1
|
Peng HC, Castro GL, Karthikeyan V, Jarrett A, Katz MA, Hargrove JA, Hoang D, Hilber S, Meng W, Wang L, Fick RJ, Ahn JM, Kreutz C, Stelling AL. Measuring the Enthalpy of an Individual Hydrogen Bond in a DNA Duplex with Nucleobase Isotope Editing and Variable-Temperature Infrared Spectroscopy. J Phys Chem Lett 2023; 14:4313-4321. [PMID: 37130045 DOI: 10.1021/acs.jpclett.3c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The level of interest in probing the strength of noncovalent interactions in DNA duplexes is high, as these weak forces dictate the range of suprastructures the double helix adopts under different conditions, in turn directly impacting the biological functions and industrial applications of duplexes that require making and breaking them to access the genetic code. However, few experimental tools can measure these weak forces embedded within large biological suprastructures in the native solution environment. Here, we develop experimental methods for detecting the presence of a single noncovalent interaction [a hydrogen bond (H-bond)] within a large DNA duplex in solution and measure its formation enthalpy (ΔHf). We report that introduction of a H-bond into the TC2═O group from the noncanonical nucleobase 2-aminopurine produces an expected decrease ∼10 ± 0.76 cm-1 (from ∼1720 cm-1 in Watson-Crick to ∼1710 cm-1 in 2-aminopurine), which correlates with an enthalpy of ∼0.93 ± 0.066 kcal/mol for this interaction.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabrielle L Castro
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varshini Karthikeyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Alina Jarrett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Melanie A Katz
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James A Hargrove
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - David Hoang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Robert J Fick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Chandrasekaran AR, Mathivanan J, Ebrahimi P, Vilcapoma J, Chen AA, Halvorsen K, Sheng J. Hybrid DNA/RNA nanostructures with 2'-5' linkages. NANOSCALE 2020; 12:21583-21590. [PMID: 33089274 PMCID: PMC7644649 DOI: 10.1039/d0nr05846g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nucleic acid nanostructures with different chemical compositions have shown utility in biological applications as they provide additional assembly parameters and enhanced stability. The naturally occurring 2'-5' linkage in RNA is thought to be a prebiotic analogue and has potential use in antisense therapeutics. Here, we report the first instance of DNA/RNA motifs containing 2'-5' linkages. We synthesized and incorporated RNA strands with 2'-5' linkages into different DNA motifs with varying number of branch points (a duplex, four arm junction, double crossover motif and tensegrity triangle motif). Using experimental characterization and molecular dynamics simulations, we show that hybrid DNA/RNA nanostructures can accommodate interspersed 2'-5' linkages with relatively minor effect on the formation of these structures. Further, the modified nanostructures showed improved resistance to ribonuclease cleavage, indicating their potential use in the construction of robust drug delivery vehicles with prolonged stability in physiological conditions.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| | - Johnsi Mathivanan
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Parisa Ebrahimi
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Alan A. Chen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| |
Collapse
|
3
|
Motsch S, Pfeffer D, Richert C. 2'/3' Regioselectivity of Enzyme-Free Copying of RNA Detected by NMR. Chembiochem 2020; 21:2013-2018. [PMID: 32017335 PMCID: PMC7497262 DOI: 10.1002/cbic.202000014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 11/06/2022]
Abstract
The RNA-templated extension of oligoribonucleotides by nucleotides produces either a 3',5' or a 2',5'-phosphodiester. Nature controls the regioselectivity during RNA chain growth with polymerases, but enzyme-free versions of genetic copying have modest specificity. Thus far, enzymatic degradation of products, combined with chromatography or electrophoresis, has been the preferred mode of detecting 2',5'-diesters produced in enzyme-free reactions. This approach hinges on the substrate specificity of nucleases, and is not suitable for in situ monitoring. Here we report how 1 H NMR spectroscopy can be used to detect the extension of self-templating RNA hairpins and that this reveals the regioisomeric nature of the newly formed phosphodiesters. We studied several modes of activating nucleotides, including imidazolides, a pyridinium phosphate, an active ester, and in situ activation with carbodiimide and organocatalyst. Conversion into the desired extension product ranged from 20 to 90 %, depending on the leaving group. Integration of the resonances of H1' protons of riboses and H5 protons of pyrimidines gave regioselectivities ranging from 40:60 to 85:15 (3',5' to 2',5' diester), but no simple correlation between 3',5' selectivity and yield. Our results show how monitoring with a high-resolution technique sheds a new light on a process that may have played an important role during the emergence of life.
