1
|
Chang FS, Wang Y, Dmitriev P, Gross J, Galione A, Pears C. A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biol 2020; 18:8. [PMID: 31969153 PMCID: PMC6977259 DOI: 10.1186/s12915-019-0735-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Two-pore channels (TPCs) release Ca2+ from acidic intracellular stores and are implicated in a number of diseases, but their role in development is unclear. The social amoeba Dictyostelium discoideum proliferates as single cells that aggregate to form a multicellular organism on starvation. Starvation is sensed by the mTORC1 complex which, like TPC proteins, is found on acidic vesicles. Here, we address the role of TPCs in development and under starvation. RESULTS We report that disruption of the gene encoding the single Dictyostelium TPC protein, TPC2, leads to a delay in early development and prolonged growth in culture with delayed expression of early developmental genes, although a rapid starvation-induced increase in autophagy is still apparent. Ca2+ signals induced by extracellular cAMP are delayed in developing tpc2- cells, and aggregation shows increased sensitivity to weak bases, consistent with reduced acidity of the vesicles. In mammalian cells, the mTORC1 protein kinase has been proposed to suppress TPC channel opening. Here, we show a reciprocal effect as tpc2- cells show an increased level of phosphorylation of an mTORC1 substrate, 4E-BP1. mTORC1 inhibition reverses the prolonged growth and increases the efficiency of aggregation of tpc2- cells. CONCLUSION TPC2 is required for efficient growth development transition in Dictyostelium and acts through modulation of mTORC1 activity revealing a novel mode of regulation.
Collapse
Affiliation(s)
- Fu-Sheng Chang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Yuntao Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillip Dmitriev
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Julian Gross
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Catherine Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Dong Y, Shahid-Salles S, Sherling D, Fechheimer N, Iyer N, Wells L, Fechheimer M, Furukawa R. De novo actin polymerization is required for model Hirano body formation in Dictyostelium. Biol Open 2016; 5:807-18. [PMID: 27215322 PMCID: PMC4920178 DOI: 10.1242/bio.014944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hirano bodies are eosinophilic, actin-rich inclusions found in autopsied brains in numerous neurodegenerative diseases. The mechanism of Hirano body formation is unknown. Mass spectrometry analysis was performed to identify proteins from partially purified model Hirano bodies from Dictyostelium This analysis identified proteins primarily belonging to ribosomes, proteasomes, mitochondria and cytoskeleton. Profilin, Arp/2/3 and WASH identified by mass spectrometry were found to colocalise with model Hirano bodies. Due to their roles in actin regulation, we selected these proteins for further investigation. Inhibition of the Arp2/3 complex by CK666 prevented formation of model Hirano bodies. Since Arp2/3 activation occurs via the WASH or WAVE complex, we next investigated how these proteins affect Hirano body formation. Whereas model Hirano bodies could form in WASH-deficient cells, they failed to form in cells lacking HSPC300, a member of the WAVE complex. We identified other proteins required for Hirano body formation that include profilin and VASP, an actin nucleation factor. In the case of VASP, both its G- and F-actin binding domains were required for model Hirano body formation. Collectively, our results indicate that de novo actin polymerization is required to form model Hirano bodies.
Collapse
Affiliation(s)
- Yun Dong
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | | | - Dan Sherling
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA 30602
| | - Nathan Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Nathan Iyer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA 30602
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| |
Collapse
|
3
|
Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M. Requirements for Hirano body formation. EUKARYOTIC CELL 2014; 13:625-34. [PMID: 24632241 PMCID: PMC4060480 DOI: 10.1128/ec.00044-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
Abstract
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.
Collapse
Affiliation(s)
- Paul Griffin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Cleveland Piggott
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Andrew Maselli
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Veltman DM, Keizer-Gunnink I, Haastert PJV. An extrachromosomal, inducible expression system for Dictyostelium discoideum. Plasmid 2009; 61:119-25. [DOI: 10.1016/j.plasmid.2008.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/22/2008] [Accepted: 11/10/2008] [Indexed: 11/27/2022]
|
5
|
Kim DH, Davis RC, Furukawa R, Fechheimer M. Autophagy contributes to degradation of Hirano bodies. Autophagy 2009; 5:44-51. [PMID: 18989098 DOI: 10.4161/auto.5.1.7228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases, and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently observed in membrane-enclosed vesicles in mammalian cells consistent with a role of autophagy in the degradation of these structures. Clearance of Hirano bodies by an exocytotic process is supported by images from electron microscopy showing extracellular release of Hirano bodies, and observation of Hirano bodies in the culture medium of Dictyostelium and mammalian cells. An autophagosome marker protein Atg8-GFP, was co-localized with model Hirano bodies in wild type Dictyostelium cells, but not in atg5(-) or atg1-1 autophagy mutant strains. Induction of model Hirano bodies in Dictyostelium with a high level expression of 34 kDa DeltaEF1 from the inducible discoidin promoter resulted in larger Hirano bodies and a cessation of cell doubling. The degradation of model Hirano bodies still occurred rapidly in autophagy mutant (atg5(-)) Dictyostelium, suggesting that other mechanisms such as the ubiquitin-mediated proteasome pathway could contribute to the degradation of Hirano bodies. Chemical inhibition of the proteasome pathway with lactacystin, significantly decreased the turnover of Hirano bodies in Dictyostelium providing direct evidence that autophagy and the proteasome can both contribute to degradation of Hirano bodies. Short term treatment of mammalian cells with either lactacystin or 3-methyl adenine results in higher levels of Hirano bodies and a lower level of viable cells in the cultures, supporting the conclusion that both autophagy and the proteasome contribute to degradation of Hirano bodies.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
6
|
Arya R, Bhattacharya A, Saini KS. Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 2008; 22:4055-66. [DOI: 10.1096/fj.08-110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ranjana Arya
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
| | | | - Kulvinder Singh Saini
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
7
|
Salger K, Wetterauer B. Aberrant folate response and premature development in a mutant of Dictyostelium discoideum. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660406.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Lee E, Seastone DJ, Harris E, Cardelli JA, Knecht DA. RacB regulates cytoskeletal function in Dictyostelium spp. EUKARYOTIC CELL 2003; 2:474-85. [PMID: 12796292 PMCID: PMC161455 DOI: 10.1128/ec.2.3.474-485.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thus far, 14 homologues of mammalian Rac proteins have been identified in Dictyostelium. It is unclear whether each of these genes has a unique function or to what extent they play redundant roles in actin cytoskeletal organization. To investigate the specific function of RacB, we have conditionally expressed wild-type (WT-RacB), dominant negative (N17-RacB), and constitutively activated (V12-RacB) versions of the protein. On induction, cells expressing V12-RacB stopped growing, detached from the surface, and formed numerous spherical surface protrusions while cells overexpressing WT-RacB became flattened on the surface. In contrast, cells overexpressing N17-RacB did not show any significant morphological abnormalities. The surface protrusions seen in V12-RacB cells appear to be actin-driven protrusions because they were enriched in F-actin and were inhibitable by cytochalasin A treatment. The protrusions in V12-RacB cells did not require myosin II activity, which distinguishes them from blebs formed by wild-type cells under stress. Finally, we examined the functional consequences of expression of wild-type and mutant RacB. Phagocytosis, endocytosis, and fluid phase efflux rates were reduced in all cell lines expressing RacB proteins but the greatest decrease was observed for cells expressing V12-RacB. From these results, we conclude that like other members of the Rho family, RacB induces polymerization of actin but the consequences of activation appear to be different from other Dictyostelium Rac proteins so far investigated, resulting in different morphological and functional changes in cells.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
9
|
Kang R, Kae H, Ip H, Spiegelman GB, Weeks G. Evidence for a role for the Dictyostelium Rap1 in cell viability and the response to osmotic stress. J Cell Sci 2002; 115:3675-82. [PMID: 12186953 DOI: 10.1242/jcs.00039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dictyostelium genome contains a single rapA gene, which encodes a Rap1 monomeric G protein. As attempts at generating rapA-null Dictyostelium cells had been unsuccessful, expression of antisense RNA from the rapA gene under control of the folate repressible discoidin promoter was used to reduce cellular levels of the Rap1 protein. As Rap1 levels gradually decreased following antisense rapA RNA induction, growth rate and cell viability also decreased, a result consistent with the idea that rapA is an essential gene. The Rap1-depleted cells exhibited reduced viability in response to osmotic shock. The accumulation of cGMP in response to 0.4 M sorbitol was reduced after rapA antisense RNA induction and was enhanced in cells expressing the constitutively activated Rap1(G12V) protein, suggesting a role for Rap1 in the generation of cGMP. Dictyostelium Rap1 formed a complex with the Ras-binding domain of RalGDS only when it was in a GTP-bound state. This assay was used to demonstrate that activation of Rap1 in response to 0.4 M sorbitol occurred with initial kinetics similar to those observed for the accumulation of cGMP. Furthermore, the addition of 2 mM EDTA to osmotically shocked cells, a treatment that enhances cGMP accumulation, also enhanced Rap1 activation. These results suggest a direct role for Rap1 in the activation of guanylyl cyclase during the response to hyperosmotic conditions. Rap1 was also activated in response to low temperature but not in response to low osmolarity or high temperature.
