1
|
Love NR, Thuret R, Chen Y, Ishibashi S, Sabherwal N, Paredes R, Alves-Silva J, Dorey K, Noble AM, Guille MJ, Sasai Y, Papalopulu N, Amaya E. pTransgenesis: a cross-species, modular transgenesis resource. Development 2012; 138:5451-8. [PMID: 22110059 DOI: 10.1242/dev.066498] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.
Collapse
Affiliation(s)
- Nick R Love
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Istrail S, Tarpine R, Schutter K, Aguiar D. Practical computational methods for regulatory genomics: a cisGRN-Lexicon and cisGRN-browser for gene regulatory networks. Methods Mol Biol 2010; 674:369-99. [PMID: 20827603 DOI: 10.1007/978-1-60761-854-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The CYRENE Project focuses on the study of cis-regulatory genomics and gene regulatory networks (GRN) and has three components: a cisGRN-Lexicon, a cisGRN-Browser, and the Virtual Sea Urchin software system. The project has been done in collaboration with Eric Davidson and is deeply inspired by his experimental work in genomic regulatory systems and gene regulatory networks. The current CYRENE cisGRN-Lexicon contains the regulatory architecture of 200 transcription factors encoding genes and 100 other regulatory genes in eight species: human, mouse, fruit fly, sea urchin, nematode, rat, chicken, and zebrafish, with higher priority on the first five species. The only regulatory genes included in the cisGRN-Lexicon (CYRENE genes) are those whose regulatory architecture is validated by what we call the Davidson Criterion: they contain functionally authenticated sites by site-specific mutagenesis, conducted in vivo, and followed by gene transfer and functional test. This is recognized as the most stringent experimental validation criterion to date for such a genomic regulatory architecture. The CYRENE cisGRN-Browser is a full genome browser tailored for cis-regulatory annotation and investigation. It began as a branch of the Celera Genome Browser (available as open source at http://sourceforge.net/projects/celeragb /) and has been transformed to a genome browser fully devoted to regulatory genomics. Its access paradigm for genomic data is zoom-to-the-DNA-base in real time. A more recent component of the CYRENE project is the Virtual Sea Urchin system (VSU), an interactive visualization tool that provides a four-dimensional (spatial and temporal) map of the gene regulatory networks of the sea urchin embryo.
Collapse
Affiliation(s)
- Sorin Istrail
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| | | | | | | |
Collapse
|
3
|
Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S. Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells 2009; 14:941-7. [PMID: 19624757 DOI: 10.1111/j.1365-2443.2009.01321.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The importance of the large Maf transcription factor family has been investigated in lens development in the chick, Xenopus and mammals. Previously we reported that c-maf-deficient mice exhibit severe defects in lens fibre cells. Here, we report the roles of other large Mafs, MafA/L-Maf and MafB, during mouse lens development. MafA/L-Maf and MafB were expressed in lens epithelial cells and fibre cells at E12.5 but had largely disappeared from the lens at E18.5. The lens of mafA-, mafB-deficient and mafA::mafB double-deficient mice developed normally. In c-maf-deficient mice, the pattern of expression of MafA and MafB differed from their expression in wild-type mice. Moreover, the expression of crystallin genes was unchanged in mafA-, mafB- and mafA::mafB double-deficient lens. These results indicate that c-Maf alone is essential for lens development, and that MafA/L-Maf and MafB are dispensable in mice.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Anatomy and Embryology, Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mahoney KMM, Petrovic N, Schacke W, Shapiro LH. CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene 2007; 403:178-87. [PMID: 17897790 PMCID: PMC2045687 DOI: 10.1016/j.gene.2007.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/21/2007] [Accepted: 08/10/2007] [Indexed: 12/13/2022]
Abstract
Angiogenic growth factors induce the transcription of the cell surface peptidase CD13/APN in activated endothelial cells of the tumor vasculature. Inhibition of CD13/APN abrogates endothelial invasion and morphogenesis in vitro and tumor growth in vivo suggesting a critical functional role for CD13 in angiogenesis. Experiments to identify the transcription factors responsible for this regulation demonstrated that exogenous expression of the proto-oncogene c-Maf, but not other bZip family members tested, potently activates transcription from a critical regulatory region of the CD13 proximal promoter between -115 and -70 bp which is highly conserved among mammalian species. Using promoter mutation, EMSA and ChIP analyses we established that both endogenous and recombinant c-Maf directly interact with an atypical Maf response element contained within this active promoter region via its basic DNA/leucine zipper domain. However full activity of c-Maf requires the amino-terminal transactivation domain, and site-directed mutation of putative phosphorylation sites within the transactivation domain (serines 15 and 70) shows that these sites behave in a dramatic cell type-specific manner. Therefore, this atypical response element predicts a broader range of c-Maf target genes than previously appreciated and thus impacts its regulation of multiple myeloma as well as endothelial cell function and angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Linda H. Shapiro
- Address for Correspondence: Linda H. Shapiro, Center for Vascular Biology MC3501, Department of Cell Biology, University of Connecticut Health Center for Vascular Biology, 263 Farmington Ave, Farmington, CT 06030-3501,
| |
Collapse
|
5
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
6
|
Sax CM, Piatigorsky J. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:155-201. [PMID: 7817868 DOI: 10.1002/9780470123157.ch5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
7
|
Hou HH, Kuo MYP, Luo YW, Chang BE. Recapitulation of human betaB1-crystallin promoter activity in transgenic zebrafish. Dev Dyn 2006; 235:435-43. [PMID: 16331646 DOI: 10.1002/dvdy.20652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Development of the eye is morphologically similar among vertebrates, indicating that the underlying mechanism regulating the process may have been highly conserved during evolution. Herein we analyzed the promoter of the human betaB1-crytallin gene in zebrafish by transgenic experiments. To delineate the evolutionarily conserved regulatory elements, we performed serial deletion assays in the promoter region. The results demonstrated that the -90/+61-bp upstream proximal promoter region is sufficient to confer lens-tissue specificity to the human betaB1-crystallin gene in transgenic zebrafish. Through phylogenetic sequence comparisons and an electrophoretic mobility shift assay (EMSA), a highly conserved cis-element of a six-base pair sequence TG(A/C)TGA, the consensus sequence for the Maf protein binding site, within the proximal promoter region was revealed. Further, a site-mutational assay showed that this element is crucial for promoter activity. These data suggest that the fundamental transcriptional regulatory mechanism of the betaB1-crystallin gene has been well conserved between humans and zebrafish, and plausibly among all vertebrates, during evolution.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
8
|
Yoshida T, Ohkumo T, Ishibashi S, Yasuda K. The 5'-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic Acids Res 2005; 33:3465-78. [PMID: 15972792 PMCID: PMC1156962 DOI: 10.1093/nar/gki653] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Maf family of proteins are a subgroup of basic region-leucine zipper (bZIP) transcription factors, which recognize a long palindromic DNA sequence [TGCTGAC(G)TCAGCA] known as the Maf recognition element (MARE). Interestingly, the functional target enhancer sequences present in the alphaA-crystallin gene contain a well-conserved half-site of MARE rather than the entire palindromic sequence. To resolve how Maf proteins bind to target sequences containing only MARE half-sites, we examined their binding activities using electrophoretic gel mobility shift assays as well as in vitro and in vivo reporter assays. Our results indicate that the 5'-flanking region of the MARE half-site is required for Maf proteins to bind both in vitro and in vivo. The critical 5'-flanking sequences for c-Maf were determined by a selection and amplification binding assay and show a preference for AT-rich nucleotides. Furthermore, sequence analysis of the regulatory regions of several target genes also suggests that AT-rich sequences are important. We conclude that Maf can bind to at least two types of target sequences, the classical MARE (palindrome type) and a 5'-AT-rich MARE half-site (half-site type). Our results provide important new insights into the DNA binding and site selection by bZIP transcription factors.
