• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598975)   Today's Articles (4688)   Subscriber (49356)
For: Meisel A, Krüger DH, Bickle TA. M.EcoP15 methylates the second adenine in its recognition sequence. Nucleic Acids Res 1991;19:3997. [PMID: 1861989 PMCID: PMC328496 DOI: 10.1093/nar/19.14.3997] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]  Open
Number Cited by Other Article(s)
1
Urulangodi M, Dhanaraju R, Gupta K, Roy RP, Bujnicki JM, Rao DN. Asymmetric DNA methylation by dimeric EcoP15I DNA methyltransferase. Biochimie 2016;128-129:70-82. [PMID: 27422119 DOI: 10.1016/j.biochi.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
2
Butterer A, Pernstich C, Smith RM, Sobott F, Szczelkun MD, Tóth J. Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA. Nucleic Acids Res 2014;42:5139-50. [PMID: 24510100 PMCID: PMC4005696 DOI: 10.1093/nar/gku122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
3
Rao DN, Dryden DTF, Bheemanaik S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 2014;42:45-55. [PMID: 23863841 PMCID: PMC3874151 DOI: 10.1093/nar/gkt616] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 11/12/2022]  Open
4
Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 2012;40:9218-32. [PMID: 22821560 PMCID: PMC3467074 DOI: 10.1093/nar/gks681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
5
Schwarz FW, van Aelst K, Tóth J, Seidel R, Szczelkun MD. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion. Nucleic Acids Res 2011;39:8042-51. [PMID: 21724613 PMCID: PMC3185417 DOI: 10.1093/nar/gkr502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]  Open
6
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010;45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
7
Adamczyk-Poplawska M, Lower M, Piekarowicz A. Characterization of the NgoAXP: phase-variable type III restriction-modification system in Neisseria gonorrhoeae. FEMS Microbiol Lett 2009;300:25-35. [PMID: 19758331 DOI: 10.1111/j.1574-6968.2009.01760.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]  Open
8
Peakman LJ, Szczelkun MD. S-adenosyl homocysteine and DNA ends stimulate promiscuous nuclease activities in the Type III restriction endonuclease EcoPI. Nucleic Acids Res 2009;37:3934-45. [PMID: 19401438 PMCID: PMC2709564 DOI: 10.1093/nar/gkp267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]  Open
9
Morgan RD, Bhatia TK, Lovasco L, Davis TB. MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 2008;36:6558-70. [PMID: 18931376 PMCID: PMC2582602 DOI: 10.1093/nar/gkn711] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]  Open
10
Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Biochem J 2008;410:543-53. [PMID: 17995451 DOI: 10.1042/bj20070900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
11
Bist P, Madhusoodanan UK, Rao DN. A Mutation in the Mod Subunit of EcoP15I Restriction Enzyme Converts the DNA Methyltransferase to a Site-specific Endonuclease. J Biol Chem 2007;282:3520-30. [PMID: 17148461 DOI: 10.1074/jbc.m603250200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
12
Sears A, Peakman LJ, Wilson GG, Szczelkun MD. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii. Nucleic Acids Res 2005;33:4775-87. [PMID: 16120967 PMCID: PMC1192830 DOI: 10.1093/nar/gki787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]  Open
13
Reich S, Gössl I, Reuter M, Rabe JP, Krüger DH. Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I. J Mol Biol 2004;341:337-43. [PMID: 15276827 DOI: 10.1016/j.jmb.2004.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/28/2022]
14
Bist P, Rao DN. Identification and mutational analysis of Mg2+ binding site in EcoP15I DNA methyltransferase: involvement in target base eversion. J Biol Chem 2003;278:41837-48. [PMID: 12917398 DOI: 10.1074/jbc.m307053200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
15
Raghavendra NK, Rao DN. Functional cooperation between exonucleases and endonucleases--basis for the evolution of restriction enzymes. Nucleic Acids Res 2003;31:1888-96. [PMID: 12655005 PMCID: PMC152791 DOI: 10.1093/nar/gkg275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
16
Mücke M, Reich S, Möncke-Buchner E, Reuter M, Krüger DH. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. J Mol Biol 2001;312:687-98. [PMID: 11575924 DOI: 10.1006/jmbi.2001.4998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
17
Reddy YV, Rao DN. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J Mol Biol 2000;298:597-610. [PMID: 10788323 DOI: 10.1006/jmbi.2000.3673] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
18
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000;64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
19
Reddy YV, Rao DN. Probing the role of cysteine residues in the EcoP15I DNA methyltransferase. J Biol Chem 1998;273:23866-76. [PMID: 9726999 DOI: 10.1074/jbc.273.37.23866] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
20
Ramchandani S, Bigey P, Szyf M. Genomic structure of the human DNA methyltransferase gene. Biol Chem 1998;379:535-40. [PMID: 9628348 DOI: 10.1515/bchm.1998.379.4-5.535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
21
Ahmad I, Krishnamurthy V, Rao DN. DNA recognition by the EcoP15I and EcoPI modification methyltransferases. Gene X 1995;157:143-7. [PMID: 7607479 DOI: 10.1016/0378-1119(95)00671-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
22
Ahmad I, Rao DN. Photolabeling of the EcoP15 DNA methyltransferase with S-adenosyl-L-methionine. Gene 1994;142:67-71. [PMID: 8181759 DOI: 10.1016/0378-1119(94)90356-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
23
Characterization of BcgI, a new kind of restriction-modification system. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42403-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]  Open
24
Nelson M, Raschke E, McClelland M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1993;21:3139-54. [PMID: 8392715 PMCID: PMC309743 DOI: 10.1093/nar/21.13.3139] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]  Open
25
Bickle TA, Krüger DH. Biology of DNA restriction. Microbiol Rev 1993;57:434-50. [PMID: 8336674 PMCID: PMC372918 DOI: 10.1128/mr.57.2.434-450.1993] [Citation(s) in RCA: 330] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
26
Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS 1993;64:39-108. [PMID: 8380352 DOI: 10.1007/978-3-0348-9118-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
27
McClelland M, Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1992;20 Suppl:2145-57. [PMID: 1317957 PMCID: PMC333989 DOI: 10.1093/nar/20.suppl.2145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
28
Meisel A, Bickle TA, Krüger DH, Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 1992;355:467-9. [PMID: 1734285 DOI: 10.1038/355467a0] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA