1
|
Drozdzal P, Manszewski T, Gilski M, Brzezinski K, Jaskolski M. Right-handed Z-DNA at ultrahigh resolution: a tale of two hands and the power of the crystallographic method. Acta Crystallogr D Struct Biol 2023; 79:133-139. [PMID: 36762859 PMCID: PMC9912920 DOI: 10.1107/s2059798322011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
The self-complementary L-d(CGCGCG)2 purine/pyrimidine hexanucleotide was crystallized in complex with the polyamine cadaverine and potassium cations. Since the oligonucleotide contained the enantiomeric 2'-deoxy-L-ribose, the Z-DNA duplex is right-handed, as confirmed by the ultrahigh-resolution crystal structure determined at 0.69 Å resolution. Although the X-ray diffraction data were collected at a very short wavelength (0.7085 Å), where the anomalous signal of the P and K atoms is very weak, the signal was sufficiently outstanding to clearly indicate the wrong hand when the structure was mistakenly solved assuming the presence of 2'-deoxy-D-ribose. The electron density clearly shows the entire cadaverinium dication, which has an occupancy of 0.53 and interacts with one Z-DNA duplex. The K+ cation, with an occupancy of 0.32, has an irregular coordination sphere that is formed by three OP atoms of two symmetry-related Z-DNA duplexes and one O5' hydroxyl O atom, and is completed by three water sites, one of which is twofold disordered. The K+ site is complemented by a partial water molecule, the hydrogen bonds of which have the same lengths as the K-O bonds. The sugar-phosphate backbone assumes two conformations, but the base pairs do not show any sign of disorder.
Collapse
Affiliation(s)
- Pawel Drozdzal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Manszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Young BE, Kundu N, Sczepanski JT. Mirror-Image Oligonucleotides: History and Emerging Applications. Chemistry 2019; 25:7981-7990. [PMID: 30913332 PMCID: PMC6615976 DOI: 10.1002/chem.201900149] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/13/2023]
Abstract
As chiral molecules, naturally occurring d-oligonucleotides have enantiomers, l-DNA and l-RNA, which are comprised of l-(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d-counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l-oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d-oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d- and l-oligonucleotides to form contiguous Watson-Crick base pairs with each other has ultimately led to the perception that l-oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l-oligonucleotides, while overcoming (and even exploiting) their inability to Watson-Crick base pair with the natural polymer. Herein, a brief history of l-oligonucleotide research is presented and emerging l-oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.
Collapse
Affiliation(s)
- Brian E. Young
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan T. Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Jędrzejewska H, Szumna A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. Chem Rev 2017; 117:4863-4899. [PMID: 28277655 DOI: 10.1021/acs.chemrev.6b00745] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses chiral self-sorting-the process of choosing an interaction partner with a given chirality from a complex mixture of many possible racemic partners. Chiral self-sorting (also known as chiral self-recognition or chiral self-discrimination) is fundamental for creating functional structures in nature and in the world of chemistry because interactions between molecules of the same or the opposite chirality are characterized by different interaction energies and intrinsically different resulting structures. However, due to the similarity between recognition sites of enantiomers and common conformational lability, high fidelity homochiral or heterochiral self-sorting poses a substantial challenge. Chiral self-sorting occurs among natural and synthetic molecules that leads to the amplification of discrete species. The review covers a variety of complex self-assembled structures ranging from aggregates made of natural and racemic peptides and DNA, through artificial functional receptors, macrocyles, and cages to catalytically active metal complexes and helix mimics. The examples involve a plethora of reversible interactions: electrostatic interactions, π-π stacking, hydrogen bonds, coordination bonds, and dynamic covalent bonds. A generalized view of the examples collected from different fields allows us to suggest suitable geometric models that enable a rationalization of the observed experimental preferences and establishment of the rules that can facilitate further design.
