock out genes or to rearrange linkage groups or whole chromosomes. The basic requirement for HDR is the presence of a homologous template; thus this process can be exploited for targeted integration of ectopic sequences into the plant genome. The development of different types of artificial site-specific nucleases allows for targeted DSB induction in the plant genome. Such synthetic nucleases have been used for both qualitatively studying DSB repair in vivo with respect to mechanistic differences and quantitatively in order to determine the role of key factors for NHEJ and HR, respectively. The conclusions drawn from these studies allow for a better understanding of genome evolution and help identifying synergistic or antagonistic genetic interactions while supporting biotechnological applications for transiently modifying the plant DNA repair machinery in favor of targeted genome engineering.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Pacher
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
19
|
Balikó G, Vernyik V, Karcagi I, Györfy Z, Draskovits G, Fehér T, Pósfai G. Rational Efforts to Streamline the Escherichia coliGenome. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriella Balikó
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Viktor Vernyik
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Ildikó Karcagi
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Zsuzsanna Györfy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Gábor Draskovits
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Tamás Fehér
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - György Pósfai
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| |
Collapse
|
20
|
What history tells us XLIV: The construction of the zinc finger nucleases. J Biosci 2017; 42:527-530. [PMID: 29229870 DOI: 10.1007/s12038-017-9723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Li L, Jiang W, Lu Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 2017; 35:936-949. [DOI: 10.1016/j.biotechadv.2017.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
|
22
|
Hochrein L, Machens F, Gremmels J, Schulz K, Messerschmidt K, Mueller-Roeber B. AssemblX: a user-friendly toolkit for rapid and reliable multi-gene assemblies. Nucleic Acids Res 2017; 45:e80. [PMID: 28130422 PMCID: PMC5449548 DOI: 10.1093/nar/gkx034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
The assembly of large DNA constructs coding for entire pathways poses a major challenge in the field of synthetic biology. Here, we present AssemblX, a novel, user-friendly and highly efficient multi-gene assembly strategy. The software-assisted AssemblX process allows even unexperienced users to rapidly design, build and test DNA constructs with currently up to 25 functional units, from 75 or more subunits. At the gene level, AssemblX uses scar-free, overlap-based and sequence-independent methods, allowing the unrestricted design of transcriptional units without laborious parts domestication. The assembly into multi-gene modules is enabled via a standardized, highly efficient, polymerase chain reaction-free and virtually sequence-independent scheme, which relies on rare cutting restriction enzymes and optimized adapter sequences. Selection and marker switching strategies render the whole process reliable, rapid and very effective. The assembly product can be easily transferred to any desired expression host, making AssemblX useful for researchers from various fields.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Juergen Gremmels
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Karina Schulz
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.,University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
23
|
Badrinarayanan A, Le TBK, Spille JH, Cisse II, Laub MT. Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB. PLoS Genet 2017; 13:e1006783. [PMID: 28489851 PMCID: PMC5443536 DOI: 10.1371/journal.pgen.1006783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/24/2017] [Accepted: 04/26/2017] [Indexed: 12/03/2022] Open
Abstract
In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400–2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair–the attenuation of DNA-end processing and the initiation of homology search by RecA–thereby helping to ensure that genomic integrity is maintained during DSB repair. Double-strand breaks (DSBs) are a threat to genome integrity and are faithfully repaired via homologous recombination. The initial processing of DSB ends that prepares them for recombination has been well-studied in vitro, but is less well characterized in vivo. We describe a deep sequencing-based assay for assessing the early steps of DSB processing in bacterial cells by the helicase-nuclease complex AddAB. We find that a combination of chi site recognition and RecA loading is required to attenuate AddAB activity. In the absence of RecA, the chromosome is excessively degraded with a concomitant loss in transcription. Our results, along with prior studies, support a model for how chi recognition and RecA together regulate AddAB to maintain genome integrity and facilitate recombination.