Collapse
Affiliation(s)
- Rujun Kang
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd., Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
10
|
Sharma SK, Brock DA, Ammann RR, DeShazo T, Khosla M, Gomer RH, Weeks G. The cdk5 homologue, crp, regulates endocytosis and secretion in dictyostelium and is necessary for optimum growth and differentiation. Dev Biol 2002; 247:1-10. [PMID: 12074548 DOI: 10.1006/dbio.2002.0684] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dictyostelium Crp is a member of the cyclin-dependent kinase (Cdk) family of proteins. It is most related in sequence to mammalian Cdk5, which unlike other members of the family, has functions that are unrelated to the cell cycle. In order to better understand the function of Crp in Dictyostelium, we overexpressed a dominant negative form, Crp-D144N, under the control of the actin 15 promoter. Cells overexpressing Crp-D144N exhibit a reduced growth rate in suspension culture and reduced rates of fluid-phase endocytosis and phagocytosis. There is no reduction in Cdc2 kinase activity in extracts from cells overexpressing Crp-D144N, suggesting that the growth defect is not due to inhibition of Cdc2. In addition to the growth defect, the act15::crp-D144N transformants aggregate at a slower rate than wild-type cells and form large aggregation streams. These eventually break up to form small aggregates and most of these do not produce mature fruiting bodies. The aggregation defect is fully reversed in the presence of wild-type cells but terminal differentiation is only partially rescued. In act15::crp-D144N transformants, the countin component of the counting factor, a secreted protein complex that regulates the breakup of streams, mostly appears outside the cell as degradation products and the reduced level of the intact protein may at least partially account for the initial formation of the large aggregation streams. Our observations indicate that Crp is important for both endocytosis and efflux and that defects in these functions lead to reduced growth and aberrant development.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Takaoka N, Fukuzawa M, Kato A, Saito T, Ochiai H. Element analysis of the Polysphondylium pallidum gp64 promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:304-10. [PMID: 11997096 DOI: 10.1016/s0167-4781(02)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
gp64 mRNA in Polysphondylium pallidum is expressed extensively during vegetative growth, and begins to rapidly decrease at the onset of development. To examine this unique regulation, 5' deletion analysis of the gp64 promoter was undertaken, and two growth-phase activated elements have been found: a food-dependent, upstream regulatory region (FUR, -222 to -170) and a vegetatively activated, downstream region (VAD, -110 to -63). Here we concentrate our analysis on an A1 and A2 sequences in the FUR region: A1 consists of a GATTTTTTTA sequence called a corresponding sequence and A2 consists of the direct repeat TTTGTTGTG. The cells carrying a combined construct of A1 and A2 acted synergistically in a reporter activity. A point mutation analysis in A1 indicates that a G residue is required for the activation of A1. From analyses of promoter regulation in a liquid or a solid medium, the promoter activity of the cells fed on bacteria in A-medium (axenic medium for Polysphondylium) or grown in A-medium alone was only one fourth of that of the cells fed on bacteria. By the gel retardation, we detected a protein bound to the A1 sequence.
Collapse
Affiliation(s)
- Naohisa Takaoka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| | | | | | | | | |
Collapse
|
12
|
Martens H, Novotny J, Oberstrass J, Steck TL, Postlethwait P, Nellen W. RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase. Mol Biol Cell 2002; 13:445-53. [PMID: 11854403 PMCID: PMC65640 DOI: 10.1091/mbc.01-04-0211] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We show that in Dictyostelium discoideum an endogenous gene as well as a transgene can be silenced by introduction of a gene construct that is transcribed into a hairpin RNA. Gene silencing was accompanied by the appearance of sequence-specific RNA about 23mers and seemed to have a limited capacity. The three Dictyostelium homologues of the RNA-directed RNA polymerase (RrpA, RrpB, and DosA) all contain an N-terminal helicase domain homologous to the one in the dicer nuclease, suggesting exon shuffling between RNA-directed RNA polymerase and the dicer homologue. Only the knock-out of rrpA resulted in a loss of the hairpin RNA effect and simultaneously in a loss of detectable about 23mers. However, about 23mers were still generated by the Dictyostelium dsRNase in vitro with extracts from rrpA(-), rrpB(-), and DosA(-) cells. Both RrpA and a target gene were required for production of detectable amounts of about 23mers, suggesting that target sequences are involved in about 23mer amplification.
Collapse
Affiliation(s)
- Henrik Martens
- Abt. Genetik, Universität Kassel, D-34132 Kassel, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Pang KM, Dingermann T, Knecht DA. Regulated expression of myosin II heavy chain and RacB using an inducible tRNA suppressor gene. Gene 2001; 277:187-97. [PMID: 11602356 DOI: 10.1016/s0378-1119(01)00687-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An inducible expression system that indirectly regulates gene expression through the use of an inducible suppressor tRNA has been used to express both endogenous and exogenous genes in Dictyostelium. The tetracycline repressor and tRNA suppressor (Glu) are expressed from a single G418 selectable vector, while a gene engineered to contain a stop codon is expressed from a separate hygromycin selectable vector. beta-Galactosidase could be induced over 300 fold with this system, and the extent of induction could be varied depending upon the amount of tetracycline added. It took 3 days to fully induce expression, and about 3 days for expression to decrease to baseline after removal of the tetracycline. Dictyostelium myosin II heavy chain could also be expressed in an inducible manner, although the induction ratio was not as high as beta-galactosidase and the maximum expression level was not as high as wild-type levels. A significant accumulation of the truncated peptide indicates that complete suppression of the stop codon was not achieved. Partial phenotypic reversion was observed in null mutants inducibly expressing myosin II. RacB could also be inducibly expressed, whereas the protein could not be expressed from a constitutive promoter, presumably because expression at high levels is lethal. Therefore, the inducible tRNA system can be used to control expression of endogenous Dictyostelium genes.
Collapse
Affiliation(s)
- K M Pang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
14
|
Lee E, Knecht DA. Cytoskeletal alterations in Dictyostelium induced by expression of human cdc42. Eur J Cell Biol 2001; 80:399-409. [PMID: 11484931 DOI: 10.1078/0171-9335-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rho family of small G proteins has been shown to be involved in controlling actin filament dynamics in cells. To evaluate the functional overlap between human and Dictyostelium G proteins, we conditionally expressed constitutively active human cdc42 (V12-cdc42) in Dictyostelium cells. Upon induction, cells adopted a unique morphology: a flattened shape with wrinkles running from the cell edge toward the center. The appearance of these wrinkles is highly dynamic so that the cells cycle between the wrinkled and relatively normal morphologies. Phalloidin staining indicates that the stellate wrinkles contain dense actin structures and also that numerous filopods project vertically from the center of these cells. Consistent with the hypothesis that cdc42 induces actin polymerization in vivo, cells expressing V12-cdc42 show an increase in the amount of F-actin associated with the cytoskeleton. This is accompanied by an increase in the association of the actin-binding proteins 34-kDa bundler, ABP-120 and alpha-actinin with the cytoskeleton. In conclusion, human cdc42 has various effects on the Dictyostelium actin cytoskeleton consistent with a conserved role of small GTPases in control of the cytoskeleton.
Collapse
Affiliation(s)
- E Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06260, USA
| | | |
Collapse
|
15
|
Secko DM, Khosla M, Gaudet P, Tsang A, Spiegelman GB, Weeks G. RasG regulates discoidin gene expression during Dictyostelium growth. Exp Cell Res 2001; 266:135-41. [PMID: 11339832 DOI: 10.1006/excr.2001.5216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated rasG, rasG(G12T), was expressed in Dictyostelium cells under the control of the folate-repressible discoidin promoter (pVEII-rasG(G12T)) and found to have a unique pattern of expression when cells were transferred to folate-deficient media: an initial increase of RasG(G12T) resulting from the removal of folate, followed by a rapid decline while cells were still in the early exponential phase of growth. Discoidin levels were considerably lower and declined more rapidly in the pVEII-rasG(G12T) transformant than they did in the wild type, suggesting that RasG(G12T) represses discoidin expression. This was independently confirmed by placing the rasG(G12T) gene under the control of the ribonucleotide reductase (rnrB) promoter. Exposure of cells to 10 mM methyl methanesulfonate (MMS) rapidly generated RasG(G12T) and this was accompanied by an equally rapid decrease in discoidin mRNA levels. rasG null cells also contained decreased levels of discoidin under all conditions tested, indicating that RasG is essential for optimum discoidin expression. However, rasG null cells showed normal regulation of discoidin expression in response to PSF, CMF, folate, bacteria, and axenic media, indicating that RasG is not necessary for any of these responses. These results reveal a role for RasG in regulating discoidin gene expression and add a further level of complexity to the regulation of the discoidin promoter.