Collapse
Affiliation(s)
- Tomonori Yoshida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology Takayama 8916-5, Ikoma, Nara, 630-0101, Japan.
| | | | | | | |
Collapse
|
9
|
Yang Y, Chauhan BK, Cveklova K, Cvekl A. Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. J Mol Biol 2004; 344:351-68. [PMID: 15522290 DOI: 10.1016/j.jmb.2004.07.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/23/2004] [Accepted: 07/29/2004] [Indexed: 11/20/2022]
Abstract
Mammalian alphaB-crystallin is highly expressed both in lens epithelium and lens fibers. In contrast, gammaF-crystallin is highly expressed in the lens fiber cells. Crystallin gene expression in lens is regulated at the level of transcription by a sparse number of specific DNA-binding transcription factors. Here, we report studies on transcriptional regulation of mouse alphaB- and gammaF-crystallin promoters by specific combinations of Pax6/Pax6(5a), large Mafs (MafA, MafB, c-Maf, and NRL), Sox1, Sox2, Six3, and RARbeta/RXRbeta. Two sets of these factors, co-expressed both in lens epithelium and in lens fibers, were tested in co-transfection assays using cultured lens and non-lens cells. Regulation of alphaB-crystallin was studied in the presence of lens epithelial-factors Pax6, MafB, and RARbeta/RXRbeta, and lens fiber-factors Pax6, MafA, c-Maf, and NRL. Pax6 proteins activated the alphaB-crystallin promoter (-162 to +45) with any combination of Mafs. Addition of RARbeta/RXRbeta further increased its promoter activity. Gel shift assays using lens nuclear extracts demonstrated interactions of Pax6, Maf, and retinoic acid nuclear receptor proteins with two lens-specific regions, the distal LSR1 (-147/-118) and proximal LSR2 (-78/-40), of the alphaB-crystallin promoter. In contrast, Pax6 proteins acted as repressors of gammaF-crystallin promoter activity elicited by a combination of large Mafs, Sox, and RARbeta/RXRbeta proteins in transiently transfected lens and non-lens cells. The results show that Pax6 conversely regulates these two lens crystallin promoters. We propose that the opposite roles of Pax6 in crystallin gene regulation are results of different promoter architectures of the alphaB- and gammaF-crystallin genes, developmentally regulated association of transcription factors with the corresponding cis-regulatory sites, and specific recruitment of transcriptional co-activators and co-repressors by Pax6.
Collapse
Affiliation(s)
- Ying Yang
- The Department of Ophthalmology, Albert Einstein College of Medicine, 909 Ullmann, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Lens provides a good model for studying developmental cues relevant to cellular and molecular interactions. Basic region/leucine zipper (bZIP) transcription factors have been found to play key roles during eye formation in various species, including human, mouse, rat, Xenopus, zebrafish, chick, and quail. Different ocular developmental anomalies associated with MAF mutation in human implicate its active role during eye development. Several members of the maf gene family with this bZIP motif participate directly in lens morphogenesis. One vital Maf protein, L-Maf, is expressed in developing lens cells of chick embryos. Its homolog recently has been detected in lens placode of Xenopus embryos and regulates expression of lens fiber-specific genes in this species. Ectopic expression of L-Maf can induce lens-specific genes in cultured retina cells and embryonic ectoderm. The dominant-negative form of L-Maf causes the suppression of crystallin expression and subsequently inhibits lens formation, indicating that L-Maf plays a central role in chick lens development.
Collapse
Affiliation(s)
- Hasan Mahmud Reza
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
11
|
Kajihara M, Sone H, Amemiya M, Katoh Y, Isogai M, Shimano H, Yamada N, Takahashi S. Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter. Biochem Biophys Res Commun 2004; 312:831-42. [PMID: 14680841 DOI: 10.1016/j.bbrc.2003.10.196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 10/26/2022]
Abstract
Large Maf transcription factors, which are members of the basic leucine zipper (b-Zip) superfamily, have been reported to be involved in embryonic development and cell differentiation. Previously, we isolated a novel zebrafish large Maf cDNA, somite Maf1 (SMaf1), which possesses transactivational activity within its N-terminus domain. To elucidate SMaf1 function in mammals, we tried to isolate the mouse homologue of zebrafish SMaf1. We isolated the mouse homologue of zebrafish SMaf1, which is the same molecule as the recently reported MafA. MafA mRNA was detected in formed somites, head neural tube, and liver cells in the embryos. In the adult mouse, MafA transcript was amplified in the brain, lung, spleen, and kidney by RT-PCR. MafA mRNA was also detectable in beta-cell line. Next, we analyzed the transcriptional activity of MafA using rat insulin promoters I and II (RIPI and II), since a part of RIP sequence was similar to the Maf recognition element (MARE) and MafA was expressed in pancreatic beta cells. MafA was able to activate transcription from RIPII, but not RIPI, in a dose dependent manner and the activity was dependent on RIPE3b/C1 sequences. In addition, the amount of MafA protein was regulated by glucose concentration. These results indicate that MafA is the homologue of zebrafish SMaf1 and acts as a transcriptional activator of the insulin gene promoter through the RIPE3b element.
Collapse
Affiliation(s)
- Miwako Kajihara
- Department of Internal Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shimada N, Aya-Murata T, Reza HM, Yasuda K. Cooperative action between L-Maf and Sox2 on delta-crystallin gene expression during chick lens development. Mech Dev 2003; 120:455-65. [PMID: 12676323 DOI: 10.1016/s0925-4773(03)00002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lens development is regulated by a variety of transcription factors with distinct properties. The lens-specific transcription factor, L-Maf, is essential for lens formation and induces lens-specific markers, such as the crystallin genes. In this study, we analyzed the mechanism by which L-Maf regulates delta-crystallin expression. Misexpression of L-Maf in the head ectoderm of lens placode-forming embryos by in ovo electroporation induced delta-crystallin only in the region surrounding the lens. To define this restricted expression, we misexpressed L-Maf together with other transcription factors implicated in delta-crystallin expression. Sox2 plus L-Maf expanded the delta-crystallin-inducible domain to the entire head ectoderm and simultaneously increased the quantity of delta-crystallin mRNA expressed. In contrast, co-expression of L-Maf with other factors such as Pax6, Six3 and Prox1 had little or no effect on delta-crystallin. We also observed that L-Maf and Sox2 cooperatively enhanced the transactivation of a reporter gene bearing the delta-crystallin enhancer in ovo, implying that L-Maf and Sox2 can induce delta-crystallin through the same enhancer. In conclusion, we report here that L-Maf and Sox2 cooperatively regulate the expression of delta-crystallin during chick lens development.