Collapse
Affiliation(s)
- Anjana Badrinarayanan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, India
| | - Tung B. K. Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Jan-Hendrik Spille
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Ibrahim I. Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hoffmann S, Schmidt C, Walter S, Bender JK, Gerlach RG. Scarless deletion of up to seven methyl-accepting chemotaxis genes with an optimized method highlights key function of CheM in Salmonella Typhimurium. PLoS One 2017; 12:e0172630. [PMID: 28212413 PMCID: PMC5315404 DOI: 10.1371/journal.pone.0172630] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Site-directed scarless mutagenesis is an essential tool of modern pathogenesis research. We describe an optimized two-step protocol for genome editing in Salmonella enterica serovar Typhimurium to enable multiple sequential mutagenesis steps in a single strain. The system is based on the λ Red recombinase-catalyzed integration of a selectable antibiotics resistance marker followed by replacement of this cassette. Markerless mutants are selected by expressing the meganuclease I-SceI which induces double-strand breaks in bacteria still harboring the resistance locus. Our new dual-functional plasmid pWRG730 allows for heat-inducible expression of the λ Red recombinase and tet-inducible production of I-SceI. Methyl-accepting chemotaxis proteins (MCP) are transmembrane chemoreceptors for a vast set of environmental signals including amino acids, sugars, ions and oxygen. Based on the sensory input of MCPs, chemotaxis is a key component for Salmonella virulence. To determine the contribution of individual MCPs we sequentially deleted seven MCP genes. The individual mutations were validated by PCR and genetic integrity of the final seven MCP mutant WRG279 was confirmed by whole genome sequencing. The successive MCP mutants were functionally tested in a HeLa cell infection model which revealed increased invasion rates for non-chemotactic mutants and strains lacking the MCP CheM (Tar). The phenotype of WRG279 was reversed with plasmid-based expression of CheM. The complemented WRG279 mutant showed also partially restored chemotaxis in swarming assays on semi-solid agar. Our optimized scarless deletion protocol enables efficient and precise manipulation of the Salmonella genome. As demonstrated with whole genome sequencing, multiple subsequent mutagenesis steps can be realized without the introduction of unwanted mutations. The sequential deletion of seven MCP genes revealed a significant role of CheM for the interaction of S. Typhimurium with host cells which might give new insights into mechanisms of Salmonella host cell sensing.
Collapse
Affiliation(s)
| | | | - Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer K. Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | | |
Collapse
|
25
|
Hook C, Samsonov V, Ublinskaya A, Kuvaeva T, Andreeva E, Gorbacheva L, Stoynova N. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion. J Microbiol Methods 2016; 130:83-91. [DOI: 10.1016/j.mimet.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
|
26
|
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. mBio 2016; 7:mBio.01109-16. [PMID: 27729506 PMCID: PMC5061868 DOI: 10.1128/mbio.01109-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. IMPORTANCE Recessive lethal alleles impose significant constraints on the biology of diploid organisms. Using a combination of an I-SceI meganuclease-mediated DNA DSB, a fluorescence-activated cell sorter (FACS)-optimized reporter of LOH, and a compendium of 155 genome sequences, we were able to unmask and identify recessive lethal and deleterious alleles in isolates of Candida albicans, a diploid yeast and the major fungal pathogen of humans. Accumulation of recessive deleterious mutations upon clonal reproduction of C. albicans could contribute to the maintenance of heterozygosity despite the high frequency of LOH events in this species.
Collapse
|
27
|
Abstract
The mutagenesis of enterobacterial genomes using phage λ Red recombinase functions is a rapid and versatile experimental tool. In addition to the rapid generation of deletions in the genome of Salmonella enterica, variations of the method allow site-directed mutagenesis, generation of reporter fusions, generation of chimeric genes, or transplantation of regulatory elements directly in the chromosome. We describe the application of these approaches with focus on practical aspects and critical steps.
Collapse
Affiliation(s)
- Frederik Czarniak
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | | |
Collapse
|
28
|
Abstract
The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
29
|
Badrinarayanan A, Le TBK, Laub MT. Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. J Cell Biol 2016; 210:385-400. [PMID: 26240183 PMCID: PMC4523614 DOI: 10.1083/jcb.201505019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Double-strand break repair in Caulobacter is a dynamic process that can take place independent of DNA replication; resegregation of origin-proximal chromosomal regions after repair requires the ParABS system, whereas resegregation of origin-distal regions occurs independently of ParA and likely without dedicated segregation machinery. Double-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Although DSB repair via homologous recombination has been well characterized, the spatial organization of this process inside cells remains poorly understood, and the mechanisms used for chromosome resegregation after repair are unclear. In this paper, we introduced site-specific DSBs in Caulobacter crescentus and then used time-lapse microscopy to visualize the ensuing chromosome dynamics. Damaged loci rapidly mobilized after a DSB, pairing with their homologous partner to enable repair, before being resegregated to their original cellular locations, independent of DNA replication. Origin-proximal regions were resegregated by the ParABS system with the ParA structure needed for resegregation assembling dynamically in response to the DSB-induced movement of an origin-associated ParB away from one cell pole. Origin-distal regions were resegregated in a ParABS-independent manner and instead likely rely on a physical, spring-like force to segregate repaired loci. Collectively, our results provide a mechanistic basis for the resegregation of chromosomes after a DSB.