Collapse
Affiliation(s)
- D M Secko
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Sassi S, Sweetinburgh M, Erogul J, Zhang P, Teng-Umnuay P, West CM. Analysis of Skp1 glycosylation and nuclear enrichment in Dictyostelium. Glycobiology 2001; 11:283-95. [PMID: 11358877 DOI: 10.1093/glycob/11.4.283] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skp1 is a subunit of SCF-E3 ubiquitin ligases and other protein complexes in the nucleus and cytoplasm of yeast and mammalian cells. In Dictyostelium, Skp1 is partially modified by an unusual pentasaccharide O-linked to hydroxyproline143. This modification was found to be susceptible to known prolyl hydroxylase inhibitors based on M(r)-shift analysis using SDS-polyacrylamide gel electrophoresis/Western blotting. In addition, Dictyostelium Skp1 consists of 2 genetic isoforms, Skp1A and Skp1B, which differ by a single amino acid and appear to be expressed throughout the life cycle based on reverse-transcription polymerase chain reactions. The significance of these structural variations was examined by expressing myc-tagged Skp1s and mutants that lacked the glycosylation site. Gel-based M(r)-shift studies showed that Skp1A and Skp1B are both nearly completely glycosylated during growth and early development, and mass spectrometry of glycopeptides showed that they were glycosylated similarly. Skp1 expressed later in prespore cells was not glycosylated, unlike bulk Skp1 persisting from earlier in development, but became glycosylated after return to growth medium. Skp1A and Skp1B were each concentrated in the nucleus and regions of the cytoplasm, based on immunofluorescence localization. However, when Skp1 glycosylation was blocked by mutation, prolyl hydroxylase inhibitors, or expression in prespore cells, nuclear concentration of Skp1 was not detected. Furthermore, nuclear concentration occurred in a mutant that attached only the core disaccharide to Skp1. Overall, there was no evidence for differential Skp1 isoform expression, glycosylation variants in the bulk Skp1 pool, or regulation of nuclear localization. However, these studies uncovered evidence that the glycosylation pathway is developmentally regulated and can function posttranslationally, and that core glycosylation is required for Skp1's nuclear concentration.
Collapse
Affiliation(s)
- S Sassi
- Department of Anatomy and Cell Biology, Box 100235, 1600 SW Archer Road, University of Florida College of Medicine, Gainesville FL 32610-0235, USA
| | | | | | | | | | | |
Collapse
|
17
|
Colosimo ME, Katz ER. Altered prestarvation response in a nystatin resistant Dictyostelium discoideum mutant. Differentiation 2001; 67:1-11. [PMID: 11270118 DOI: 10.1046/j.1432-0436.2001.067001001.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild-type Dictyostelium amoebae secrete an autocrine, prestarvation factor (PSF) that allows them to measure the amount of food bacteria compared to their cell density. When the ratio of PSF to bacteria reaches a threshold, the cells are signaled to prepare for eventual starvation. This prestarvation response (PSR) usually starts three to four generations before the end of exponential growth, leading to the accumulation of several aggregation specific genes during growth. We characterize a nystatin-resistant mutant, HK19, that expresses the PSR genes three generations earlier than wild type but has an otherwise wild-type PSR. Although HK19 has a full PSR during growth, HK19 continues to grow at the wild-type rate and reaches normal cell densities. Because HK19 temporally separates the PSR from starvation, it became possible to test whether starvation is required for development. Since HK19 growing at low density can be induced to clump with either cAMP or folate, it appears that the PSR and an external signal are sufficient for entry into development. These data suggest that the PSR is a complex genetic pathway that induces genes involved in the exit from growth and the entry into development.
Collapse
Affiliation(s)
- M E Colosimo
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | |
Collapse
|
18
|
Gaudet P, MacWilliams H, Tsang A. Inducible expression of exogenous genes in Dictyostelium discoideum using the ribonucleotide reductase promoter. Nucleic Acids Res 2001; 29:E5. [PMID: 11139635 PMCID: PMC29686 DOI: 10.1093/nar/29.2.e5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 11/01/2000] [Accepted: 11/10/2000] [Indexed: 11/14/2022] Open
Abstract
We report here the development of a regulated gene expression system for Dictyostelium discoideum based on the DNA-damage inducibility of the rnrB gene. rnrB, which codes for the small subunit of the enzyme ribonucleotide reductase, responds to DNA-damaging agents at all stages of the D.discoideum life cycle. Doses that have little effect on development have previously been shown to increase the level of the rnrB transcript by up to 15-fold. Here we show that all elements necessary for DNA-damage induction are contained in a 450 bp promoter fragment. We used a fusion of the rnrB promoter with the gene encoding GFP to demonstrate an up to 10-fold induction at the RNA level, which appears in all aspects similar to induction of the endogenous rnrB transcript. Using a fusion with the lacZ gene we observed an up to 7-fold induction at the protein level. These results indicate that the rnrB promoter can be used to regulate the expression of specific genes in D.discoideum. This controllable gene expression system provides the following new characteristics: the induction is rapid, taking place in the order of minutes, and the promoter is responsive at all stages of the D.discoideum life cycle.
Collapse
Affiliation(s)
- P Gaudet
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada
| | | | | |
Collapse
|
19
|
Ling AZ, Guyer RB, Deering RA. Dictyostelium discoideum plasmid containing an AP-endonuclease upstream sequence: bleomycin induction of a luciferase reporter. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:244-247. [PMID: 11746761 DOI: 10.1002/em.1078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A sequence of 1624 bp 5' to the apurinic/apyrimidinic (AP) endonuclease structural gene of Dictyostelium discoideum (APEA) has been inserted upstream of the luciferase reporter gene in pVTL2, an autonomously replicating nuclear plasmid in this organism. Cells transformed with this plasmid, designated pVTL-AL, displayed strong luciferase induction during treatment with the DNA-damaging agent bleomycin. For example, a luciferase activity of 45-fold above the constitutive level was observed for 20 hours of growth in axenic medium with 0.002 U/mL of bleomycin. The response was bleomycin concentration-dependent. Cell survival was greater than 90% for all treatments. The level of luciferase expression was highly dependent on the cell growth conditions, with the greatest induction observed for stationary phase axenically-grown cells. This effect may be related to a variation of plasmid copy number with growth conditions.
Collapse
Affiliation(s)
- A Z Ling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
20
|
Natarajan K, Ashley CA, Hadwiger JA. Related Galpha subunits play opposing roles during Dictyostelium development. Differentiation 2000; 66:136-46. [PMID: 11100904 DOI: 10.1046/j.1432-0436.2000.660208.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Of the several known Dictyostelium G protein subunits, the Galpha4 and Galpha5 subunits are the most closely related pair based on phylogenetic analysis and expression patterns, but these subunits perform different roles during development. To investigate potential relationships between these subunits with respect to cell differentiation, chimeric organisms composed of strains lacking or overexpressing either subunit were created and examined for developmental morphogenesis and spore production. Chimeras of galpha4 null and galpha5 null strains or Galpha4 and Galpha5 overexpression strains displayed compensatory morphogenesis, implying that the subunits promote complementary developmental processes. However, chimeras composed of galpha4 null and Galpha5 overexpression strains or galpha5 null and Galpha4 overexpression strains displayed distorted tip morphogenesis, suggesting the strains of these chimeras share common developmental deficiencies. Cells lacking the Galpha5 subunit localized to the prespore region of chimeras similar to the pattern observed for cells overexpressing the Galpha4 subunit, and cells overexpressing the Galpha5 subunit displayed localization patterns similar to galpha4 null mutants. A strain overexpressing both subunits displayed a partial suppression of morphology, gene expression, and cell localization phenotypes associated with the overexpression of the individual Galpha subunit genes, suggesting that each Galpha subunits can inhibit signaling mediated by the other subunit. Overexpression of the Galpha5 subunit inhibited chemotaxis and cGMP accumulation in response to folic acid, indicating that the Galpha5 subunit can inhibit early steps in the Galpha4-mediated signal transduction pathway. The contrasting phenotypes of the Galpha mutants suggest the Galpha4 and Galpha5 subunits provide opposing functions in cell differentiation, localization, and chemotactic responses to folic acid.