Collapse
Affiliation(s)
- Naoko Shimada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
13
|
Henry JJ. The cellular and molecular bases of vertebrate lens regeneration. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:195-265. [PMID: 14667045 DOI: 10.1016/s0074-7696(03)28005-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lens regeneration takes place in some vertebrates through processes of cellular dedifferentiation and transdifferentiation, processes by which certain differentiated cell types can give rise to others. This review describes the principal forms of lens regeneration that occur in vivo as well as related in vitro systems of transdifferentiation. Classic experimental studies are reviewed that define the tissue interactions that trigger these events in vivo. Recent molecular analyses have begun to identify the genes associated with these processes. These latter studies generally reveal tremendous similarities between embryonic lens development and lens regeneration. Different models are proposed to describe basic molecular pathways that define the processes of lens regeneration and transdifferentiation. Finally, studies are discussed suggesting that fibroblast growth factors play key roles in supporting the process of lens regeneration. Retinoids, such as retinoic acid, may also play important roles in this process.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Abstract
During lens development in vertebrates, the orchestration of multiple transcriptional regulators is essential for fate determination and terminal differentiation. In early development, Pax6, Sox2 and Six3 are expressed in the head ectoderm, while L-maf, Prox1 and crystallin genes are expressed at a later stage in the lens placode in a more restricted fashion. To uncover the genetic interactions among these factors during lens development, we examined the effects of dominant-negative molecules of Pax6 and L-Maf, which play decisive roles in lens formation. The two dominant-negative isoforms of Pax6 repress L-maf, Prox1 and delta-crystallin expression, resulting in failure of lens formation. These effects of dominant-negative Pax6 are fully rescued by co-expression with wild-type L-Maf. In addition, dominant-negative L-Maf inhibits the expression of Prox1 and delta-crystallin, while misexpression of L-Maf causes ectopic induction of these genes in a Sox-2-dependent fashion. Our results demonstrate that L-Maf is a downstream target of Pax6 and mediates Pax6 activity in developing lens cells.
Collapse
Affiliation(s)
- Hasan Mahmud Reza
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | |
Collapse
|
15
|
Yoshida T, Yasuda K. Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 2002; 7:693-706. [PMID: 12081646 DOI: 10.1046/j.1365-2443.2002.00548.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Members of the Maf family, including L-Maf, MafB and c-Maf, are "basic region/leucine zipper" (bZIP) transcription factors. Maf proteins contain a highly conserved acidic transactivation domain (AD), and a bZIP region that mediates DNA-binding activity. The hinge region between AD and bZIP varies considerably in length between different proteins. Recent studies reveal that L-Maf, c-Maf and MafB play key roles in vertebrate lens development. RESULTS We investigated the transactivation activity of individual factors in culture cells to analyse their specific functions. In transient transfection assays with a reporter gene containing Maf responsive elements, MafB and c-Maf activated higher levels of the reporter gene than L-Maf. However, L-Maf transactivated the alphaA-crystallin promoter as effectively as MafB and c-Maf, and induced the expression of the endogenous delta-crystallin gene more efficiently than the other two proteins. Domain-swapping experiments reveal that the bZIP region of MafB takes part in strong transcriptional activity, while the acidic and hinge regions (AH) of c-Maf collectively serve as a strong transactivation domain. The AH region of L-Maf (but not c-Maf) conferred transactivation activity to induce delta-crystallin gene expression. CONCLUSIONS These results suggest that despite their similar DNA binding properties, L-Maf, MafB and c-Maf regulate different sets of target genes by complex interactions with multiple factors that recognize cis-elements in promoters. The AH region of L-Maf has a distinct role in inducing endogenous delta-crystallin gene.
Collapse
Affiliation(s)
- Tomonori Yoshida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma 630-0101, Japan
| | | |
Collapse
|
16
|
Carosa E, Kozmik Z, Rall JE, Piatigorsky J. Structure and expression of the scallop Omega-crystallin gene. Evidence for convergent evolution of promoter sequences. J Biol Chem 2002; 277:656-64. [PMID: 11682475 DOI: 10.1074/jbc.m107004200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Omega-crystallin of the scallop lens is an inactive aldehyde dehydrogenase (1A9). Here we have cloned the scallop Omega-crystallin gene. Except for an extra novel first exon, its 14-exon structure agrees well with that of mammalian aldehyde dehydrogenases 1, 2, and 6. The -2120/+63, -714/+63, and -156/+63 Omega-crystallin promoter fragments drive the luciferase reporter gene in transfected alphaTN4-1 lens cells and L929 fibroblasts but not in Cos7 cells. Putative binding sequences for cAMP-responsive element-binding protein (CREB)/Jun, alphaACRYBP1, AP-1, and PAX-6 in the Omega-crystallin promoter are surprisingly similar to the cis-elements used for lens promoter activity of the mouse and chicken alphaA-crystallin genes, which encode proteins homologous to small heat shock proteins. Site-specific mutations in the overlapping CREB/Jun and Pax-6 sites abolished activity of the Omega-crystallin promoter in transfected cells. Gel shift experiments utilizing extracts from the alphaTN4-1, L929, and Cos7 cells and the scallop stomach and oligonucleotides derived from the putative binding sites of the Omega-crystallin promoter showed complex formation. Gel shift experiments showed binding of recombinant Pax-6 and CREB to their respective sites. Our data suggest convergent evolutionary adaptations that underlie the preferential expression of crystallin genes in the lens of vertebrates and invertebrates.
Collapse
Affiliation(s)
- Eleonora Carosa
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|
17
|
Kataoka K, Shioda S, Yoshitomo-Nakagawa K, Handa H, Nishizawa M. Maf and Jun nuclear oncoproteins share downstream target genes for inducing cell transformation. J Biol Chem 2001; 276:36849-56. [PMID: 11461901 DOI: 10.1074/jbc.m102234200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Maf oncoprotein is a basic leucine zipper (bZip)-bearing transcriptional activator that recognizes the Maf recognition element (MARE) DNA sequence. In this study, we investigated the role of Maf's transactivation function in cell transformation. Replacement of the conserved amino terminus transactivator domain of Maf by a heterologous and stronger transactivator domain (the acidic transactivator domain of VP16) resulted in enhanced transformation of chicken embryo fibroblast cells. In contrast, the fusing of a transcriptional repressor domain (Sin3 interaction domain of Mxi1) with the whole Maf protein masked the transactivator function of Maf, which in turn inhibited its transforming activity. Furthermore, the leucine zipper domain of Maf, which defines its dimer-forming specificity, was exchangeable with that of GCN4 yeast protein in terms of its transactivating and cell transforming activities. Thus, heterodimer formation with other bZip factors is not required for Maf's ability to transform. These results together suggest that transactivation through MARE is necessary for Maf-induced transformation and that there exist downstream target gene(s) for transformation. Since the MARE sequence overlaps with the recognition element of another bZip oncoprotein Jun, we assessed whether Jun and Maf induce cell transformation through activating the same genes. We thus constructed a mutated version of Jun that has a GCN4 leucine zipper and lacks the transactivator domain. This mutant repressed the cell transformation not only by Jun but also by Maf. Thus, Maf and Jun share downstream target gene(s) that are involved in cell transformation.