Collapse
Affiliation(s)
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
30
|
Quétier F. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:65-76. [PMID: 26566825 DOI: 10.1016/j.plantsci.2015.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 05/23/2023]
Abstract
The first period of plant genome editing was based on Agrobacterium; chemical mutagenesis by EMS (ethyl methanesulfonate) and ionizing radiations; each of these technologies led to randomly distributed genome modifications. The second period is associated with the discoveries of homing and meganuclease enzymes during the 80s and 90s, which were then engineered to provide efficient tools for targeted editing. From 2006 to 2012, a few crop plants were successfully and precisely modified using zinc-finger nucleases. A third wave of improvement in genome editing, which led to a dramatic decrease in off-target events, was achieved in 2009-2011 with the TALEN technology. The latest revolution surfaced in 2013 with the CRISPR-Cas9 system, whose high efficiency and technical ease of use is really impressive; scientists can use in-house kits or commercially available kits; the only two requirements are to carefully choose the location of the DNA double strand breaks to be induced and then to order an oligonucleotide. While this close-to- ultimate toolkit for targeted editing of genomes represents dramatic scientific progress which allows the development of more complex useful agronomic traits through synthetic biology, the social acceptance of genome editing remains regularly questioned by anti-GMO citizens and organizations.
Collapse
Affiliation(s)
- Francis Quétier
- University of Evry Val d'Essonne, Evry 91025, France; Genopole, Evry 91025, France.
| |
Collapse
|
31
|
Boisnard S, Zhou Li Y, Arnaise S, Sequeira G, Raffoux X, Enache-Angoulvant A, Bolotin-Fukuhara M, Fairhead C. Efficient Mating-Type Switching in Candida glabrata Induces Cell Death. PLoS One 2015; 10:e0140990. [PMID: 26491872 PMCID: PMC4619647 DOI: 10.1371/journal.pone.0140990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 01/05/2023] Open
Abstract
Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed.
Collapse
Affiliation(s)
- Stéphanie Boisnard
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
- * E-mail:
| | - Youfang Zhou Li
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Sylvie Arnaise
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
| | - Gregory Sequeira
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
| | - Xavier Raffoux
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Adela Enache-Angoulvant
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Hôpital de Bicêtre, Le Kremlin Bicêtre, APHP, France
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| | - Cécile Fairhead
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, F-91405, Orsay, CEDEX, France
- Génétique Quantitative et Évolution–Le Moulon, INRA–Université Paris-Sud–CNRS–AgroParisTech, Batiment 400, UFR des Sciences, F 91405, Orsay, CEDEX, France
| |
Collapse
|
32
|
Ouedraogo JP, Arentshorst M, Nikolaev I, Barends S, Ram AFJ. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei. Appl Microbiol Biotechnol 2015; 99:10083-95. [PMID: 26272087 PMCID: PMC4643118 DOI: 10.1007/s00253-015-6829-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Targeted integration of expression cassettes for enzyme production in industrial microorganisms is desirable especially when enzyme variants are screened for improved enzymatic properties. However, currently used methods for targeted integration are inefficient and result in low transformation frequencies. In this study, we expressed the Saccharomyces cerevisiae I-SceI meganuclease to generate double-strand breaks at a defined locus in the Trichoderma reesei genome. We showed that the double-strand DNA breaks mediated by I-SceI can be efficiently repaired when an exogenous DNA cassette flanked by regions homologous to the I-SceI landing locus was added during transformation. Transformation efficiencies increased approximately sixfold compared to control transformation. Analysis of the transformants obtained via I-SceI-mediated gene targeting showed that about two thirds of the transformants resulted from a homologous recombination event at the predetermined locus. Counter selection of the transformants for the loss of the pyrG marker upon integration of the DNA cassette showed that almost all of the clones contained the cassette at the predetermined locus. Analysis of independently obtained transformants using targeted integration of a glucoamylase expression cassette demonstrated that glucoamylase production among the transformants was high and showing limited variation. In conclusion, the gene targeting system developed in this study significantly increases transformation efficiency as well as homologous recombination efficiency and omits the use of Δku70 strains. It is also suitable for high-throughput screening of enzyme variants or gene libraries in T. reesei.