Collapse
Affiliation(s)
- K Natarajan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater 74048-3020, USA
| | | | | |
Collapse
|
21
|
Blaauw M, Linskens MH, van Haastert PJ. Efficient control of gene expression by a tetracycline-dependent transactivator in single Dictyostelium discoideum cells. Gene 2000; 252:71-82. [PMID: 10903439 DOI: 10.1016/s0378-1119(00)00227-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We established a tetracycline-regulated gene expression system that tightly controls expression of genes in Dictyostelium discoideum. The control elements are contained in two plasmid vectors, one being an integrated plasmid encoding a chimeric tetracycline-controlled transcriptional activator protein (tTA(s)(*)). The second component is an extrachromosomal plasmid harboring the gene of interest preceded by an inducible promoter. This promoter contains a tetracycline-responsive element, which is the binding site for tTA(s)(*). Tetracycline prevents tTA(s)(*) from binding to the tetracycline-responsive element, rendering the promoter virtually silent. In the absence of tetracycline, tTA(s)(*) binds to its target sequence and strongly induces gene expression. The kinetics of activation and repression of the system were monitored using luciferase as a reporter. The results reveal efficient inhibition of gene expression by low concentrations of tetracycline and an induction of gene expression by several orders of magnitude within a few hours after removal of tetracycline. Green fluorescent protein (GFP) provided information about the effects of modulation of the tetracycline concentration on gene expression, at the single cell level, using fluorescence activated cell sorting (FACS). We also report that not all cells in a clonal population express the reporter gene.
Collapse
Affiliation(s)
- M Blaauw
- Cell Engineering Facility GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | | | |
Collapse
|
22
|
Koonce MP, Knecht DA. Cytoplasmic dynein heavy chain is an essential gene product in Dictyostelium. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:63-72. [PMID: 9453714 DOI: 10.1002/(sici)1097-0169(1998)39:1<63::aid-cm6>3.0.co;2-h] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe here three different approaches to perturb cytoplasmic dynein heavy chain (DHC) gene function in Dictyostelium: integration of a marker into the heavy chain coding sequence by homologous recombination to disrupt transcription, expression of antisense RNA to inhibit translation, and expression of a 158 kDa amino-terminal coding region to perturb the native protein organization. By homologous recombination, we fail to obtain cells that lack an intact DHC gene product. Cells containing antisense orientation plasmids (but not sense) appear to die 4 to 6 days following transformation. Plasmids designed to overexpress an amino-terminal region of the DHC result in substantially reduced transformation efficiency. When expressed at low levels, the truncated amino-terminal product appears capable of dimerizing with an intact heavy chain or with itself, essentially producing a cargo-binding domain lacking mechanochemical activity. This, in turn, likely competes with the native protein's function. These three approaches taken together indicate that the dynein heavy chain is an essential gene in Dictyostelium.
Collapse
Affiliation(s)
- M P Koonce
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
23
|
Primpke G, Iassonidou V, Nellen W, Wetterauer B. Role of cAMP-dependent protein kinase during growth and early development of Dictyostelium discoideum. Dev Biol 2000; 221:101-11. [PMID: 10772794 DOI: 10.1006/dbio.2000.9662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP-dependent protein kinase (PKA) is an essential regulator of gene expression and cell differentiation during multicellular development of Dictyostelium discoideum. Here we show that PKA activity also regulates gene expression during the growth phase and at the transition from growth to development. Overexpression of PKA leads to overexpression of the discoidinIgamma promoter, while expression of the discoidinIgamma promoter is reduced when PKA activity is reduced, either by expression of a dominant negative mutant of the regulatory subunit or by disruption of the gene for the catalytic subunit (PKA-C). The discoidin phenotype of PKA-C null cells is cell autonomous. In particular, normal secretion of discoidin-inducing factors was demonstrated. In addition, PKA-C null cells are able to respond to media conditioned by PSF and CMF. We conclude that PKA is a major activator of discoidin expression. However, it is not required for production or transduction of the inducing extracellular signals. Therefore, PKA-dependent and PKA-independent pathways regulate the expression of the discoidin genes.
Collapse
Affiliation(s)
- G Primpke
- Zoologisches Institut, LMU München, Luisenstrasse 14, Munich, 80333, Germany
| | | | | | | |
Collapse
|
24
|
Zeng C, Anjard C, Riemann K, Konzok A, Nellen W. gdt1, a new signal transduction component for negative regulation of the growth-differentiation transition in Dictyostelium discoideum. Mol Biol Cell 2000; 11:1631-43. [PMID: 10793140 PMCID: PMC14872 DOI: 10.1091/mbc.11.5.1631] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Discoidin I expression was used as a marker to screen for mutants affected in the growth-differentiation transition (GDT) of Dictyostelium. By REMI mutagenesis we have isolated mutant 2-9, an overexpressor of discoidin I. It displays normal morphogenesis but shows premature entry into the developmental cycle. The disrupted gene was denominated gdt1. The mutant phenotype was reconstructed by disruptions in different parts of the gene, suggesting that all had a complete loss of function. gdt1 was expressed in growing cells; the levels of protein and mRNA appear to increase with cell density and rapidly decrease with the onset of development. gdt1 encodes a 175-kDa protein with four putative transmembrane domains. In the C terminus, the derived amino acid sequence displays some similarity to the catalytic domain of protein kinases. Mixing experiments demonstrate that the gdt1(-) phenotype is cell autonomous. Prestarvation factor is secreted at wild-type levels. The response to folate, a negative regulator of discoidin expression, was not impaired in gdt1 mutants. Cells that lack the G protein alpha2 display a loss of discoidin expression and do not aggregate. gdt1(-)/Galpha2(-) double mutants show no aggregation but strong discoidin expression. This suggests that gdt1 is a negative regulator of the GDT downstream of or in a parallel pathway to Galpha2.
Collapse
Affiliation(s)
- C Zeng
- Department of Genetics, Kassel University, 34132 Kassel, Germany
| | | | | | | | | |
Collapse
|
25
|
Ma S, Triviños-Lagos L, Gräf R, Chisholm RL. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol 1999; 147:1261-74. [PMID: 10601339 PMCID: PMC2168085 DOI: 10.1083/jcb.147.6.1261] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 11/05/1999] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic dynein intermediate chain (IC) mediates dynein-dynactin interaction in vitro (Karki, S., and E.L. Holzbaur. 1995. J. Biol. Chem. 270:28806-28811; Vaughan, K.T., and R.B. Vallee. 1995. J. Cell Biol. 131:1507-1516). To investigate the physiological role of IC and dynein-dynactin interaction, we expressed IC truncations in wild-type Dictyostelium cells. ICDeltaC associated with dynactin but not with dynein heavy chain, whereas ICDeltaN truncations bound to dynein but bound dynactin poorly. Both mutations resulted in abnormal localization to the Golgi complex, confirming dynein function was disrupted. Striking disorganization of interphase microtubule (MT) networks was observed when mutant expression was induced. In a majority of cells, the MT networks collapsed into large bundles. We also observed cells with multiple cytoplasmic asters and MTs lacking an organizing center. These cells accumulated abnormal DNA content, suggesting a defect in mitosis. Striking defects in centrosome morphology were also observed in IC mutants, mostly larger than normal centrosomes. Ultrastructural analysis of centrosomes in IC mutants showed interphase accumulation of large centrosomes typical of prophase as well as unusually paired centrosomes, suggesting defects in centrosome replication and separation. These results suggest that dynactin-mediated cytoplasmic dynein function is required for the proper organization of interphase MT network as well as centrosome replication and separation in Dictyostelium.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Leda Triviños-Lagos
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ralph Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Universitaet Muenchen, D-80336 Muenchen, Germany
| | - Rex L. Chisholm
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
26
|
Srinivasan J, Gundersen RE, Hadwiger JA. Activated Galpha subunits can inhibit multiple signal transduction pathways during Dictyostelium development. Dev Biol 1999; 215:443-52. [PMID: 10545250 DOI: 10.1006/dbio.1999.9474] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations impairing the GTPase activity of G protein Galpha subunits can result in activated Galpha subunits that affect signal transduction and cellular responses and, in some cases, promote tumor formation. An analogous mutation in the Dictyostelium Galpha4 subunit gene (Q200L substitution) was constructed and found to inhibit Galpha4-mediated responses to folic acid, including the accumulation of cyclic nucleotides and chemotactic cell movement. The Galpha4-Q200L subunit also severely inhibited responses to cAMP, including cyclic nucleotide accumulation, cAMP chemotaxis, and cellular aggregation. An analogous mutation in the Galpha2 subunit (Q208L substitution), previously reported to inhibit cAMP responses (K. Okaichi et al., 1992, Mol. Biol. Cell 3, 735-747), was also found to partially inhibit folic acid chemotaxis. Chemotactic responses to folic acid and cAMP and developmental aggregation were also inhibited by a mutant Galpha5 subunit with the analogous alteration (Q199L substitution). All aggregation-defective Galpha mutants were capable of multicellular development after a temporary incubation at 4 degrees C and this development was found to be dependent on wild-type Galpha4 function. This study indicates that mutant Galpha subunits can inhibit signal transduction pathways mediated by other Galpha subunits.