Collapse
Affiliation(s)
- Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Adams NM, Gabella WE, Hardcastle AN, Haselton FR. Adaptive PCR Based on Hybridization Sensing of Mirror-Image l-DNA. Anal Chem 2016; 89:728-735. [PMID: 28105843 DOI: 10.1021/acs.analchem.6b03291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymerase chain reaction (PCR) is dependent on two key hybridization events during each cycle of amplification, primer annealing and product melting. To ensure that these hybridization events occur, current PCR approaches rely on temperature set points and reaction contents that are optimized and maintained using rigid thermal cycling programs and stringent sample preparation procedures. This report describes a fundamentally simpler and more robust PCR design that dynamically controls thermal cycling by more directly monitoring the two key hybridization events during the reaction. This is achieved by optically sensing the annealing and melting of mirror-image l-DNA analogs of the reaction's primers and targets. Because the properties of l-DNA enantiomers parallel those of natural d-DNAs, the l-DNA reagents indicate the cycling conditions required for effective primer annealing and product melting during each cycle without interfering with the reaction. This hybridization-sensing approach adapts in real time to variations in reaction contents and conditions that impact primer annealing and product melting and eliminates the requirement for thermal calibrations and cycling programs. Adaptive PCR is demonstrated to amplify DNA targets with high efficiency and specificity under both controlled conditions and conditions that are known to cause traditional PCR to fail. The advantages of this approach promise to make PCR-based nucleic acid analysis simpler, more robust, and more accessible outside of well-controlled laboratory settings.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - William E Gabella
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Austin N Hardcastle
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Frederick R Haselton
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Hoehlig K, Bethge L, Klussmann S. Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity. PLoS One 2015; 10:e0115328. [PMID: 25679211 PMCID: PMC4334536 DOI: 10.1371/journal.pone.0115328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/18/2022] Open
Abstract
A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.
Collapse
|
6
|
Abstract
An L-RNA aptamer was developed that binds the natural D-form of the HIV-1 trans-activation responsive (TAR) RNA. The aptamer initially was obtained as a D-aptamer against L-TAR RNA through in vitro selection. Then the corresponding L-aptamer was prepared by chemical synthesis and used to bind the desired target. The L-aptamer binds D-TAR RNA with a Kd of 100 nM. It binds D-TAR exclusively at the six-nucleotide distal loop, but does so through tertiary interactions rather than simple Watson-Crick pairing. This complex is the first example of two nucleic acids molecules of opposing chirality that interact through a mode of binding other than primary structure. Binding of the L-aptamer to D-TAR RNA inhibits formation of the Tat-TAR ribonucleoprotein complex that is essential for TAR function. This suggests that L-aptamers, which are intrinsically resistant to degradation by ribonucleases, might be pursued as an alternative to antisense oligonucleotides to target structured RNAs of biological or therapeutic interest.
Collapse
Affiliation(s)
- Jonathan T. Sczepanski
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F. Joyce
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Urata H, Ogawa S, Wada SI. Thermal stability of oligodeoxynucleotide duplexes containing l-deoxynucleotide at termini. Bioorg Med Chem Lett 2013; 23:2909-11. [PMID: 23583512 DOI: 10.1016/j.bmcl.2013.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 11/27/2022]
Abstract
The effects of substituting l-deoxynucleotide for d-deoxynucleotide at duplex termini were evaluated and the terminal substitutions were found to show much less effects on duplex destabilization and to show a similar tendency in base pairing selectivity, compared with internal chiral substitutions.
Collapse
Affiliation(s)
- Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | |
Collapse
|
8
|
|
9
|
Brunet E, Corgnali M, Perrouault L, Roig V, Asseline U, Sørensen MD, Babu BR, Wengel J, Giovannangeli C. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities. Nucleic Acids Res 2005; 33:4223-34. [PMID: 16049028 PMCID: PMC1181241 DOI: 10.1093/nar/gki726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are powerful tools to interfere sequence-specifically with DNA-associated biological functions. (A/T,G)-containing TFOs are more commonly used in cells than (T,C)-containing TFOs, especially C-rich sequences; indeed the low intracellular stability of the non-covalent pyrimidine triplexes make the latter less active. In this work we studied the possibility to enhance DNA binding of (T,C)-containing TFOs, aiming to reach cellular activities; to this end, we used locked nucleic acid-modified TFOs (TFO/LNAs) in association with 5'-conjugation of an intercalating agent, an acridine derivative. In vitro a stable triplex was formed with the TFO-acridine conjugate: by SPR measurements at 37 degrees C and neutral pH, the dissociation equilibrium constant was found in the nanomolar range and the triplex half-life approximately 10 h (50-fold longer compared with the unconjugated TFO/LNA). Moreover to further understand DNA binding of (T,C)-containing TFO/LNAs, hybridization studies were performed at different pH values: triplex stabilization associated with pH decrease was mainly due to a slower dissociation process. Finally, biological activity of pyrimidine TFO/LNAs was evaluated in a cellular context: it occurred at concentrations approximately 0.1 microM for acridine-conjugated TFO/LNA (or approximately 2 microM for the unconjugated TFO/LNA) whereas the corresponding phosphodiester TFO was inactive, and it was demonstrated to be triplex-mediated.