Collapse
Affiliation(s)
- Jean Paul Ouedraogo
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Igor Nikolaev
- Dupont Industrial Biosciences, Archimedesweg 30, 2333 CN, Leiden, The Netherlands
| | - Sharief Barends
- Dupont Industrial Biosciences, Archimedesweg 30, 2333 CN, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
33
|
Wenzel M, Altenbuchner J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. MICROBIOLOGY-SGM 2015; 161:1942-1949. [PMID: 26238998 DOI: 10.1099/mic.0.000150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To optimize Bacillus subtilis as a production strain for proteins and low molecular substances by genome engineering, we developed a markerless gene deletion system. We took advantage of a general property of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular the mannose PTS. Mannose is phosphorylated during uptake by its specific transporter (ManP) to mannose 6-phosphate, which is further converted to fructose 6-phosphate by the mannose-6-phosphate isomerase (ManA). When ManA is missing, accumulation of the phosphorylated mannose inhibits cell growth. This system was constructed by deletion of manP and manA in B. subtilis Δ6, a 168 derivative strain with six large deletions of prophages and antibiotic biosynthesis genes. The manP gene was inserted into an Escherichia coli plasmid together with a spectinomycin resistance gene for selection in B. subtilis. To delete a specific region, its up- and downstream flanking sites (each of approximately 700 bp) were inserted into the vector. After transformation, integration of the plasmid into the chromosome of B. subtilis by single cross-over was selected by spectinomycin. In the second step, excision of the plasmid was selected by growth on mannose. Finally, excision and concomitant deletion of the target region were verified by colony PCR. In this way, all nine prophages, seven antibiotic biosynthesis gene clusters and two sigma factors for sporulation were deleted and the B. subtilis genome was reduced from 4215 to 3640 kb. Despite these extensive deletions, growth rate and cell morphology remained similar to the B. subtilis 168 parental strain.
Collapse
Affiliation(s)
- Marian Wenzel
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
34
|
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, Liu P, Jia X, Yu J, Zhang C, Sun W, Yu Y, Jin Y, Bai J, Wang M, Rosales J, Lee KY, Fu S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 2014; 52:135-44. [PMID: 25537274 PMCID: PMC4316941 DOI: 10.1136/jmedgenet-2014-102703] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. Results In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. Conclusions We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huanhuan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jie Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuzhen Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jesusa Rosales
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ki-Young Lee
- Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
35
|
Liu JK, Chen WH, Ren SX, Zhao GP, Wang J. iBrick: a new standard for iterative assembly of biological parts with homing endonucleases. PLoS One 2014; 9:e110852. [PMID: 25329380 PMCID: PMC4203835 DOI: 10.1371/journal.pone.0110852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022] Open
Abstract
The BioBricks standard has made the construction of DNA modules easier, quicker and cheaper. So far, over 100 BioBricks assembly schemes have been developed and many of them, including the original standard of BBF RFC 10, are now widely used. However, because the restriction endonucleases employed by these standards usually recognize short DNA sequences that are widely spread among natural DNA sequences, and these recognition sites must be removed before the parts construction, there is much inconvenience in dealing with large-size DNA parts (e.g., more than couple kilobases in length) with the present standards. Here, we introduce a new standard, namely iBrick, which uses two homing endonucleases of I-SceI and PI-PspI. Because both enzymes recognize long DNA sequences (>18 bps), their sites are extremely rare in natural DNA sources, thus providing additional convenience, especially in handling large pieces of DNA fragments. Using the iBrick standard, the carotenoid biosynthetic cluster (>4 kb) was successfully assembled and the actinorhodin biosynthetic cluster (>20 kb) was easily cloned and heterologously expressed. In addition, a corresponding nomenclature system has been established for the iBrick standard.