Collapse
Affiliation(s)
- J Srinivasan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-3020, USA
| | | | | |
Collapse
|
27
|
Zhang T, Rebstein PJ, Khosla M, Cardelli J, Buczynski G, Bush J, Spiegelman GB, Weeks G. A mutation that separates the RasG signals that regulate development and cytoskeletal function in Dictyostelium. Exp Cell Res 1999; 247:356-66. [PMID: 10066363 DOI: 10.1006/excr.1998.4368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of an activated RasG, RasG-G12T, in vegetative cells of Dictyostelium discoideium produced an alteration in cell morphology. Cells underwent a transition between an extensively flattened form that exhibited lateral membrane ruffling to a less flattened form that exhibited prominent dorsal membrane ruffling. These rasG-G12T transformants exhibited a redistribution of F-actin at the cell periphery and did not undergo the rapid contraction upon refeeding that is characteristic of wild-type cells. These results suggest a role for RasG in regulating cytoskeletal rearrangement in D. discoideum. We had shown previously that expression of rasG-G12T inhibited starvation induced aggregation (M. Khosla et al., 1996, Mol. Cell. Biol. 16, 4156-4162). rasG-G12T genes containing secondary mutations were transformed into cells to test whether the effects of rasG-G12T were transmitted through a single downstream effector. Cells expressing rasG-G12T/T35S or rasG-G12T/Y40C (secondary mutations within the effector domain) exhibited normal morphology and underwent normal aggregation, suggesting that signaling through the effector domain was required for both the morphological and the development changes induced by rasG-G12T. In contrast, cells expressing rasG-G12T/T45Q (a secondary mutation in the effector distal flanking domain) exhibited normal aggregation but a morphology indistinguishable from that of rasG-G12T transformants. This result suggests that RasG regulates developmental and cytoskeletal functions by direct interaction with more than one downstream effector.
Collapse
Affiliation(s)
- T Zhang
- Department of Microbiology and Immunology, Department of Medical Genetics, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Itoh M, Noguchi M, Maeda Y. Overexpression of CAF1 encoding a novel Ca2+-binding protein stimulates the transition of Dictyostelium cells from growth to differentiation. Dev Growth Differ 1998; 40:677-83. [PMID: 9865978 DOI: 10.1046/j.1440-169x.1998.t01-2-00012.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the expressed genes associated with the switch-over of Dictyostelium cells from cell proliferation to differentiation, the Calfumirin-1 (CAF1) gene has been shown to be preferentially expressed at the initial step of differentiation, encoding a novel Ca2+-binding protein (Abe & Maeda 1995). To analyze precisely the function of CAF1, transformants overexpressing the CAF1 mRNA at the vegetative growth phase and also CAF1-null mutants were prepared, and their developmental features were compared with those of parental wild-type cells. As a result, the CAF1-overexpression was found to promote cell differentiation, possibly through prompt induction of the cAMP receptor 1 (CAR1) gene expression. In addition, the CAF1-overexpressing cells were able to differentiate even under low external Ca2+ ([Ca2+]e) conditions around 10(-6) mol/L at which non-transformed wild-type cells never differentiated. Unexpectedly, however, the CAF1-null mutant produced by homologous recombination exhibited apparently normal development to form fruiting bodies on non-nutrient agar. These results seem to indicate that CAF1-overexpression has a stimulatory effect on differentiation, but that the CAF1 protein is not necessarily required for the phase-shift of cells from growth to differentiation.
Collapse
Affiliation(s)
- M Itoh
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | | | |
Collapse
|
29
|
Rebstein PJ, Cardelli J, Weeks G, Spiegelman GB. Mutational analysis of the role of Rap1 in regulating cytoskeletal function in Dictyostelium. Exp Cell Res 1997; 231:276-83. [PMID: 9087168 DOI: 10.1006/excr.1996.3466] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It was shown previously that increased expression of the ras-related rap1 gene in Dictyostelium discoideum altered cell morphology (Rebstein et al., Dev. Genet., 1993, 14, 347-355). Vegetative Rap1 transformants were more flattened and spread than parental Ax2 cells and had increased F-actin near the cell periphery. In addition, Rap1 cells were inhibited in the rapid cell contraction that occurs upon refeeding with nutrient media. In this communication, we show that expression of Rap also markedly reduces the contraction response that occurs upon addition of azide to vegetative cells. The changes in cell morphology, the refeeding contraction response, and the azide contraction response have been used to analyze mutants of Rap1 generated by site-directed mutagenesis. The substitution G12V, predicted to increase the proportion of protein binding GTP, did not alter the effect of Rap on cell morphology or on its ability to inhibit the contraction response to azide, but modestly enhanced the ability of Rap1 to inhibit cell rounding in response to nutrient media. The substitution S17N, predicted to restrict the protein to the GDP-bound state, did not produce the flattened cell morphology and abolished the inhibitory effects of Rap in the two cell contraction assays. These results are consistent with a requirement of GTP binding for the Rap-induced effects. Transformants carrying the Rap-S17N protein had a more polar morphology than the parental Ax2 cells, suggesting the possibility that Rap-S17N interferes with the ability of endogenous Rap to regulate the cytoskeleton. Substitutions at amino acid 38, within the presumptive effector domain, reduced but did not abolish the effects of Rap1 on cell contraction, while the substitution T61Q had no effect on Rap1 activity. Taken together, the results suggest that Rap may have multiple regulatory effects on cytoskeletal function.
Collapse
Affiliation(s)
- P J Rebstein
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
30
|
Davies L, Farrar NA, Satre M, Dottin RP, Gross JD. Vacuolar H(+)-ATPase and weak base action in Dictyostelium. Mol Microbiol 1996; 22:119-26. [PMID: 8899714 DOI: 10.1111/j.1365-2958.1996.tb02661.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amoebae of Dictyostelium discoideum release ammonia during development, and the accumulation of this weak base is believed to be responsible for inhibiting fruiting-body formation and switching aggregates into migrating slugs. Exposure to weak bases can also inhibit aggregation and cell-type specific gene expression. The pathway by which weak bases influence development is not understood. We show here that the development of a set of mutants defective in acidification of intracellular acidic compartments is abnormally sensitive to inhibition by weak bases. Moreover even in the absence of added weak bases these mutants are delayed in aggregation and have a protracted migratory phase. The same behaviour is observed in transformants harbouring an antisense construct for one of the vacuolar H(+)-ATPase subunits. These results support the idea that weak bases exert their effects by inhibiting acidification of an intracellular acidic compartment.
Collapse
Affiliation(s)
- L Davies
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|
31
|
Khosla M, Spiegelman GB, Weeks G. Overexpression of an activated rasG gene during growth blocks the initiation of Dictyostelium development. Mol Cell Biol 1996; 16:4156-62. [PMID: 8754814 PMCID: PMC231412 DOI: 10.1128/mcb.16.8.4156] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transformants that expressed either the wild-type rasG gene, an activated rasG-G12T gene, or a dominant negative rasG-S17N gene, all under the control of the folate-repressible discoidin (dis1gamma) promoter, were isolated. All three transformants expressed high levels of Ras protein which were reduced by growth in the presence of folate. All three transformants grew slowly, and the reduction in growth rate correlated with the amount of RasG protein produced, suggesting that RasG is important in regulating cell growth. The pVEII-rasG transformant containing the wild-type rasG gene developed normally despite the presence of high levels of RasG throughout development. This result indicates that the down regulation of rasG that normally occurs during aggregation of wild-type strains is not essential for the differentiation process. Dictyostelium transformants expressing the dominant negative rasG-S17N gene also differentiated normally. Dictyostelium transformants that overexpressed the activated rasG-G12T gene did not aggregate. The defect occurred very early in development, since the expression of car1 and pde, genes that are normally induced soon after the initiation of development, was repressed. However, when the transformant cells were pulsed with cyclic AMP, expression of both genes returned to wild-type levels. The transformants exhibited chemotaxis to cyclic AMP, and development was synergized by mixing with wild-type cells. Furthermore, cells that were pulsed with cyclic AMP for 4 h before being induced to differentiate by plating on filters produced small, but otherwise normal, fruiting bodies. These results suggest that the rasG-G12T transformants are defective in cyclic AMP production and that RasG - GTP blocks development by interfering with the initial generation of cyclic AMP pulses.