Collapse
Affiliation(s)
- K Kataoka
- Department of Virology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
18
|
Yoshida K, Kim JI, Imaki J, Hiromi I, Nishi S, Matsuda H, Harada T, Harada C, Ohno S, Sakai M. Proliferation in the posterior region of the lens of c-maf-/- mice. Curr Eye Res 2001; 23:116-9. [PMID: 11840349 DOI: 10.1076/ceyr.23.2.116.5479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To examine the involvement of the c-maf gene in the proliferation of the lens cells. METHODS Eyes of the E13 and E18 stages of the wild-type and c-maf-/- mice were analyzed by BrdU incorporation assay, TUNEL assay and immunocytochemistry using a anti-P27(KIP1) and a anti-P57(KIP2) antibody. RESULTS In the E13 and E18 c-maf mutant lens, BrdU-positive cells were detected at the posterior region of the lens. Cell-cycle inhibitor P27(KIP1) and P57(KIP2) were expressed in the equatorial and posterior region of the lens of both wild-type and c-maf-/- lenses. CONCLUSION These results suggest that the expression of c-maf is required for differentiation and cell cycle arrest of lens fiber cells. It is also suggested that P27(KIP1) and P57(KIP2) were not involved in the continued proliferation of posterior region of the c-maf-/- lens.
Collapse
Affiliation(s)
- K Yoshida
- Department of Ophthalmology, Hokkaido University School of Medicine, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sakai M, Serria MS, Ikeda H, Yoshida K, Imaki J, Nishi S. Regulation of c-maf gene expression by Pax6 in cultured cells. Nucleic Acids Res 2001; 29:1228-37. [PMID: 11222774 PMCID: PMC29716 DOI: 10.1093/nar/29.5.1228] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
c-Maf is a bZip transcription factor expressed in developmental and cellular differentiation processes. Recently, a c-maf knockout mouse model, showing abnormal lens development, has been reported. In order to study the regulation mechanisms of c-maf gene expression during the differentiation process we have cloned and functionally characterized the rat c-maf (maf-2) gene. The rat c-maf gene is an intronless gene, covering a length of 3.5 kb. Transient transfection analysis of the 5'-flanking region of the c-maf gene using luciferase as the reporter gene shows that Pax6, a master transcription factor for lens development, strongly activates the c-maf promoter construct. Endogenous c-maf is also activated by the Pax6 expression vector. Electrophoresis mobility shift assay and DNase I footprinting analysis show that at least three Pax6-binding sites are located in the 5'-flanking and 5'-non-coding regions of the rat c-maf gene. The c-maf gene was also markedly activated by its own product, c-Maf, through the MARE (Maf recognition element), suggesting that a positive autoregulatory mechanism controls this gene. In situ hybridization histochemical detection of Pax6 and c-Maf in the E14 lens showed that both mRNAs are expressed in the lens equator where lens epithelial cells are differentiating to lens fiber cells. These results suggest that a Pax6/c-Maf transcription factor cascade is working in lens development.
Collapse
Affiliation(s)
- M Sakai
- Department of Biochemistry and Department of Ophthalmology, Hokkaido University School of Medicine, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Ring BZ, Cordes SP, Overbeek PA, Barsh GS. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 2000; 127:307-17. [PMID: 10603348 DOI: 10.1242/dev.127.2.307] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maf is a basic domain/leucine zipper domain protein originally identified as a proto-oncogene whose consensus target site in vitro, the T-MARE, is an extended version of an AP-1 site normally recognized by Fos and Jun. Maf and the closely related family members Neural retina leucine zipper (Nrl), L-Maf, and Krml1/MafB have been implicated in a wide variety of developmental and physiologic roles; however, mutations in vivo have been described only for Krml1/MafB, in which a loss-of-function causes abnormalities in hindbrain development due to failure to activate the Hoxa3 and Hoxb3 genes. We have used gene targeting to replace Maf coding sequences with those of lacZ, and have carried out a comprehensive analysis of embryonic expression and the homozygous mutant phenotype in the eye. Maf is expressed in the lens vesicle after invagination, and becomes highly upregulated in the equatorial zone, the site at which self-renewing anterior epithelial cells withdraw from the cell cycle and terminally differentiate into posterior fiber cells. Posterior lens cells in Maf(lacZ) mutant mice exhibit failure of elongation at embryonic day 11.5, do not express (α)A- and all of the (beta)-crystallin genes, and display inappropriately high levels of DNA synthesis. This phenotype partially overlaps with those reported for gene targeting of Prox1 and Sox1; however, expression of these genes is grossly normal, as is expression of Eya1, Eya2, Pax6, and Sox2. Recombinant Maf protein binds to T-MARE sites in the (alpha)A-, (beta)B2-, and (beta)A4-crystallin promoters but fails to bind to a point mutation in the (alpha)A-crystallin promoter that has been shown previously to be required for promoter function. Our results indicate that Maf directly activates many if not all of the (beta)-crystallin genes, and suggest a model for coordinating cell cycle withdrawal with terminal differentiation.
Collapse
Affiliation(s)
- B Z Ring
- Department of Pediatrics, Howard Hughes Medical Institute, Stanford, California 94305-5428, USA
| | | | | | | |
Collapse
|
21
|
Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Yasuda K, Yamamoto M. Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem 1999; 274:19254-60. [PMID: 10383433 DOI: 10.1074/jbc.274.27.19254] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the regulatory mechanisms underlying lens development, we searched for members of the large Maf family, which are expressed in the mouse lens, and found three, c-Maf, MafB, and Nrl. Of these, the earliest factor expressed in the lens was c-Maf. The expression of c-Maf was most prominent in lens fiber cells and persisted throughout lens development. To examine the functional contribution of c-Maf to lens development, we isolated genomic clones encompassing the murine c-maf gene and carried out its targeted disruption. Insertion of the beta-galactosidase (lacZ) gene into the c-maf locus allowed visualization of c-Maf accumulation in heterozygous mutant mice by staining for LacZ activity. Homozygous mutant embryos and newborns lacked normal lenses. Histological examination of these mice revealed defective differentiation of lens fiber cells. The expression of crystallin genes was severely impaired in the c-maf-null mutant mouse lens. These results demonstrate that c-Maf is an indispensable regulator of lens differentiation during murine development.
Collapse
Affiliation(s)
- S Kawauchi
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim JI, Li T, Ho IC, Grusby MJ, Glimcher LH. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci U S A 1999; 96:3781-5. [PMID: 10097114 PMCID: PMC22371 DOI: 10.1073/pnas.96.7.3781] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.