Collapse
Affiliation(s)
- Sebastian Motsch
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Pfeffer
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Shen F, Luo Z, Liu H, Wang R, Zhang S, Gan J, Sheng J. Structural insights into RNA duplexes with multiple 2΄-5΄-linkages. Nucleic Acids Res 2017; 45:3537-3546. [PMID: 28034958 PMCID: PMC5389462 DOI: 10.1093/nar/gkw1307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
2΄-5΄-linked RNAs play important roles in many biological systems. In addition, the mixture of 2΄-5΄ and 3΄-5΄ phosphodiester bonds have emerged as a plausible structural element in prebiotic RNAs. Toward our mechanistic studies of RNA folding and structures with heterogeneous backbones, we recently reported two crystal structures of a decamer RNA duplex containing two and six 2΄-5΄-linkages, showing how RNA duplexes adjust the structures to accommodate these non-canonical linkages (Proc. Natl. Acad. Sci. USA, 2014, 111, 3050-3055). Herein, we present two additional high-resolution crystal structures of the same RNA duplex containing four and eight 2΄-5΄-linkages at different positions, providing new insights into the effects of these modifications and a dynamic view of RNA structure changes with increased numbers of 2΄-5΄-linkages in the same duplex. Our results show that the local structural perturbations caused by 2΄-5΄ linkages can be distributed to nearly all the nucleotides with big ranges of changes in different geometry parameters. In addition, hydration pattern and solvation energy analysis indicate less favorable solvent interactions of 2΄-5΄-linkages comparing to the native 3΄-5΄-linkages. This study not only promotes our understanding of RNA backbone flexibility, but also provides a knowledge base for studying the biochemical and prebiotic significance of RNA 2΄-5΄-linkages.
Collapse
Affiliation(s)
- Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipu Luo
- Synchrotron Radiation Research Section, MCL National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shenglong Zhang
- Department of Life Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
5
|
Cafferty BJ, Musetti C, Kim K, Horowitz ED, Krishnamurthy R, Hud NV. Small molecule-mediated duplex formation of nucleic acids with ‘incompatible’ backbones. Chem Commun (Camb) 2016; 52:5436-9. [DOI: 10.1039/c6cc00779a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A small molecule promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise do not form duplexes.
Collapse
Affiliation(s)
- Brian J. Cafferty
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Caterina Musetti
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Keunsoo Kim
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Eric D. Horowitz
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | | | - Nicholas V. Hud
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
6
|
Structural insights into the effects of 2'-5' linkages on the RNA duplex. Proc Natl Acad Sci U S A 2014; 111:3050-5. [PMID: 24516151 DOI: 10.1073/pnas.1317799111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mixture of 2'-5' and 3'-5' linkages generated during the nonenzymatic replication of RNA has long been regarded as a central problem for the origin of the RNA world. However, we recently observed that both a ribozyme and an RNA aptamer retain considerable functionality in the presence of prebiotically plausible levels of linkage heterogeneity. To better understand the RNA structure and function in the presence of backbone linkage heterogeneity, we obtained high-resolution X-ray crystal structures of a native 10-mer RNA duplex (1.32 Å) and two variants: one containing one 2'-5' linkage per strand (1.55 Å) and one containing three such linkages per strand (1.20 Å). We found that RNA duplexes adjust their local structures to accommodate the perturbation caused by 2'-5' linkages, with the flanking nucleotides buffering the disruptive effects of the isomeric linkage and resulting in a minimally altered global structure. Although most 2'-linked sugars were in the expected 2'-endo conformation, some were partially or fully in the 3'-endo conformation, suggesting that the energy difference between these conformations was relatively small. Our structural and molecular dynamic studies also provide insight into the diminished thermal and chemical stability of the duplex state associated with the presence of 2'-5' linkages. Our results contribute to the view that a low level of 2'-5' substitution would not have been fatal in an early RNA world and may in contrast have been helpful for both the emergence of nonenzymatic RNA replication and the early evolution of functional RNAs.