Collapse
Affiliation(s)
- M Khosla
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
32
|
Kawata T, Steel JB, Williams JG. RNGB: a Dictyostelium RING finger protein that is specifically located in maturing spore cells. FEBS Lett 1996; 386:103-9. [PMID: 8647262 DOI: 10.1016/0014-5793(96)00411-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The RING finger is a form of zinc finger motif found in proteins of widely varying biological function. The Dictyostelium RNGB protein contains a RING finger and also a K-box, a sequence motif found in several plant homeotic proteins. The rngB mRNA is present at low concentration in growing cells and gradually increases in abundance throughout development. However, the RNGB protein is not detected until culmination and we present evidence that suggests it is translationally regulated. The protein is specifically localised in maturing spore cells and is cytoplasmic, suggesting that the RING finger does not function as a DNA binding domain.
Collapse
Affiliation(s)
- T Kawata
- MRC Laboratory of Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
33
|
Gamper M, Howard PK, Hunter T, Firtel RA. Multiple roles of the novel protein tyrosine phosphatase PTP3 during Dictyostelium growth and development. Mol Cell Biol 1996; 16:2431-44. [PMID: 8628311 PMCID: PMC231232 DOI: 10.1128/mcb.16.5.2431] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PTP3, the third nonreceptor protein tyrosine phosphatase identified in Dictyostelium discoideum, has a single catalytic protein tyrosine phosphatase domain. Recombinant PTP3 exhibited phosphatase activity that was inhibited by vanadate. PTP3 is expressed at a moderate level during growth. The level of transcripts increased between growth and 8 h of development and declined thereafter. Expression of lacZ under the control of the PTP3 promoter indicated a spatial localization of PTP3 in the anterior-like and prestalk cell types. There are two copies of the PTP3 gene in this haploid organism. Disruption of one copy led to a slow-growth phenotype. We were unable to obtain a strain with disruptions in both PTP3 genes. Overexpression of wild-type PTP3 led to slower growth rates and the formation of large aggregation streams. These streams split into smaller aggregates, many of which then arrested in development. Overexpression of a catalytically inactive mutation (Cys to Ser) had no effect on growth rate; however, this strain also formed large aggregation streams that later split up into large and small mound structures and became fruiting bodies of various sizes. Antiphosphotyrosine Western blot (immunoblot) analysis of total cell proteins showed that the pattern of protein tyrosine phosphorylation was specifically altered in PTP3 mutants. Addition of growth medium to starving cells and a subsequent replacement with nonnutrient buffer led to reciprocal changes in the pattern of several phosphotyrosine proteins, including a protein of approximately 130 kDa. Analysis of strains overexpressing active or inactive PTP3 suggested that p130 is a potential substrate of PTP3. A transient posttranslational phosphorylation of PTP3 further supported the role of PTP3 in these processes. The data obtained strongly suggest new regulatory functions for PTP3 that are distinct from those described earlier for D. discoideum PTP1 and PTP2.
Collapse
Affiliation(s)
- M Gamper
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, 92093-0634, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Vaults are large cytoplasmic ribonucleoprotein (RNP) particles of eukaryotic cells, whose considerable abundance and striking evolutionary conservation argue for an important general cellular function. Early studies on vaults focused on the structural features and cellular distribution of the particle and will only be summarized briefly here. In this article, we discuss the molecular characterization of vault components and describe genetic studies carried out in Dictyostelium. The recent finding that the major vault protein is elevated in non-P-glycoprotein multidrug resistant cancer cells has direct implications concerning the function of the vault particle and indicates a potential role for vaults in resistance of tumour cells to anticancer drugs.
Collapse
Affiliation(s)
- V A Kickhoefer
- Dept of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, USA
| | | | | |
Collapse
|
35
|
Liu T, Clarke M. The vacuolar proton pump of Dictyostelium discoideum: molecular cloning and analysis of the 100 kDa subunit. J Cell Sci 1996; 109 ( Pt 5):1041-51. [PMID: 8743951 DOI: 10.1242/jcs.109.5.1041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton pump is a highly-conserved multimeric enzyme that catalyzes the translocation of protons across the membranes of eukaryotic cells. Its largest subunit (95-116 kDa) occurs in tissue and organelle-specific isoforms and thus may be involved in targeting the enzyme or modulating its function. In amoebae of Dictyostelium discoideum, proton pumps with a 100 kDa subunit are found in membranes of the contractile vacuole complex, an osmoregulatory organelle. We cloned the cDNA that encodes this 100 kDa protein and found that its sequence predicts a protein 45% identical (68% similar) to the corresponding mammalian proton pump subunit. Like the mammalian protein, the predicted Dictyostelium sequence contains six possible transmembrane domains and a single consensus sequence for N-linked glycosylation. Southern blot analysis detected only a single gene, which was designated vatM. Using genomic DNA and degenerate oligonucleotides based on conserved regions of the protein as primers, we generated products by polymerase chain reaction that included highly variable regions of this protein family. The cloned products were identical in nucleotide sequence to vatM, arguing that Dictyostelium cells contain only a single isoform of this proton pump subunit. Consistent with this interpretation, the amino acid sequences of peptides derived from a protein associated with endosomal membranes (Adessu et al. (1995) J. Cell Sci. 108, 3331–3337) match the predicted sequence of the protein encoded by vatM. Thus, a single isoform of the 100 kDa proton pump subunit appears to serve in both the contractile vacuole system and the endosomal/lysosomal system of Dictyostelium, arguing that this subunit is not responsible for regulating the differing abundance and function of proton pumps in these two compartments. Gene targeting experiments suggest that this subunit plays important (possibly essential) roles in Dictyostelium cells.
Collapse
Affiliation(s)
- T Liu
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
36
|
Xie Y, Coukell MB, Gombos Z. Antisense RNA inhibition of the putative vacuolar H(+)-ATPase proteolipid of Dictyostelium reduces intracellular Ca2+ transport and cell viability. J Cell Sci 1996; 109 ( Pt 2):489-97. [PMID: 8838672 DOI: 10.1242/jcs.109.2.489] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transport of Ca2+ via a P-type pump into the contractile vacuole of Dictyostelium discoideum appears to be facilitated by vacuolar proton (V-H+) ATPase activity. To investigate the involvement of the V-H(+)-ATPase in this process using molecular techniques, we cloned a cDNA (vatP) encoding the putative proteolipid subunit of this enzyme. The deduced protein product of this cDNA is composed of 196 amino acids with a calculated M(r) of 20,148 and the primary structure exhibits high amino acid sequence identity with V-H(+)-ATPase proteolipids from other organisms. vatP is a single-copy gene and it produces one approximately 900 nt transcript at relatively constant levels during growth and development. Attempts to disrupt the endogenous gene using vatP cDNA were unsuccessful. But, expression of vatP antisense RNA reduced the levels of vatP message and V-H(+)-ATPase activity by 50% or more. These antisense strains grew and developed slowly, especially under acidic conditions, and the cells seemed to have difficulty forming acidic vesicles. During prolonged cultivation, all of the antisense strains either reverted to a wild-type phenotype or died. Thus in Dictyostelium, unlike yeast, the V-H(+)-ATPase seems to be indispensable for cell viability. When different antisense strains were analyzed for Ca2+ uptake by the contractile vacuole, they all accumulated less Ca2+ than control transformants. These results are consistent with earlier pharmacological studies which suggested that the V-H(+)-ATPase functions in intracellular Ca2+ transport in this organism.