Collapse
Affiliation(s)
- J I Kim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, FXB-2, Boston, MA 02115-6017, USA
| | | | | | | | | |
Collapse
|
23
|
Masaki S, Kamachi Y, Quinlan RA, Yonezawa S, Kondoh H. Identification and functional analysis of the mouse lens filensin gene promoter. Gene 1998; 214:77-86. [PMID: 9651486 DOI: 10.1016/s0378-1119(98)00230-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Filensin (also called CP94; CP95; CP97; 115kDa protein) is a component of the lens-specific beaded filament which is believed to be functionally important in lens fiber cell differentiation and in maintaining lens fiber cell conformation and transparency. A 17.2kb fragment containing the 5'-upstream sequence of the filensin gene was isolated. S1-mapping analysis determined the transcription start point (tsp; +1) which locates at 94base pairs upstream from the initiating ATG on the filensin gene. In addition to a major tsp, a minor tsp (-136) was observed. DNA sequence of the fragment around the tsp (-2144 to +155) was identified. Analysis of the DNA sequence of the promoter region around tsp revealed two motifs with sequence homology to Sox2 and Maf recognition sequences in addition to one GATA-1 site, two Sp1 binding sites, and three AP-2 binding motifs. No TATA-box or CCAAT-motif was found around the tsp region. A series of sequentially deleted fragments of (-2144 to +40) were fused to firefly luciferase reporter plasmid pGL2 and tested for activity in chicken embryonic lens explants. A minimal promoter region for mouse filensin of (-70 to +40) was identified. The lens-specific promoter activity was detected using lens explants cultured within 12h after dissection. The activity was remarkably enhanced by culture in the presence of 5ng/ml of basic fibroblast growth factor. Each one of the Sp1 and AP-2 binding motifs was localized to the fragment of (-27 to +40) using electrophoretic mobility shift assays. These are the first data to identify the basic elements to the 5'-upstream sequences of the filensin gene, namely the tsp and the minimal filensin promoter.
Collapse
Affiliation(s)
- S Masaki
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | |
Collapse
|
24
|
Murata T, Nitta M, Yasuda K. Transcription factor CP2 is essential for lens-specific expression of the chicken alphaA-crystallin gene. Genes Cells 1998; 3:443-57. [PMID: 9753426 DOI: 10.1046/j.1365-2443.1998.00204.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lens-specific transcriptional activation of the chicken alphaA-crystallin gene is controlled by the distal and proximal enhancers, alphaCE1 and alphaCE2, respectively. Analysis using specific monoclonal antibodies against purified alphaCE1-binding factor alphaCEF1 revealed that alphaCEF1 is composed of two distinct subunits. RESULTS We have demonstrated that one of the subunits of alphaCEF1 is encoded by chicken ubiquitous transcription factor CP2 (cCP2), which is homologous to mouse CP2, and human CP2/LBP-1/LSF-1. Electrophoretic mobility shift assays and cross-linking experiments showed that alphaCEF1 and bacterially expressed cCP2 form a tetramer. Overexpression of cCP2 activates transcription through alphaCE1, but a mutant cCP2 lacking the DNA-binding domain reduced the transcription to basal levels. Although cCP2 binds to the CP2 template from the mouse alpha-globin promoter, it fails to promote transcription through this template. Element substitution experiments between alphaCE1 and the CP2 template revealed that the lens-specific enhancer activity of alphaCE1 is due to the 6 bp sequence (-139/-134; lens-specific element (LSE)) adjacent to the 3' of the cCP2 binding site within alphaCE1. CONCLUSION We have shown that the tetrameric transcription factor cCP2 is essential for lens-specific transcription of the chicken alphaA-crystallin gene, although it is ubiquitously expressed. We propose a model where cCP2 cooperates with a putative lens-specific factor which binds to LSE.
Collapse
Affiliation(s)
- T Murata
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|
25
|
Abstract
After the vertebrate lens is induced from head ectoderm, lens-specific genes are expressed. Transcriptional regulation of the lens-specific alphaA-crystallin gene is controlled by an enhancer element, alphaCE2. A gene encoding an alphaCE2-binding protein, L-maf(lens-specific maf), was isolated. L-maf expression is initiated in the lens placode and is restricted to lens cells. The gene product L-Maf regulates the expression of multiple genes expressed in the lens, and ectopic expression of this transcription factor converts chick embryonic ectodermal cells and cultured cells into lens fibers. Thus, vertebrate lens induction and differentiation can be triggered by the activation of L-Maf.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Basic-Leucine Zipper Transcription Factors
- Cell Differentiation
- Cells, Cultured
- Chick Embryo
- Crystallins/genetics
- DNA, Complementary
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Ectoderm
- Enhancer Elements, Genetic
- Eye Proteins/genetics
- G-Box Binding Factors
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Intermediate Filament Proteins/genetics
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Maf Transcription Factors
- Molecular Sequence Data
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- H Ogino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | |
Collapse
|
26
|
Sharon-Friling R, Richardson J, Sperbeck S, Lee D, Rauchman M, Maas R, Swaroop A, Wistow G. Lens-specific gene recruitment of zeta-crystallin through Pax6, Nrl-Maf, and brain suppressor sites. Mol Cell Biol 1998; 18:2067-76. [PMID: 9528779 PMCID: PMC121437 DOI: 10.1128/mcb.18.4.2067] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Zeta-Crystallin is a taxon-specific crystallin, an enzyme which has undergone direct gene recruitment as a structural component of the guinea pig lens through a Pax6-dependent mechanism. Tissue specificity arises through a combination of effects involving three sites in the lens promoter. The Pax6 site (ZPE) itself shows specificity for an isoform of Pax6 preferentially expressed in lens cells. High-level expression of the promoter requires a second site, identical to an alphaCE2 site or half Maf response element (MARE), adjacent to the Pax6 site. A promoter fragment containing Pax6 and MARE sites gives lens-preferred induction of a heterologous promoter. Complexes binding the MARE in lens nuclear extracts are antigenically related to Nrl, and cotransfection with Nrl elevates zeta-crystallin promoter activity in lens cells. A truncated zeta promoter containing Nrl-MARE and Pax6 sites has a high level of expression in lens cells in transgenic mice but is also active in the brain. Suppression of the promoter in the brain requires sequences between -498 and -385, and a site in this region forms specific complexes in brain extract. A three-level model for lens-specific Pax6-dependent expression and gene recruitment is suggested: (i) binding of a specific isoform of Pax6; (ii) augmentation of expression through binding of Nrl or a related factor; and (iii) suppression of promoter activity in the central nervous system by an upstream negative element in the brain but not in the lens.