Collapse
|
7
|
Bowler FR, Chan CKW, Duffy CD, Gerland B, Islam S, Powner MW, Sutherland JD, Xu J. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat Chem 2013; 5:383-9. [PMID: 23609088 DOI: 10.1038/nchem.1626] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/14/2013] [Indexed: 11/09/2022]
Abstract
The recent synthesis of pyrimidine ribonucleoside-2',3'-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3',5'-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2'-hydroxyl group of oligoribonucleotide-3'-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2'-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2'- or 3'-terminal phosphates is selective for the 2'-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2',3'-cyclic phosphates to predominantly 3',5'-linked RNA via partially 2'-O-acetylated RNA.
Collapse
Affiliation(s)
- Frank R Bowler
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Eschenmoser A. Ätiologie potentiell primordialer Biomolekül-Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens - ein Rückblick. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Eschenmoser A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew Chem Int Ed Engl 2011; 50:12412-72. [PMID: 22162284 DOI: 10.1002/anie.201103672] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 11/10/2022]
Abstract
"We'll never be able to know" is a truism that leads to resignation with respect to any experimental effort to search for the chemistry of life's origin. But such resignation runs radically counter to the challenge imposed upon chemistry as a natural science. Notwithstanding the prognosis according to which the shortest path to understanding the metamorphosis of the chemical into the biological is by way of experimental modeling of "artificial chemical life", the scientific search for the route nature adopted in creating the life we know will arguably never truly end. It is, after all, part of the search for our own origin.
Collapse
Affiliation(s)
- Albert Eschenmoser
- Organisch-chemisches Laboratorium der ETH Zürich, Hönggerberg, Wolfgang-Pauli-Str. 10, CHI H309, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Horowitz ED, Lilavivat S, Holladay BW, Germann MW, Hud NV. Solution structure and thermodynamics of 2',5' RNA intercalation. J Am Chem Soc 2009; 131:5831-8. [PMID: 19309071 DOI: 10.1021/ja810068e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a means to explore the influence of the nucleic acid backbone on the intercalative binding of ligands to DNA and RNA, we have determined the solution structure of a proflavine-bound 2',5'-linked octamer duplex with the sequence GCCGCGGC. This structure represents the first NMR structure of an intercalated RNA duplex, of either backbone structural isomer. By comparison with X-ray crystal structures, we have identified similarities and differences between intercalated 3',5' and 2',5'-linked RNA duplexes. First, the two forms of RNA have different sugar pucker geometries at the intercalated nucleotide steps, yet have the same interphosphate distances. Second, as in intercalated 3',5' RNA, the phosphate backbone angle zeta at the 2',5' RNA intercalation site prefers to be in the trans conformation, whereas unintercalated 2',5' and 3',5' RNA prefer the -gauche conformation. These observations provide new insights regarding the transitions required for intercalation of a phosphodiester-ribose backbone and suggest a possible contribution of the backbone to the origin of the nearest-neighbor exclusion principle. Thermodynamic studies presented for intercalation of both structural RNA isomers also reveal a surprising sensitivity of intercalator binding enthalpy and entropy to the details of RNA backbone structure.