Collapse
Affiliation(s)
- Y Xie
- Department of Biology, York University, North York, Ontario, Canada
| | | | | |
Collapse
|
37
|
Endl I, Konzok A, Nellen W. Antagonistic effects of signal transduction by intracellular and extracellular cAMP on gene regulation in Dictyostelium. Mol Biol Cell 1996; 7:17-24. [PMID: 8741836 PMCID: PMC278609 DOI: 10.1091/mbc.7.1.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Dictyostelium, cAMP plays a role as an intracellular second messenger and in addition, as an extracellular first messenger. Both functions are thought to be tightly linked because adenylyl cyclase is coupled via G-proteins to the cell surface cAMP receptor cAR 1. Using the discoidin I gene family as a molecular marker for the first stages of development, we show here that induction of transcription requires the G-protein subunit alpha 2 and thus an as yet unidentified surface receptor, CRAC (cytosolic regulator of adenylyl cyclase), and PKA. Induction can be conferred by an increase in intracellular cAMP. In contrast, transcriptional down-regulation occurs by stimulation of cAR 1 with extracellular cAMP and a subsequent, G-protein-independent Ca2+ influx. In a G alpha 2 gene disruption mutant, discoidin I expression can be efficiently modulated by analogues simulating intracellular cAMP (discoidin induction) and extracellular cAMP (discoidin down-regulation). We thus demonstrate possible antagonistic functions of intra- and extracellular cAMP.
Collapse
Affiliation(s)
- I Endl
- Max-Planck-Institut f. Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
38
|
Abstract
Over the past ten years, powerful molecular genetic techniques have been developed to analyze gene function in Dictyostelium. DNA-mediated transformation using a variety of selections and vectors has allowed the introduction of wild-type or modified genes that are under various forms of transcriptional control. Homologous recombination is efficient and can be used to modify the genome in precise ways. In addition, it is now possible to clone genes based on their mutant phenotype alone, either by insertional mutagenesis, or by screening antisense expression cDNA libraries. Finally, a nearly complete physical map of the genome is available and so genes are easily mapped by physical techniques. We discuss many of these advances within the context of major research problems presently under study.
Collapse
Affiliation(s)
- A Kuspa
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Clarke M, Gomer RH. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. EXPERIENTIA 1995; 51:1124-34. [PMID: 8536800 DOI: 10.1007/bf01944730] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Throughout growth and development, Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. Vegetative Dictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used by Dictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.
Collapse
Affiliation(s)
- M Clarke
- Oklahoma Medical Research Foundation, Program in Molecular and Cell Biology, Oklahoma City 73104, USA
| | | |
Collapse
|
40
|
Emslie KR, Slade MB, Williams KL. From virus to vaccine: developments using the simple eukaryote, Dictyostelium discoideum. Trends Microbiol 1995; 3:476-9. [PMID: 8800841 DOI: 10.1016/s0966-842x(00)89015-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mass vaccination compaigns against viral diseases, both human and anim al, depend on the availability of cheap viral antigens. The eukaryote Dictyostelium discoideum has simple growth requirements and rapid growth rates and forms stable cell lines. These features, together with the possibility of secreting recombinant (glyco)proteins into a defined buffer, make the D. discoideum expression system an attractive option for producing economical recombinant subunit vaccines.
Collapse
Affiliation(s)
- K R Emslie
- Macquaire University Centre for Analytical Biotechnology, School of Biological Sciences, Macquaire University, Sydney, Australia
| | | | | |
Collapse
|
41
|
Wetterauer BW, Salger K, Carballo-Metzner C, MacWilliams HK. Cell-density-dependent repression of discoidin in Dictyostelium discoideum. Differentiation 1995; 59:289-97. [PMID: 8882814 DOI: 10.1046/j.1432-0436.1996.5950289.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
When Dictyostelium discoideum cells are grown on bacteria, their natural food source, the discoidin genes are induced by cell-density-sensing factors before the food supply is exhausted [11, 18], and expression increases continuously thereafter. This regulation pattern is changed when cells are grown in axenic medium: the discoidins are induced at a considerably lower cell density and are no longer expressed in stationary phase [13]. We have investigated this phenomenon further and show that repression begins when cells are still in exponential growth. It occurs at the level of transcription and involves an element of the discoidin I gamma promoter for which no function has previously been described. Since the effect of high cell density can be mimicked by conditioned medium, it appears that the repression is due to an extracellular signal. This signal is neither ammonia, nor folate, nor cAMP, the known repressors of discoidin expression.
Collapse
Affiliation(s)
- B W Wetterauer
- Zoologisches Institut der Ludwig-Maximilians-Universität, München, Germany
| | | | | | | |
Collapse
|
42
|
Voith G, Dingermann T. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:1225-9. [PMID: 9636297 DOI: 10.1038/nbt1195-1225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I gamma promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I gamma promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays.
Collapse
Affiliation(s)
- G Voith
- Institut für Pharmazeutische Biologie, Johann Wolfgang Goethe Universität, Frankfurt, Germany
| | | |
Collapse
|
43
|
Manstein DJ, Schuster HP, Morandini P, Hunt DM. Cloning vectors for the production of proteins in Dictyostelium discoideum. Gene 1995; 162:129-34. [PMID: 7557400 DOI: 10.1016/0378-1119(95)00351-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We constructed and tested a series of cloning vectors designed to facilitate protein production and purification in Dictyostelium discoideum (Dd). These vectors carry the origin of replication of the Dd high-copy-number plasmid Ddp2, expression cassettes consisting of the strong, constitutive actin (act15) or the inducible discoidin (disI gamma) promoters, a translational start codon upstream from a multiple cloning site and sequences for the addition of epitope or affinity tags at the N- or C-termini of any protein. The affinity tag used corresponds to 7 (N-terminal fusion) or 8 (C-terminal fusion) His residues. The epitope tags correspond to an 11-amino-acid sequence from human c-myc, recognised by monoclonal antibody (mAb) 9E10, and the Glu-Glu-Phe sequence recognised by mAb YL1/2 to alpha-tubulin. Both these mAb are commercially available. The YL1/2 epitope offers a second affinity tag for the purification of proteins under native conditions. The functional competence of the vectors was tested by determining their ability to promote the expression of various Dd myosin constructs. High synthesis levels were obtained for each vector; up to 1 mg of homogenous, functional protein per g of cells was obtained after purification of the recombinant products.
Collapse
Affiliation(s)
- D J Manstein
- National Institute for Medical Research, Ridgeway, Mill Hill, London, UK
| | | | | | | |
Collapse
|
44
|
Abstract
Determination of the structure of integral membrane proteins is a challenging task that is essential to understand how fundamental biological processes (such as photosynthesis, respiration and solute translocation) function at the atomic level. Crystallisation of membrane proteins in 3D has led to the determination of four atomic resolution structures [photosynthetic reaction centres (Allenet al. 1987; Changet al. 1991; Deisenhofer & Michel, 1989; Ermleret al. 1994); porins (Cowanet al. 1992; Schirmeret al. 1995; Weisset al. 1991); prostaglandin H2synthase (Picotet al. 1994); light harvesting complex (McDermottet al. 1995)], and crystals of membrane proteins formed in the plane of the lipid bilayer (2D crystals) have produced two more structures [bacteriorhodopsin (Hendersonet al. 1990); light harvesting complex (Kühlbrandtet al. 1994)].
Collapse
Affiliation(s)
- R Grisshammer
- Centre for Protein Engineering, MRC Centre, Cambridge, UK
| | | |
Collapse
|
45
|
Manstein DJ, Hunt DM. Overexpression of myosin motor domains in Dictyostelium: screening of transformants and purification of the affinity tagged protein. J Muscle Res Cell Motil 1995; 16:325-32. [PMID: 7560005 DOI: 10.1007/bf00121141] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The eukaryotic organism Dictyostelium discoideum has become one of the organisms of choice for the overexpression of recombinant myosins and myosin fragments. Here, we describe a protocol that facilitates the screening of cells that have been transformed with myosin expression constructs and allows the rapid purification of recombinant myosins. Depletion of cellular ATP is used to recruit most of the endogenous and recombinant myosin into a rigor-like complex with actin. Following cell lysis the insoluble actomyosin complex is precipitated by centrifugation, washed, and Mg(2+)-ATP is added to extract the recombinant protein from the pellet. More than 90% of the protein in the resulting supernatant corresponds to actin, myosin, and the recombinant myosin fragments. Therefore, it is easy to detect any differences in expression level between individual myosin constructs on SDS-polyacrylamide gels. Additionally, the dependence of expression on external factors, such as cell density, can be readily determined. Furthermore, the presence of a band corresponding to the recombinant protein indicates that the overexpressed protein has at least some of the functional properties that are characteristic for a myosin motor. This rapid and selective extraction protocol can also be utilized to facilitate the purification of recombinant myosin motors on a preparative scale and has proved particularly useful in the purification of myosin head fragments, that are tagged with histidine residues, by Ni(2+)-chelate affinity chromatography.