Collapse
Affiliation(s)
- R Sharon-Friling
- Section on Molecular Structure and Function, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ohtaka-Maruyama C, Wang X, Ge H, Chepelinsky AB. Overlapping Sp1 and AP2 binding sites in a promoter element of the lens-specific MIP gene. Nucleic Acids Res 1998; 26:407-14. [PMID: 9421492 PMCID: PMC147274 DOI: 10.1093/nar/26.2.407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The MIP gene, the founder of the MIP family of channel proteins, is specifically expressed in fiber cells of the ocular lens and expression is regulated temporally and spatially during development. We previously found that a DNA fragment containing 253 bp of 5'-flanking sequence and 42 bp of exon 1 of the human MIP gene contains regulatory elements responsible for lens-specific expression of the MIP gene. In this report we have analyzed the function of overlapping Sp1 and AP2 binding sites present in the MIP promoter. Using DNase I footprinting analysis we found that purified Sp1 and AP2 transcription factors interact with several domains of the human MIP promoter sequence -253/+42. Furthermore, addition of purified Sp1 to Drosophila nuclear extracts activates in vitro transcription from the MIP promoter -253/+42. This promoter activity is competed by oligonucleotides containing domains footprinted with Sp1. Using promoter-reporter gene ( CAT ) constructs we found that the sequence -39/-70 contains a cis regulatory element essential for promoter activity in transient assays in lens cells. EMSA analysis showed that lens nuclear extracts contain factors that bind to the MIP 5'-flanking sequence containing overlapping Sp1 and AP2 binding domains at positions -37/-65. Supershift experiments with lens nuclear extracts indicated that Sp3 is also able to interact with this regulatory element, suggesting that Sp1 and Sp3 may be involved in regulation of transcription of the MIP gene in the lens.
Collapse
Affiliation(s)
- C Ohtaka-Maruyama
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The vertebrate eye lens has been used extensively as a model for developmental processes such as determination, embryonic induction, cellular differentiation, transdifferentiation and regeneration, with the crystallin genes being a prime example of developmentally controlled, tissue-preferred gene expression. Recent studies have shown that Pax-6, a transcription factor containing both a paired domain and homeodomain, is a key protein regulating lens determination and crystallin gene expression in the lens. The use of Pax-6 for expression of different crystallin genes provides a new link at the developmental and transcriptional level among the diverse crystallins and may lead to new insights into their evolutionary recruitment as refractive proteins.
Collapse
Affiliation(s)
- A Cvekl
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730, USA.
| | | |
Collapse
|
29
|
Duncan MK, Li X, Ogino H, Yasuda K, Piatigorsky J. Developmental regulation of the chicken beta B1-crystallin promoter in transgenic mice. Mech Dev 1996; 57:79-89. [PMID: 8817455 DOI: 10.1016/0925-4773(96)00533-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cis-elements responsible for the high-level, lens-specific expression of the chicken beta B1-crystallin gene were investigated by generating mice harboring beta B1-crystallin promoter/chloramphenicol acetyl transferase (CAT) transgenes. Deletion of promoter sequences -434/-153 and -152/-127 as well as site-directed mutagenesis of the PL1 (-116/-102) and Pl2 (-90/-76) elements significantly decreased CAT gene expression in the lenses of adult transgenic mice. Transfection studies using multimerized PL1 and PL2 elements fused to the chicken beta-actin basal promoter indicated that PL1 is a general activating element while PL2 is involved in the lens-specificity of the chicken beta B1-crystallin promoter. CAT histochemistry demonstrated that the chicken beta B1-crystallin promoter (-434/+30) was active in both primary and secondary lens fiber cells from 12.5 days post coitum (dpc) until adulthood. Activity of the -152/+30/CAT transgene was relatively low and confined to the primary lens fiber cells of 16.5 dpc mice. Together, these data suggest that the reduced activity of this promoter in the adult lens is due both to this developmentally restricted expression pattern and a reduction in promoter activity. RNA hybridization studies demonstrated that the chicken beta B1-crystallin/CAT (-434/+30) transgene was expressed at similar levels in the same cells as the endogenous mouse beta B1-crystallin gene in 16.5 dpc transgenic mouse embryos. These data show a strict conservation of the lens-specific spatial and temporal regulation of the chicken and mouse beta B1-crystallin genes.
Collapse
Affiliation(s)
- M K Duncan
- Laboratory of Molecular and Developmental Biology, National Eye Institute/National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Rinaudo JA, Vacchiano E, Zelenka PS. Effects of c-Jun and a negative dominant mutation of c-Jun on differentiation and gene expression in lens epithelial cells. J Cell Biochem 1995; 58:237-47. [PMID: 7673330 DOI: 10.1002/jcb.240580212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (Jun delta 7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of "lentoid bodies," structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of beta A3/A1-crystallin mRNA, without affecting alpha A-crystallin mRNA. In contrast, the mutated protein, Jun delta 7, had no effect on proliferation or differentiation but markedly increased the level of alpha A-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of alpha A- and beta A3/A1-crystallin genes in proliferating lens cells.
Collapse
Affiliation(s)
- J A Rinaudo
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
31
|
Duncan MK, Roth HJ, Thompson M, Kantorow M, Piatigorsky J. Chicken beta B1 crystallin: gene sequence and evidence for functional conservation of promoter activity between chicken and mouse. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:68-76. [PMID: 7893762 DOI: 10.1016/0167-4781(94)00223-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The complete sequence was determined for the chicken beta B1-crystallin gene and 2.2 kbp of its 5' flanking region; the chicken gene was then compared to its rat ortholog. Although both have a 5' non-coding exon followed by 5 protein coding exons, the chicken gene is only 2.2 kbp while the rat gene is 13.6 kpb due to longer introns. The coding exons of the chicken beta B1-crystallin gene, like those of the rat and other beta-crystallin genes, each correspond to one of the four 'Greek key' motifs of the encoded protein. The only obvious similarity between the 5' flanking sequences of the chicken and rat beta B1-crystallin gene is associated with the TATA box. A CR1 repetitive element is present at positions -559 to -730 of the chicken beta B1-crystallin gene. In vivo footprinting using dimethyl sulfate/ligation mediated PCR showed that the PL-1 (-116/-102), PL-2 (-90/-76), OL-2 (-75/-68) and OL-1 (-125/-118) control elements identified previously (Roth et al. (1991) Mol. Cell. Biol. 11, 1488-1499) bind proteins within the chromatin of cultured embryonic chicken lens cells. Both -2448/+30 and -434/+30 promoter fragments from the chicken beta B1-crystallin gene directed lens-specific CAT gene expression in a copy number and position independent manner in transgenic mice. These data indicate that the structure and lens-specific expression of this gene are highly conserved although, like other crystallin genes, the 5' flanking sequences have diverged appreciably during evolution.