Collapse
Affiliation(s)
- Jia-Kun Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Hua Chen
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuang-Xi Ren
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Lab of Genetic Engineering & Center for Synthetic Biology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail: (JW); (GPZ)
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JW); (GPZ)
| |
Collapse
|
36
|
Solis-Escalante D, Kuijpers NGA, van der Linden FH, Pronk JT, Daran JM, Daran-Lapujade P. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:741-54. [PMID: 24833416 DOI: 10.1111/1567-1364.12162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 12/26/2022] Open
Abstract
Large strain construction programs and functional analysis studies are becoming commonplace in Saccharomyces cerevisiae and involve construction of strains that carry multiple selectable marker genes. Extensive strain engineering is, however, severely hampered by the limited number of recyclable marker genes and by the reduced genome stability that occurs upon repeated use of heterologous recombinase-based marker removal methods. The present study proposes an efficient method to recycle multiple markers in S. cerevisiae simultaneously, thereby circumventing shortcomings of existing techniques and substantially accelerating the process of selection-excision. This method relies on artificial generation of double-strand breaks around the selection marker cassette by the meganuclease I-SceI and the subsequent repair of these breaks by the yeast homologous recombination machinery, guided by direct repeats. Simultaneous removal of up to three marker cassettes was achieved with high efficiencies (up to 56%), suggesting that I-SceI-based marker removal has the potential to co-excise an even larger number of markers. This locus- and marker-independent method can be used for both dominant and auxotrophy-complementing marker genes. Seven pDS plasmids carrying various selectable markers, which can be used for PCR-based generation of deletion cassettes suited for I-SceI marker recycling, are described and made available to the scientific community.
Collapse
|
37
|
High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl Environ Microbiol 2014; 80:3826-34. [PMID: 24747889 DOI: 10.1128/aem.00313-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic modifications of bacterial chromosomes are important for both fundamental and applied research. In this study, we developed an efficient, easy-to-use system for genetic modification of the Escherichia coli chromosome, a two-plasmid method involving lambda Red (λ-Red) recombination and I-SceI cleavage. An intermediate strain is generated by integration of a resistance marker gene(s) and I-SceI recognition sites in or near the target gene locus, using λ-Red PCR targeting. The intermediate strain is transformed with a donor plasmid carrying the target gene fragment with the desired modification flanked by I-SceI recognition sites, together with a bifunctional helper plasmid for λ-Red recombination and I-SceI endonuclease. I-SceI cleavage of the chromosome and the donor plasmid allows λ-Red recombination between chromosomal breaks and linear double-stranded DNA from the donor plasmid. Genetic modifications are introduced into the chromosome, and the placement of the I-SceI sites determines the nature of the recombination and the modification. This method was successfully used for cadA knockout, gdhA knock-in, seamless deletion of pepD, site-directed mutagenesis of the essential metK gene, and replacement of metK with the Rickettsia S-adenosylmethionine transporter gene. This effective method can be used with both essential and nonessential gene modifications and will benefit basic and applied genetic research.
Collapse
|
38
|
Aubert DF, Hamad MA, Valvano MA. A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria. Methods Mol Biol 2014; 1197:311-327. [PMID: 25172289 DOI: 10.1007/978-1-4939-1261-2_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of multidrug-resistant bacteria is often difficult and hinders progress in understanding their physiology and pathogenesis. This book chapter highlights advances in genetic manipulation of Burkholderia cenocepacia, which are also applicable to other members of the Burkholderia cepacia complex and multidrug-resistant gram-negative bacteria of other genera. The method detailed here is based on the I-SceI homing endonuclease system, which can be efficiently used for chromosomal integration, deletion, and genetic replacement. This system creates markerless mutations and insertions without leaving a genetic scar and thus can be reused successively to generate multiple modifications in the same strain.
Collapse
Affiliation(s)
- Daniel F Aubert
- Department of Microbiology and Immunology, Centre for Human Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
39
|
RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 2013; 506:249-53. [PMID: 24362571 PMCID: PMC3925069 DOI: 10.1038/nature12868] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/05/2013] [Indexed: 11/08/2022]
Abstract
DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.