Collapse
Affiliation(s)
| | - Maddalena Corgnali
- Dipartimento di Scienze e Tecnologie Biomediche, Universita degli Studi di Udine33100 Udine, Italy
| | | | - Victoria Roig
- Centre de Biophysique Moléculaire, CNRS UPR4301Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, CNRS UPR4301Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Mads D. Sørensen
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - B. Ravindra Babu
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Chemistry, University of Southern DenmarkCampusvej 55, DK-5230 Odense M, Denmark
| | - Carine Giovannangeli
- To whom correspondence should be addressed. Tel: +33 1 40 79 37 11; Fax: +33 1 40 79 37 05;
| |
Collapse
|
10
|
Cho BH, Kim JH, Jeon HB, Kim KS. A new efficient and practical synthesis of 2-deoxy-l-ribose. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kawakami J, Tsujita K, Sugimoto N. Thermodynamic Analysis of Duplex Formation of the Heterochiral DNA with L-Deoxyadenosine. ANAL SCI 2005; 21:77-82. [PMID: 15732462 DOI: 10.2116/analsci.21.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An L-DNA, the mirror-image isomer of natural DNA, has extraordinary nuclease resistance, and thus the molecules should be promising reagents for many applications, such as antisense technology. However, little is known about the structural and thermodynamic properties of DNAs with this modified nucleotide. In this study, we prepared the L-nucleotide (L-dA) and introduced it into oligodeoxyribonucleotides to assess the ability of the L-nucleotide as a functional molecule for many applications based on the DNA hybridization. Two decamers with an L-dA at the center were synthesized and duplexes with the complementary DNA strand were applied to structural and thermodynamic analyses. The structural study by CD spectra showed that the structures of both modified "L/D-D" duplexes were the typical B-form. This result suggests that the global structure of DNA was not collapsed by the introduction of an L-DNA. Thermodynamic parameters (deltaH degrees, deltaS degrees, and deltaG degrees 37) of the duplex formation, determined by UV melting experiments, indicated that the both duplexes were destabilized at about 2.5 to 3.0 kcal mol(-1) by the introduced L-dA, mainly due to an unfavorable enthalpic effect. In conjunction with information by other researchers, these results suggest that the L-DNA affect on the duplex structure and the stability vary locally; thus, the thermodynamic stability of modified L/D-D duplexes should be predictable by the nearest-neighbor thermodynamic parameters.
Collapse
Affiliation(s)
- Junji Kawakami
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | |
Collapse
|
12
|
Keinicke L, Sørensen MD, Wengel J. Alpha-L-RNA (alpha-L-ribo configured RNA): synthesis and RNA-selective hybridization of alpha-L-RNA/alpha-L-LNA chimera. Bioorg Med Chem Lett 2002; 12:593-6. [PMID: 11844679 DOI: 10.1016/s0960-894x(01)00807-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of the novel alpha-L-ribofuranosyl phosphoramidite derivative was accomplished via the alpha-L-ribofuranosyl thymine nucleoside. Amidite was used in automated syntheses of chimeric oligonucleotides composed of mixtures of the novel alpha-L-RNA nucleotide monomer ((alphaL)T, alpha-L-ribo configured RNA), and DNA, LNA (T(L), locked nucleic acid) or alpha-L-LNA ((alphaL)T(L), alpha-L-ribo configured locked nucleic acid) nucleotide monomers. For alpha-L-RNA/DNA and alpha-L-RNA/alpha-L-LNA chimeras, RNA-selective hybridization was obtained, for alpha-L-RNA/alpha-L-LNA chimera we found increased binding affinity compared to the corresponding DNA:RNA reference duplex. In addition, alpha-L-RNA/alpha-L-LNA chimera displayed significant stabilization towards 3'-exonucleolytic degradation. These results indicate that alpha-L-RNA/alpha-L-LNA chimeras deserve further evaluation as antisense molecules.