Collapse
Affiliation(s)
- M K Duncan
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730
| | | | | | | | | |
Collapse
|
32
|
Sax CM, Cvekl A, Kantorow M, Gopal-Srivastava R, Ilagan JG, Ambulos NP, Piatigorsky J. Lens-specific activity of the mouse alpha A-crystallin promoter in the absence of a TATA box: functional and protein binding analysis of the mouse alpha A-crystallin PE1 region. Nucleic Acids Res 1995; 23:442-51. [PMID: 7885839 PMCID: PMC306695 DOI: 10.1093/nar/23.3.442] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lens-specific expression of the mouse alpha A-crystallin gene is regulated at the level of transcription. Here, we have studied the role of the PE1 region, which contains the TATA box (-31/-26) and the immediately adjacent PE1B sequence (-25/-12), in transcriptional regulation. Deletions within either the TATA box or PE1B sequence eliminated promoter activity in transfected lens cells. Surprisingly, these deletions did not eliminate lens-specific promoter activity of the transgene of transgenic mice. Transcription of the transgene with a TATA-deleted promoter initiated at multiple sites in the lenses of the transgenic mice. Footprint analysis revealed that the entire PE1 region was protected by nuclear extracts prepared from lens cells which express the alpha A-crystallin gene and from fibroblasts which do not express the gene. The -37/+3 region formed three specific EMSA complexes using lens cell nuclear extracts, while a similar but much less intense pattern was observed when a fibroblast nuclear extract was used. Competition experiments indicated that these complexes were not due to the binding of TBP to the TATA box, but rather to the binding of other nuclear proteins to the PE1B -25/-19 region. A series of co-transfection competition studies in vivo also suggested the functional importance of proteins binding in the -25/-19 region. The PE1B protein-DNA interactions appear to be conserved in the chicken, rodent and human alpha A-crystallin gene as well as within the alpha A- and alpha B-crystallin genes in the mouse. Our findings indicate that the PE1B region is important for mouse alpha A-crystallin promoter activity; the proximity of this site to the TATA box raises the possibility for cooperativity or competition between TBP and PE1B-bound proteins.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, NEI, NIH, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
33
|
Frederikse PH, Dubin RA, Haynes JI, Piatigorsky J. Structure and alternate tissue-preferred transcription initiation of the mouse alpha B-crystallin/small heat shock protein gene. Nucleic Acids Res 1994; 22:5686-94. [PMID: 7838723 PMCID: PMC310134 DOI: 10.1093/nar/22.25.5686] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have determined the complete nucleotide sequence (-865 to +3515) of the murine alpha B-crystallin/small heat shock protein gene, a major soluble protein of the vertebrate eye lens. Its 3 exon/2 intron structure is identical to that of the rat, hamster and human gene, with the exons being much more conserved than the introns. Previous reports indicated that there are two sizes of alpha B-crystallin mRNA; a larger alpha B-crystallin mRNA predominates in the lung and brain and is also found in low levels in most other tissues (except in lens and liver), while a smaller alpha B-crystallin mRNA exists at a high level in the lens and in variable amounts elsewhere. Sequence analysis suggests that secondary structure in the 5' untranslated sequence of the longer mRNA has led to difficulty in mapping the transcription initiation site of the longer transcript. Here we provide evidence by primer extension, S1 nuclease protection, and PCR (polymerase chain reaction) experiments for a transcription initiation site in the murine lung and brain at position -474. We also detected the utilization of the -474 initiation site in lens and of the +1 site in lung and brain, indicating that the tissue preference for these sites is not absolute. In vitro transcription experiments revealed that cell-free HeLa nuclear extracts specifically initiate transcription at the -474 and +1 sites. alpha B-crystallin was immunocytochemically localized to the bronchioles of the lung. Thus, regulation of alpha B-crystallin/small heat shock protein expression involves the utilization of tissue-preferred transcription initiation sites.
Collapse
Affiliation(s)
- P H Frederikse
- Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bethesda, MD 20892
| | | | | | | |
Collapse
|
34
|
A complex array of positive and negative elements regulates the chicken alpha A-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol 1994. [PMID: 7935450 DOI: 10.1128/mcb.14.11.7363] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.
Collapse
|
35
|
Cvekl A, Sax CM, Bresnick EH, Piatigorsky J. A complex array of positive and negative elements regulates the chicken alpha A-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol 1994; 14:7363-76. [PMID: 7935450 PMCID: PMC359271 DOI: 10.1128/mcb.14.11.7363-7376.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.
Collapse
Affiliation(s)
- A Cvekl
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730
| | | | | | | |
Collapse
|
36
|
Gopal-Srivastava R, Piatigorsky J. Identification of a lens-specific regulatory region (LSR) of the murine alpha B-crystallin gene. Nucleic Acids Res 1994; 22:1281-6. [PMID: 8165144 PMCID: PMC523654 DOI: 10.1093/nar/22.7.1281] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies have shown that the -661/+44 sequence of the murine alpha B-crystallin gene contains a muscle-preferred enhancer (-426/-257) and can drive the bacterial chloramphenicol acetyltransferase (CAT) gene in the lens, skeletal muscle and heart of transgenic mice. Here we show that transgenic mice carrying a truncated -164/+44 fragment of the alpha B-crystallin gene fused to the CAT gene expressed exclusively in the lens; by contrast mice carrying a -426/+44 fragment of the alpha B gene fused to CAT expressed highly in the lens, skeletal muscle and heart, and slightly in the lung, brain, kidney, spleen and liver. DNase I protection experiments indicated that the -147/-118 sequence is protected by nuclear proteins from alpha TN4-1 lens cell line, but not by nuclear proteins from myotubes of the C2C12 cell line. Site directed mutagenesis of this sequence decreased promoter activity in transiently-transfected lens cells, consistent with this sequence being a lens-specific regulatory region (LSR). We conclude that the -426/-257 enhancer is required for expression in skeletal muscle, heart and possibly other tissues, and that the -164/+44 sequence of the alpha B-crystallin gene is sufficient for expression in the lens of transgenic mice.
Collapse
Affiliation(s)
- R Gopal-Srivastava
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
37
|
|
38
|
Overlapping positive and negative regulatory elements determine lens-specific activity of the delta 1-crystallin enhancer. Mol Cell Biol 1993. [PMID: 8355679 DOI: 10.1128/mcb.13.9.5206] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, and the 30-bp-long DC5 fragment was found to be responsible for eliciting the lens-specific activity. Mutational analysis of the DC5 fragment identified two contiguous, interdependent positive elements and a negative element which overlaps the 3'-located positive element. Previously identified ubiquitous factors delta EF1 bound to the negative element and repressed the enhancer activity in nonlens cells. Mutation and cotransfection analyses indicated the existence of an activator which counteracts the action of delta EF1 in lens cells, probably through binding site competition. We also found a group of nuclear factors, collectively called delta EF2, which bound to the 5'-located positive element. delta EF2a and -b were the major species in lens cells, whereas delta EF2c and -d predominated in nonlens cells. These delta EF2 proteins probably cooperate with factors bound to the 3'-located element in activation in lens cells and repression in nonlens cells. delta EF2 proteins also bound to a promoter sequence of the gamma F-crystallin gene, suggesting that delta EF2 proteins are involved in lens-specific regulation of various crystallin classes.