Collapse
|
40
|
Kuijpers NGA, Chroumpi S, Vos T, Solis-Escalante D, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:769-81. [PMID: 24028550 PMCID: PMC4068284 DOI: 10.1111/1567-1364.12087] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/23/2013] [Accepted: 09/01/2013] [Indexed: 11/26/2022] Open
Abstract
In vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S. cerevisiae. Combined assembly and targeted integration of a ten-fragment 22-kb construct to a single chromosomal locus was successfully achieved in a single transformation process, but with low efficiency (5% of the analyzed transformants contained the correctly assembled construct). The meganuclease I-SceI was therefore used to introduce a double-strand break at the targeted chromosomal locus, thus to facilitate integration of the assembled construct. I-SceI-assisted integration dramatically increased the efficiency of assembly and integration of the same construct to 95%. This study paves the way for the fast, efficient, and stable integration of large DNA constructs in S. cerevisiae chromosomes.
Collapse
Affiliation(s)
- Niels GA Kuijpers
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Soultana Chroumpi
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Tim Vos
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Daniel Solis-Escalante
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Lizanne Bosman
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Platform Green Synthetic BiologyDelft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Platform Green Synthetic BiologyDelft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| |
Collapse
|
41
|
Shi T, Wang G, Wang Z, Fu J, Chen T, Zhao X. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome. PLoS One 2013; 8:e81370. [PMID: 24282588 PMCID: PMC3839881 DOI: 10.1371/journal.pone.0081370] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/11/2013] [Indexed: 01/12/2023] Open
Abstract
Bacillus subtilis has been a model for gram-positive bacteria and it has long been exploited for industrial and biotechnological applications. However, the availability of facile genetic tools for physiological analysis has generally lagged substantially behind traditional genetic models such as Escherichia coli and Saccharomyces cerevisiae. In this work, we have developed an efficient, precise and scarless method for rapid multiple genetic modifications without altering the chromosome of B. subtilis. This method employs upp gene as a counter-selectable marker, double-strand break (DSB) repair caused by exogenous endonuclease I-SceI and comK overexpression for fast preparation of competent cell. Foreign dsDNA can be simply and efficiently integrated into the chromosome by double-crossover homologous recombination. The DSB repair is a potent inducement for stimulating the second intramolecular homologous recombination, which not only enhances the frequency of resolution by one to two orders of magnitude, but also selects for the resolved product. This method has been successfully and reiteratively used in B. subtilis to deliver point mutations, to generate in-frame deletions, and to construct large-scale deletions. Experimental results proved that it allowed repeated use of the selectable marker gene for multiple modifications and could be a useful technique for B. subtilis.
Collapse
Affiliation(s)
- Ting Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
| | - Guanglu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
- * E-mail: addresses:
| | - Jing Fu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
| | - Xueming Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
- Edinburgh-Tianjin Joint Research Centre for Systems Biology and Synthetic Biology, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
42
|
Kim TM, Rebel VI, Hasty P. Defining a genotoxic profile with mouse embryonic stem cells. Exp Biol Med (Maywood) 2013; 238:285-93. [PMID: 23598974 DOI: 10.1177/1535370213480700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many genotoxins are found in the environment from synthetic to natural, yet very few have been studied in depth. This means we fail to understand many molecules that damage DNA, we do not understand the type of damage they cause and the repair pathways required to correct their lesions. It is surprising so little is known about the vast majority of genotoxins since they have potential to cause disease from developmental defects to cancer to degenerative ailments. By contrast, some of these molecules have commercial and medical potential and some can be weaponized. Therefore, we need a systematic method to efficiently generate a genotoxic profile for these agents. A genotoxic profile would include the type of damage the genotoxin causes, the pathways used to repair the damage and the resultant mutations if repair fails. Mouse embryonic stem (ES) cells are well suited for identifying pathways and mutations. Mouse ES cells are genetically tractable and many DNA repair mutant cells are available. ES cells have a high mitotic index and form colonies so experiments can be completed quickly and easily. Furthermore, ES cells have robust DNA repair pathways to minimize genetic mutations at a particularly vulnerable time in life, early development when a mutation in a single cell could ultimately contribute to a large fraction of the individual. After an initial screen, other types of cells and mouse models can be used to complement the analysis. This review discusses the merging field of genotoxic screens in mouse ES cells that can be used to discover and study potential genotoxic activity for chemicals commonly found in our environment.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
43
|
Meganuclease-mediated virus self-cleavage facilitates tumor-specific virus replication. Mol Ther 2013; 21:1738-48. [PMID: 23752311 DOI: 10.1038/mt.2013.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/30/2013] [Indexed: 12/29/2022] Open
Abstract