Collapse
Affiliation(s)
- Lise Keinicke
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Hélin V, Gottikh M, Mishal Z, Subra F, Malvy C, Lavignon M. Cell cycle-dependent distribution and specific inhibitory effect of vectorized antisense oligonucleotides in cell culture. Biochem Pharmacol 1999; 58:95-107. [PMID: 10403523 DOI: 10.1016/s0006-2952(99)00083-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Factors limiting the use of antisense phosphodiester oligodeoxynucleotides (ODNs) as therapeutic agents are inefficient cellular uptake and intracellular transport to RNA target. To overcome these obstacles, ODN carriers have been developed, but the intracellular fate of ODNs is controversial and strongly depends on the means of vectorization. Polyamidoamine dendrimers are non-linear polycationic cascade polymers that are able to bind ODNs electrostatically. These complexes have been demonstrated to protect phosphodiester ODNs from nuclease degradation and also to increase their cellular uptake and pharmacological effectiveness. We studied the intracellular distribution of a fluorescein isothiocyanate-labeled ODN vectorized by a dendrimer vector and found that intracellular ODN distribution was dependent on the phase of the cell cycle, with a nuclear localization predominantly in the G2/M phase. In addition, in order to evaluate the relevance of ODN vectors in enhancing the inhibition of the targeted genes' expression, we developed a rapid screening system which measures the transient expression of two reporter genes, one used as target, the other as control and vice versa. This system was validated through investigating the effect of the dendrimer vector on ODN biological activity. Antisense sequence-specific inhibition of more than 70% of one reporter gene was obtained with a chimeric ODN containing four phosphorothioate groups, two at each end.
Collapse
Affiliation(s)
- V Hélin
- Laboratoire de Biochimie-Enzymologie, UMR 8532, Institut Gustave-Roussy, Villejuif, France.
| | | | | | | | | | | |
Collapse
|
14
|
Khattab AF, Pedersen EB. Improved Targeting of the Flanks of a DNA Stem Using α-Oligodeoxynucleotides.-The Enhanced Effect of an Intercalator. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/07328319808004323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Garbesi A, Capobianco ML, Colonna FP, Maflini M, Niccoiai D, Tondelli L. Chirally-Modifiedoligonucleotides and the Control of Gene Expression. The Case of L-DNAS And-RNAS. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/07328319808004239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Garbesi A, Hamy F, Maffini M, Albrecht G, Klimkait T. TAR-RNA binding by HIV-1 Tat protein is selectively inhibited by its L-enantiomer. Nucleic Acids Res 1998; 26:2886-90. [PMID: 9611232 PMCID: PMC147661 DOI: 10.1093/nar/26.12.2886] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An oligoribonucleotide, corresponding to the Tat-interactive top half of the HIV-1 TAR RNA stem-loop, was synthesized in both the natural D- and the enantiomeric L-configurations. The affinity of Tat for the two RNAs, assessed by competition binding experiments, was found to be identical and is reduced 10-fold for both, upon replacement of the critical bulge residue U23 with cytidine. It is suggested that this interaction of the flexible Tat protein depends strongly upon the tertiary structure of a binding pocket within TAR, but not upon its handedness, and may be described by a 'hand-in-mitten' model.
Collapse
Affiliation(s)
- A Garbesi
- Consiglio Nazionale delle Ricerche, I. Co. C.E.A., Bologna, Italy and Novartis Pharma Research,Department of Oncology, K-125 3.09, CH-4002 Basle, Switzerland
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Wenzel T, Nair V. Novel oligodeoxyribonucleotides incorporating L-related isodeoxynucleosides: Solid phase synthesis, enzymology, and CD studies. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)10183-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ceulemans G, Van Aerschot A, Wroblowski B, Rozenski J, Hendrix C, Herdewijn P. Oligonucleotide Analogues with 4-Hydroxy-N-Acetylprolinol as Sugar Substitute. Chemistry 1997. [DOI: 10.1002/chem.19970031215] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Khan K, Liekens K, Van Aerschot A, Van Schepdael A, Hoogmartens J. Stability measurement of oligonucleotides in serum samples using capillary electrophoresis. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 702:69-76. [PMID: 9449557 DOI: 10.1016/s0378-4347(97)00372-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An in vitro stability study of unmodified and modified antisense oligonucleotides in human serum was performed with a previously developed capillary electrophoretic method using either micellar solution or entangled polymer solution depending on the oligonucleotide length to be separated. A method has been devised and validated for the extraction of oligonucleotides from serum using anion-exchange centrifugal filter units. The extracted samples were desalted by a drop dialysis method. The serum half-lives and the degradation patterns of unmodified and modified oligonucleotides are compared. The modified oligonucleotide used in this study is protected from exonuclease activity present in human serum by terminal 1,3-propanediol modification.