Collapse
Affiliation(s)
- D J Manstein
- National Institute for Medical Research, London, UK
| | | |
Collapse
|
46
|
Blusch J, Alexander S, Nellen W. Multiple signal transduction pathways regulate discoidin I gene expression in Dictyostelium discoideum. Differentiation 1995; 58:253-60. [PMID: 7641976 DOI: 10.1046/j.1432-0436.1995.5840253.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of the discoidin I genes in Dictyostelium discoideum is regulated by the concerted action of the extracellular factors cyclic adenosine monophosphate (cAMP), folate, prestarvation factor (PSF) and conditioned media factor (CMF). However, the pathways by which these signals are transduced and the interactions between the pathways have been unexplored so far. We have analysed wild-type and mutant cells with defined lesions in signal transduction to elucidate these regulatory processes, and shown that different pathways are used for the down-regulation and induction of these genes. The cAMP receptor cARI is required for the cAMP-mediated down-regulation of discoidin I gene expression but not for the induction of discoidin I expression during development. Surprisingly, induction of the discoidin I genes requires G alpha 2, the G-protein subunit which is generally believed to couple to cARI, to control the expression of cAMP-inducible genes. Thus, our data suggest that G alpha 2 interacts with different receptors to regulate gene expression in early development. Furthermore, the analysis shows that discoidin induction in bacterially grown cells occurs in two sequential steps. The first is a low basal induction which occurs in late log-phase growth prior to starvation. PSF can induce the basal level, and the induction is independent of G alpha 2. The developmental induction following starvation is much stronger, dependent on G alpha 2 and probably signaled by CMF, which is secreted at that time.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Blusch
- Max-Planck-Institut für Biochemie, Abteilung Zellbiologie, Martinsried, Germany
| | | | | |
Collapse
|
47
|
Cao JG, Firtel RA. Growth and developmental functions of a human immunodeficiency virus Tat-binding protein/26S protease subunit homolog from Dictyostelium discoideum. Mol Cell Biol 1995; 15:1725-36. [PMID: 7862164 PMCID: PMC230397 DOI: 10.1128/mcb.15.3.1725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have characterized a newly identified gene from Dictyostelium discoideum, DdTBP alpha, that encodes a member of the family of eukaryotic proteins. These proteins contain a conserved ATPase domain, include subunits of the 26S protease subunit, and are homologous to the mammalian human immunodeficiency virus Tat-binding protein TBP1. While information indicates that some family members are involved in the regulation of transcription in mammalian and yeast cells during growth, these proteins are also involved in other cellular functions, and nothing is known about their possible function in multicellular development. The Dictyostelium DdTBP alpha gene is developmentally regulated, with its expression at the highest levels occurring during growth and early development. The gene is present in two copies in the genome. Disruption of one copy by homologous recombination leads to aberrant morphogenesis, which lasts from the formation of the first finger until the onset of culmination. The gene appears to be essential for growth since we were unable to obtain a complete null phenotype and since expression of an inducible antisense construct in the partial null background resulted in cell death. Expression of the antisense construct during development accentuated the partial null phenotype and also resulted in very abnormal fruiting bodies. Overexpression of DdTBP alpha from its own promoter leads to very large multinucleated vegetative cells when the cells are grown in suspension culture. When the cells are plated onto petri dishes in growth medium, they rapidly split into multiple cells containing one to two nuclei, in a manner similar to that of wild-type cells. Overexpressing cells are significantly delayed in forming a multicellular aggregate, but development proceeds normally once the first finger stage is reached. The results indicate that DdTBP alpha plays an important role in regulating both growth and morphogenesis in D. discoideum.
Collapse
Affiliation(s)
- J G Cao
- Department of Biology, University of California at San Diego, La Jolla 92093-0634
| | | |
Collapse
|
48
|
Burdine V, Clarke M. Genetic and physiologic modulation of the prestarvation response in Dictyostelium discoideum. Mol Biol Cell 1995; 6:311-25. [PMID: 7612966 PMCID: PMC301190 DOI: 10.1091/mbc.6.3.311] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Throughout vegetative growth, Dictyostelium amoebae secrete an autocrine factor, prestarvation factor, PSF, which accumulates in proportion to cell density. During late exponential growth, PSF induces the expression of several genes whose products are needed for cAMP signaling and cell aggregation. Among these genes are discoidin-I and the 2.4-kb transcript of cyclic nucleotide phosphodiesterase (PDE). We have identified several parameters that modulate expression of one or both of these prestarvation response genes; all effects were monitored in cells growing exponentially on bacteria. Under these conditions, axenic mutants produce higher levels of PSF activity than wild-type cells. Consistent with the high PSF levels, the 2.4-kb PDE transcript is more abundant in axenic strains than wild-type cells at the same cell density. In contrast, the density-dependent induction of discoidin-I is greatly delayed in axenic strains, occurring only at the very end of exponential growth. Analysis of axenic strains of independent origin suggested that this negative effect on discoidin-I expression is attributable to the axenic mutations themselves. The effects of two environmental factors that inhibit the prestarvation response (the bacteria upon which the cells feed and a bacterial product, folic acid) were also analyzed. We found that folate does not account for the inhibitory effect of bacteria. Cells deficient in the G-protein beta subunit, which is thought to be common to all heterotrimeric G-proteins in Dictyostelium, respond to PSF in the same manner as G beta+ cells, and this response is inhibited by bacteria. However, folate has no inhibitory effect on g beta- cells, indicating that folate inhibition is mediated by a heterotrimeric G-protein. In cells lacking the catalytic subunit of protein kinase A, the prestarvation response is severely impaired, but about 3% of the pka- cells manifest an apparently normal density-dependent induction of discoidin-I. This behavior and the heterogeneity of the prestarvation response in wild-type cells lead us to speculate that protein kinase A may not be required for PSF signal transduction per se, but rather may render the cells responsive to PSF. Based on analysis of adenylyl cyclase mutants (aca-), the effect of protein kinase A is not cAMP-dependent.
Collapse
Affiliation(s)
- V Burdine
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
49
|
Luo Q, Michaelis C, Weeks G. Overexpression of a truncated cyclin B gene arrests Dictyostelium cell division during mitosis. J Cell Sci 1994; 107 ( Pt 11):3105-14. [PMID: 7699009 DOI: 10.1242/jcs.107.11.3105] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cyclin gene has been isolated from Dictyostelium discoideum and the available evidence indicates that the gene encodes a B type cyclin. The cyclin box region of the protein encoded by the gene, clb1, has the highest degree of sequence identity with the B-type cyclins of other species. Levels of cyclin B mRNA and protein oscillate during the cell cycle with maximum accumulation of mRNA occurring prior to cell division and maximum levels of protein occurring during cell division. Overexpression of a N-terminally truncated cyclin B protein lacking the destruction box inhibits cell growth by arresting cell division during mitosis. The gene is present as a single copy in the Dictyostelium genome and there is no evidence for any other highly related cyclin B genes.
Collapse
Affiliation(s)
- Q Luo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
50
|
Identification and functional analysis of a developmentally regulated extracellular signal-regulated kinase gene in Dictyostelium discoideum. Mol Cell Biol 1994. [PMID: 7935416 DOI: 10.1128/mcb.14.10.6996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned a developmentally regulated mitogen-activated protein kinase (extracellular signal-regulated kinase) from Dictyostelium discoideum designated ERK1. Using anti-pTyr antibodies, we show that ERK1 is phosphorylated on tyrosine in vivo and that it will phosphorylate myelin basic protein. The gene expresses two transcripts, one that is preferentially expressed during vegetative growth and early development and one that is induced during the multicellular stages. Developmental Western blots (immunoblots) using anti-ERK1 antibodies indicate that ERK1 is present throughout development. ERK1/lacZ reporter constructs suggest that, in the multicellular stages, the gene is preferentially expressed in a subpopulation of cells scattered throughout the organism, similar to the pattern seen with anterior-like cell markers. Antisense mutagenesis from a derepressible promoter indicates that ERK1 is essential for vegetative growth. Overexpression of ERK1 from either the Actin 15 promoter or the ERK1 promoter results in abnormal morphogenesis starting at the slug stage. Overexpression of ERK1 in null mutants of the phosphotyrosine phosphatase PTP2 results in the production of large aggregation streams and subsequent abnormal morphogenesis that indicate a genetic interaction between ERK1 and PTP2. These cells produce very large aggregation streams that break up into very small mounds that undergo abnormal morphogenesis. The genetic interaction between ERK1 and PTP2 appears to be specific since overexpression of ERK1 in a ptp1- null mutant does not produce the same phenotype. Our results indicate that ERK1 plays an essential role during the growth and differentiation of D. discoideum.
Collapse
|