Meganucleases can specifically cleave long DNA sequence motifs, a feature that makes them an ideal tool for gene engineering in living cells. In a proof-of-concept study, we investigated the use of the meganuclease I-Sce I for targeted virus self-disruption to generate high-specific oncolytic viruses. For this purpose, we provided oncolytic adenoviruses with a molecular circuit that selectively responds to p53 activation by expression of I-Sce I subsequently leading to self-disruption of the viral DNA via heterologous I-Sce I recognition sites within the virus genome. We observed that virus replication and cell lysis was effectively impaired in p53-normal cells, but not in p53-dysfunctional tumor cells. I-Sce I activity led to effective intracellular processing of viral DNA as confirmed by detection of specific cleavage products. Virus disruption did not interfere with E1A levels indicating that reduction of functional virus genomes was the predominant cause for conditional replication. Consequently, tumor-specific replication was further enhanced when E1A expression was additionally inhibited by targeted transcriptional repression. Finally, we demonstrated p53-dependent oncolysis by I-Sce I-expressing viruses in vitro and in vivo, and demonstrated effective inhibition of tumor growth. In summary, meganuclease-mediated virus cleavage represents a promising approach to provide oncolytic viruses with attractive safety profiles.
Collapse
|
44
|
The molecular toolbox for chromosomal heterologous multiprotein expression in Escherichia coli. Biochem Soc Trans 2013; 40:1222-6. [PMID: 23176458 DOI: 10.1042/bst20120143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterologous multiprotein expression is the tool to answer a number of questions in basic science as well as to convert strains into producers and/or consumers of certain compounds in applied sciences. Multiprotein expression can be driven by plasmids with the disadvantages that the gene dosage might, in some cases, lead to toxic effects and that the continuous addition of antibiotics is undesirable. Stable genomic expression of proteins can forgo these problems and is a helpful and promising tool in synthetic biology. In the present paper, we provide an extract of methods from the toolbox for chromosome-based heterologous expression in Escherichia coli.
Collapse
|
45
|
Abstract
The homologous recombination systems of linear double-stranded (ds)DNA bacteriophages are required for the generation of genetic diversity, the repair of dsDNA breaks, and the formation of concatemeric chromosomes, the immediate precursor to packaging. These systems have been studied for decades as a means to understand the basic principles of homologous recombination. From the beginning, it was recognized that these recombinases are linked intimately to the mechanisms of phage DNA replication. In the last decade, however, investigators have exploited these recombination systems as tools for genetic engineering of bacterial chromosomes, bacterial artificial chromosomes, and plasmids. This recombinational engineering technology has been termed "recombineering" and offers a new paradigm for the genetic manipulation of bacterial chromosomes, which is far more efficient than the classical use of nonreplicating integration vectors for gene replacement. The phage λ Red recombination system, in particular, has been used to construct gene replacements, deletions, insertions, inversions, duplications, and single base pair changes in the Escherichia coli chromosome. This chapter discusses the components of the recombination systems of λ, rac prophage, and phage P22 and properties of single-stranded DNA annealing proteins from these and other phage that have been instrumental for the development of this technology. The types of genetic manipulations that can be made are described, along with proposed mechanisms for both double-stranded DNA- and oligonucleotide-mediated recombineering events. Finally, the impact of this technology to such diverse fields as bacterial pathogenesis, metabolic engineering, and mouse genomics is discussed.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Stolfi A, Christiaen L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 2012; 192:55-66. [PMID: 22964837 PMCID: PMC3430545 DOI: 10.1534/genetics.112.140590] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/30/2012] [Indexed: 02/01/2023] Open
Abstract
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
47
|
Zhukhlistova NE, Balaev VV, Lyashenko AV, Lashkov AA. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids. CRYSTALLOGR REP+ 2012. [DOI: 10.1134/s1063774512030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ublinskaya AA, Samsonov VV, Mashko SV, Stoynova NV. A PCR-free cloning method for the targeted φ80 Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods 2012; 89:167-73. [PMID: 22484061 DOI: 10.1016/j.mimet.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/20/2022]
Abstract
The genetic manipulation of cells is the most promising strategy for designing microorganisms with desired traits. The most widely used approaches for integrating specific DNA-fragments into the Escherichia coli genome are based on bacteriophage site-specific and Red/ET-mediated homologous recombination systems. Specifically, the recently developed Dual In/Out integration strategy enables the integration of DNA fragments directly into specific chromosomal loci (Minaeva et al., 2008). To develop this strategy further, we designed a method for the precise cloning of any long DNA fragments from the E. coli chromosome and their targeted insertion into the genome that does not require PCR. In this method, the region of interest is flanked by I-SceI rare-cutting restriction sites, and the I-SceI-bracketed region is cloned into the unique I-SceI site of an integrative plasmid vector that then enables its targeted insertion into the E. coli chromosome via bacteriophage φ80 Int-mediated specialized recombination. This approach allows any long specific DNA fragment from the E. coli genome to be cloned without a PCR amplification step and reproducibly inserted into any chosen chromosomal locus. The developed method could be particularly useful for the construction of marker-less and plasmid-less recombinant strains in the biotechnology industry.