Collapse
Affiliation(s)
- K Khan
- Laboratorium voor Farmaceutische Chemie en Analyse van Geneesmiddelen, Faculteit Farmaceutische Wetenschappen, Leuven, Belgium
| | | | | | | | | |
Collapse
|
21
|
Williams KP, Liu XH, Schumacher TN, Lin HY, Ausiello DA, Kim PS, Bartel DP. Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc Natl Acad Sci U S A 1997; 94:11285-90. [PMID: 9326601 PMCID: PMC23443 DOI: 10.1073/pnas.94.21.11285] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro selection experiments have produced nucleic acid ligands (aptamers) that bind tightly and specifically to a great variety of target biomolecules. The utility of aptamers is often limited by their vulnerability to nucleases present in biological materials. One way to circumvent this problem is to select an aptamer that binds the enantiomer of the target, then synthesize the enantiomer of the aptamer as a nuclease-insensitive ligand of the normal target. We have so identified a mirror-image single-stranded DNA that binds the peptide hormone vasopressin and have demonstrated its stability to nucleases and its bioactivity as a vasopressin antagonist in cell culture.
Collapse
Affiliation(s)
- K P Williams
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Li G, Xiao W, Torrence PF. Synthesis and properties of second-generation 2-5A-antisense chimeras with enhanced resistance to exonucleases. J Med Chem 1997; 40:2959-66. [PMID: 9288179 DOI: 10.1021/jm970227d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to stabilize 2-5A-antisense chimeras to exonucleases, we have synthesized chimeric oligonucleotides in which the last phosphodiester bond at the 3'-terminus of the antisense domain was inverted from the usual 3',5'-linkage to a 3',3'-linkage. The preparation of such analogues was accomplished through standard phosphoramidite chemistry with the use of a controlled pore glass solid support with a nucleoside attached through its 5'-hydroxyl, thereby permitting elongation at the 3'-hydroxyl. The structures of such terminally inverted linkage chimeras of the general formula pA4-[pBu]2-(pdNn3'-3'dN) were corroborated by a combination of snake venom phosphodiesterase digestion in the presence or absence of bacterial alkaline phosphatase. Most characteristically, the presence of the 3'-terminal-inverted phosphodiester linkage produced an unnatural dinucleotide of general composition dN3'p3'dM. These structures could be confirmed by independent synthesis and fast atom bombardment mass spectroscopy (FAB). 2-5A-Antisense chimeras of this structural class, pA4-[pBu]2-(pdNn'3-3'dN), were 5-6-fold more stable than their unmodified congeners, pA4-[pBu]2-(pdN)n, to degradation by a representative phosphodiesterase from snake venom. In 10% human serum, the new 2-5A-antisense chimeras, pA4-[pBu]2-(pdNn3'-3'dN), possessed a half-life that was 28-fold longer than that of the unmodified chimeras. These results provide entry to a second generation of 2-5A-antisense chimeras.
Collapse
Affiliation(s)
- G Li
- Section on Biomedical Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | |
Collapse
|
23
|
Fukui K, Tanaka K. The acridine ring selectively intercalated into a DNA helix at various types of abasic sites: double strand formation and photophysical properties. Nucleic Acids Res 1996; 24:3962-7. [PMID: 8918798 PMCID: PMC146185 DOI: 10.1093/nar/24.20.3962] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The interactions between the intercalating agent and the three types of abasic sites: abasic frameshift, apurinic and apyrimidinic, were investigated. 9-amino-6-chloro-2-methoxyacridine (ACMA), whose spectroscopic properties are strongly perturbed by the environment, was selected as the intercalating agent. The optically pure threoninol derived from the reduction of L-threonine was used as an artificial abasic site mimicking the ring-opened natural ribose. In order to secure the selective intercalation to the adjacent abasic site, ACMA and the abasic site were connected through a tri- pentamethylene linker. These modified oligonucleotides covalently linked to an ACMA molecule at the internucleotide site having the same base-sequence were synthesized using the acridine-phosphoramidites. Although all the modified oligonucleotides lack a nucleobase at the intervening position, these double strands showed high thermal stability. The pentamethylene linker and the apyrimidinic systems were especially stabilized. At the same time, sharpness of the absorption spectra and a new fluorescent band of the acridine, due to the fixation of the environment around ACMA, were observed. Therefore, it is concluded that the acridine binds preferentially to the apyrimidinic site rather than the frameshift abasic site and that the surroundings of the acridine are strictly fixed at the microenvironmental level.