Collapse
|
39
|
Kamachi Y, Kondoh H. Overlapping positive and negative regulatory elements determine lens-specific activity of the delta 1-crystallin enhancer. Mol Cell Biol 1993; 13:5206-15. [PMID: 8355679 PMCID: PMC360209 DOI: 10.1128/mcb.13.9.5206-5215.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, and the 30-bp-long DC5 fragment was found to be responsible for eliciting the lens-specific activity. Mutational analysis of the DC5 fragment identified two contiguous, interdependent positive elements and a negative element which overlaps the 3'-located positive element. Previously identified ubiquitous factors delta EF1 bound to the negative element and repressed the enhancer activity in nonlens cells. Mutation and cotransfection analyses indicated the existence of an activator which counteracts the action of delta EF1 in lens cells, probably through binding site competition. We also found a group of nuclear factors, collectively called delta EF2, which bound to the 5'-located positive element. delta EF2a and -b were the major species in lens cells, whereas delta EF2c and -d predominated in nonlens cells. These delta EF2 proteins probably cooperate with factors bound to the 3'-located element in activation in lens cells and repression in nonlens cells. delta EF2 proteins also bound to a promoter sequence of the gamma F-crystallin gene, suggesting that delta EF2 proteins are involved in lens-specific regulation of various crystallin classes.
Collapse
Affiliation(s)
- Y Kamachi
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
40
|
Abstract
In a novel evolutionary process, enzymes and stress proteins have undergone direct gene recruitment as eye lens crystallins in a number of independent events. This may have allowed a dynamic response to changing visual environment during evolution. In spite of their diversity, many crystallins may share an origin in essential developmental processes such as cell elongation.
Collapse
Affiliation(s)
- G Wistow
- Section on Molecular Structure and Function, LMBD, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Smolich BD, Tarkington SK, Saha MS, Stathakis DG, Grainger RM. Characterization of Xenopus laevis gamma-crystallin-encoding genes. Gene 1993; 128:189-95. [PMID: 8514186 DOI: 10.1016/0378-1119(93)90562-h] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to gain insight into crystallin (Cry)-encoding gene (cry) evolution and developmental function, we have determined the gene structure and sequence of several Xenopus laevis gamma-cry. These encode the most abundant Cry in the embryonic lens. Four of the X. laevis gamma-cry, which are part of a multigene family, were isolated from a X. laevis genomic library and demonstrated to have the same gene structure as gamma-cry from other vertebrates, thereby providing further evidence that the split between beta and gamma members of the beta gamma cry family occurred relatively early in evolution. Sequence comparisons indicate that these X. laevis genes share 88-90% nucleotide sequence identity in the protein coding regions, which is slightly higher than the identity observed between gamma-cry of other species. The 5' upstream regions of X. laevis gamma-cry contain a few short stretches of homology and one putative promoter element conserved among all cry genes but lack other regions common to gamma-cry promoters from other organisms. The deduced amino acid sequences of all four genes and one cDNA suggest that the structure of X. laevis gamma-Cry is highly conserved with that of other vertebrate gamma-Cry, as deduced from the known three-dimensional structure of bovine gamma B Cry.
Collapse
Affiliation(s)
- B D Smolich
- Syntex Discovery Research, Palo Alto, CA 94304
| | | | | | | | | |
Collapse
|
42
|
Sax CM, Ilagan JG, Piatigorsky J. Functional redundancy of the DE-1 and alpha A-CRYBP1 regulatory sites of the mouse alpha A-crystallin promoter. Nucleic Acids Res 1993; 21:2633-40. [PMID: 8332460 PMCID: PMC309592 DOI: 10.1093/nar/21.11.2633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies have implicated the DE-1 (-111/-106) and alpha A-CRYBP1 (-66/-57) sites for activity of the mouse alpha A-crystallin promoter in transiently transfected lens cells. Here we have used the bacterial chloramphenicol acetyltransferase (CAT) reporter gene to test the functional importance of the putative DE-1 and alpha A-CRYBP1 regulatory elements by site-specific and deletion mutagenesis in stably transformed alpha TN4-1 lens cells and in transgenic mice. FVB/N and C57BL/6 x SJL F2 hybrid transgenic mice were assayed for CAT activity in the lens, heart, lung, kidney, spleen, liver, cerebrum, and muscle. F0, F1, and F2 mice from multiple lines carrying single mutations of the DE-1 or alpha A-CRYBP1 sites showed high levels of CAT activity in the lens, but not in any of the non-lens tissues. By contrast, despite activity of the wild-type promoter, none of the mutant promoter/CAT constructs were active in the transiently transfected and stably transformed lens cells. The mice carrying transgenes with either site-specific mutations in both the DE-1 and alpha A-CRYBP1 sites or a deletion of the entire DE-1 and part of the alpha A-CRYBP1 site (-60/+46) fused to the CAT gene did not exhibit CAT activity above background in any of the tissues examined, including the lens. Our results thus indicate that the DE-1 and alpha A-CRYBP1 sites are functionally redundant in transgenic mice. Moreover, the present data coupled with previous transfection and transgenic mouse experiments suggest that this functional redundancy is confined to lens expression within the mouse and is not evident in transiently transfected and stably transformed lens cells, making the cultured lens cells sensitive indicators of functional elements of crystallin genes.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, NEI, NIH, Bethesda, MD 20892
| | | | | |
Collapse
|
43
|
Abstract
Crystallins have evolved by various mechanisms that are associated with high expression of their genes in the eye lens. The diversity and pattern of crystallins among different species indicate that independent events have occurred at the molecular level during the evolution of the lens in different invertebrates (jellyfish, squid, and octopus) and vertebrates. Although it is possible that different crystallins are needed to fulfill the specific needs of individual species, the unexpectedly large array of proteins that function as crystallins and their abundance in the lens raise the possibility that selective pressures optimizing the function of certain transcription factors in the lens contribute to the recruitment of crystallins.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
44
|
Affiliation(s)
- T S Okada
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
45
|
Klement J, Cvekl A, Piatigorsky J. Functional elements DE2A, DE2B, and DE1A and the TATA box are required for activity of the chicken alpha A-crystallin gene in transfected lens epithelial cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53317-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Goring DR, Bryce DM, Tsui LC, Breitman ML, Liu Q. Developmental regulation and cell type-specific expression of the murine gamma F-crystallin gene is mediated through a lens-specific element containing the gamma F-1 binding site. Dev Dyn 1993; 196:143-52. [PMID: 8364223 DOI: 10.1002/aja.1001960208] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mouse gamma F-crystallin gene, one of six differentially regulated members of the gamma-crystallin gene family, is expressed exclusively in central nuclear fiber cells of the adult lens. The expression of this gene is controlled through regulatory elements contained in two upstream enhancers and the proximal promoter. Here we show that while the upstream enhancers and the proximal promoter could each direct gene expression in fiber cells formed at early stages of lens growth and development, cooperation between these elements is required to achieve expression in fiber cells formed at later stages. Evidence is provided that cooperative interaction between these elements modulates gene expression by increasing promoter strength. We also show that sequences within the proximal promoter region that bind lens cell nuclear factor gamma F-1 are sufficient to elicit gene expression in central nuclear fiber cells of the adult lens.
Collapse
Affiliation(s)
- D R Goring
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|