Collapse
Affiliation(s)
- Anna A Ublinskaya
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, 117545 Moscow, Russian Federation
| | | | | | | |
Collapse
|
49
|
Mongin E, Auer TO, Bourrat F, Gruhl F, Dewar K, Blanchette M, Wittbrodt J, Ettwiller L. Combining computational prediction of cis-regulatory elements with a new enhancer assay to efficiently label neuronal structures in the medaka fish. PLoS One 2011; 6:e19747. [PMID: 21637758 PMCID: PMC3103512 DOI: 10.1371/journal.pone.0019747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/15/2011] [Indexed: 01/12/2023] Open
Abstract
The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates.
Collapse
Affiliation(s)
- Emmanuel Mongin
- McGill Centre for Bioinformatics, McGill University, Montréal, Canada
| | - Thomas O. Auer
- Centre for Organismal Studies COS, University of Heidelberg, Heidelberg, Germany
| | - Franck Bourrat
- MSNC INRA Group, UPR2197 DEPSN Institut Fessard, CNRS, Gif-sur-Yvette, France
| | - Franziska Gruhl
- Centre for Organismal Studies COS, University of Heidelberg, Heidelberg, Germany
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, Montréal, Canada
- * E-mail: (MB); (JW); (LE)
| | - Joachim Wittbrodt
- Centre for Organismal Studies COS, University of Heidelberg, Heidelberg, Germany
- Karlsruhe Institute for Technology KIT, Institute for Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- * E-mail: (MB); (JW); (LE)
| | - Laurence Ettwiller
- Centre for Organismal Studies COS, University of Heidelberg, Heidelberg, Germany
- * E-mail: (MB); (JW); (LE)
| |
Collapse
|
50
|
Kalivoda EJ, Horzempa J, Stella NA, Sadaf A, Kowalski RP, Nau GJ, Shanks RMQ. New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. Mol Biotechnol 2011; 48:7-14. [PMID: 20972648 PMCID: PMC3617578 DOI: 10.1007/s12033-010-9342-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of many bacterial strains to tolerate antibiotics can limit the number of molecular tools available for research of these organisms. To help address this problem, we have modified a diverse set of vectors to include a broadly expressed hygromycin resistance (HmR) marker. Hygromycin B is an aminoglycoside antibiotic not used to treat infections in humans and has antimicrobial activity against a wide range of microorganisms. Vectors with four replication origins are represented, with potential applications including general cloning, allelic replacement, and transcriptional analysis. We show that vectors with the broad host range pBBR1-replicon conferred HmR to Achromobacter xylosoxidans, Acinetobacter baumannii, Pseudomonas aeruginosa, and Serratia marcescens, and a pC194-based vector was able to confer HmR to Francisella tularensis. We also used a subset of these plasmids to manipulate the genome of S. marcescens. Each vector has an origin of transfer for conjugation, and is also able to replicate in Saccharomyces cerevisiae to take advantage of the powerful yeast recombineering system.
Collapse
Affiliation(s)
- Eric J Kalivoda
- The Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|