Collapse
Affiliation(s)
- K Fukui
- Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | | |
Collapse
|
24
|
|
25
|
|
26
|
Pitsch S, Wendeborn S, Jaun B, Eschenmoser A. Why Pentose- and Not Hexose-Nucleic Acids?? Part VII. Pyranosyl-RNA (?p-RNA?). Preliminary communication. Helv Chim Acta 1993. [DOI: 10.1002/hlca.19930760602] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Garbesi A, Capobianco ML, Colonna FP, Tondelli L, Arcamone F, Manzini G, Hilbers CW, Aelen JM, Blommers MJ. L-DNAs as potential antimessenger oligonucleotides: a reassessment. Nucleic Acids Res 1993; 21:4159-65. [PMID: 8414968 PMCID: PMC310044 DOI: 10.1093/nar/21.18.4159] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Unnatural L-2'-deoxyribonucleosides L-T, L-dC, L-dA and L-dG were prepared from L-arabinose and assembled, by solution or solid phase synthesis, to give L-oligonucleotides (L-DNAs), which contain all four natural bases. The affinity of these modified oligomers for complementary D-ribo- and D-deoxyribo-oligomers was studied with NMR, UV and CD spectroscopies and mobility shift assay on native PAGE. All experimental results indicate that L-DNAs do not, in general, recognize single-stranded, natural DNA and RNA. Hence, contrary to previous suggestions, it is not possible to envisage their use as wide scope antimessenger agents in the selective control of gene expression.
Collapse
Affiliation(s)
- A Garbesi
- Istituto ICoCEA-CNR, Ozzano Emilia (BO), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oligo-α-deoxyribonucleotides with a modified nucleic base and covalently linked to reactive agents. Tetrahedron 1993. [DOI: 10.1016/s0040-4020(01)87973-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Beaucage SL, Iyer RP. The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications. Tetrahedron 1993. [DOI: 10.1016/s0040-4020(01)87958-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Abstract
The chemical synthesis of RNA on solid phase has now become routine using labile protecting groups and mild deprotection methods. The great interest in antisense technology has sparked the development of P-chiral phosphorothioates and a large number of DNA analogues with modified sugars and/or backbones to increase resistance to nucleases, and with modifier groups attached to the sugar, nucleobase or internucleotide function to aid cellular uptake.
Collapse
Affiliation(s)
- B S Sproat
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
31
|
Urata H, Ogura E, Shinohara K, Ueda Y, Akagi M. Synthesis and properties of mirror-image DNA. Nucleic Acids Res 1992; 20:3325-32. [PMID: 1630904 PMCID: PMC312484 DOI: 10.1093/nar/20.13.3325] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have investigated the conformations of the hexadeoxyribonucleotide, L-d(CGCGCG) composed of L-deoxyribose, the mirror image molecule of natural D-deoxyribose. In this paper, we report the synthesis of four L-deoxynucleosides and the L-oligonucleotide-ethidium bromide interactions. The L-deoxyribose synthon 9 was synthesized from L-arabinose with an over all yield of 28.5% via the Barton-McCombie reaction. The L-deoxynucleosides were obtained by a glycosylation of appropriate nucleobase derivatives with the 1-chloro sugar 9. After derivatization to nucleoside phosphoramidites, L-deoxycytidine and L-deoxyguanosine were incorporated into a hexadeoxynucleotide, L-d(CGCGCG) by a solid-phase beta-cyanoethylphosphoramidite method. This L-hexanucleotide was resistant to digestion with nuclease P1. The conformations of L-d(CGCGCG) were an exact mirror image of that of the corresponding natural one as described previously, and the conformations of the L-d(CGCGCG)-ethidium bromide complex were also the mirror images of those of the D-d(CGCGCG)-ethidium bromide complex under both low and high salt conditions. These results suggest that ethidium bromide prefers not a right-handed helical sense, but the base-base stacking geometry of the B-form rather than that of the Z-form. Thus, L-DNA would be a useful tool for studying DNA-drug interactions.
Collapse
Affiliation(s)
- H Urata
- Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | | | |
Collapse
|
32
|
Roscmeycr H, Kre?merova M, Seela F. 9-(2?-Deoxy-?-D-xylofuranosyl)adenine Building Blocks for Solid-Phase Synthesis and Properties of Oligo(2?-deoxy-xylonucleotides). Helv Chim Acta 1991. [DOI: 10.1002/hlca.19910740840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|