Collapse
Affiliation(s)
- Eric D Horowitz
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|
12
|
Gupta P, Maity J, Shakya G, Prasad AK, Parmar VS, Wengel J. Synthesis and hybridization studies of α-configured arabino nucleic acids. Org Biomol Chem 2009; 7:2389-401. [DOI: 10.1039/b905019c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sawai H, Wada M, Kouda T, Nakamura Ozaki A. Nonenzymatic ligation of short-chained 2'-5'- or 3'-5'-linked oligoribonucleotides on 2'-5'- or 3'-5'-linked complementary templates. Chembiochem 2006; 7:605-11. [PMID: 16538693 DOI: 10.1002/cbic.200500291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
5'-pACUG tetraribonucleotides containing 2'-5' or 3'-5' linkages self-condensed on 2'-5'- or 3'-5'-linked complementary decaribonucleotide (5'-CAGUCAGUCA) templates. CD and UV melting studies showed that helix formation took place in all four possible combinations of linkage isomers of the substrate tetramer and the template decamer under the ligation conditions. The hybridization ability followed the order: [3'-5' tetramer with 3'-5' decamer] > [2'-5' tetramer with 3'-5' decamer] > [2'-5' tetramer with 2'-5' decamer] > or = [3'-5' tetramer with 2'-5' decamer]. Each tetramer condensed on the complementary decaribonucletide template to form the corresponding octamer, but the ligation efficiency varied considerably, depending on the types of linkage in the tetramer substrate and the template decamer. The yields of the octamers obtained by the template-directed ligation followed the order: [2'-5' substrate: 2'-5' template] > [3'-5':3'-5'] > [2'-5':3'-5'] > [3'-5':2'-5']. The results demonstrate that a homo-linkage system is preferable for the template-directed synthesis of RNA. The resulting linkage of the octamer formed from the 2'-5'-linked substrate and the 2'-5'-linked template is mainly 2'-5'.
Collapse
Affiliation(s)
- Hiroaki Sawai
- Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | | | | | | |
Collapse
|
14
|
Madsen AS, Hrdlicka PJ, Kumar TS, Wengel J. Synthesis, nucleic acid hybridization properties and molecular modelling studies of conformationally restricted 3'-O,4'-C-methylene-linked alpha-L-ribonucleotides. Carbohydr Res 2006; 341:1398-407. [PMID: 16709404 DOI: 10.1016/j.carres.2006.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/07/2006] [Accepted: 04/08/2006] [Indexed: 01/09/2023]
Abstract
Nucleotides with conformationally restricted carbohydrate rings such as locked nucleic acid (LNA), alpha-L-LNA or 2',5'-linked 3'-O,4'-C-methyleribonucleotides exhibit significant potential as building blocks for antigene and antisense strategies. 2',5'-Linked alpha-L-ribo configured monomer X (termed alpha-L-ONA) was designed as a potential structural mimic of alpha-L-LNA. The corresponding phosphoramidite building block of monomer X was obtained in five steps (10% overall yield) from the easily obtainable thymine derivative 1. Incorporation of monomer X into oligodeoxyribonucleotides (ONs) results in dramatically decreased thermal stabilities with DNA/RNA complements (DeltaTm/mod=-11.5 to -17.0 degrees C) compared to unmodified reference ONs. Less pronounced decreases (DeltaTm/mod=-4.5 to -8.5 degrees C) are observed when monomer X is incorporated into triplex forming ONs and targeted against double-stranded DNA (parallel orientation, pyrimidine motif). This biophysical data, together with modelling studies, suggest that 2',5'-linked alpha-L-ONA is a poor structural mimic of alpha-L-LNA.
Collapse
Affiliation(s)
- Andreas S Madsen
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
15
|
Abstract
During evolution ribose was selected as the exclusive sugar component of nucleic acids. The selection is explained by using molecular models and by eliminating most of the other common sugars by looking at their chemical structure and envisioning how they would fit in a nucleic acid model. Comparisons of sugar pucker conformations and configurations of pentoses indicate that ribose was not randomly selected but the only choice, since beta-D-ribose fits best into the structure of physiological forms of nucleic acids. In other nucleotides containing arabinose, xylose, or lyxose, the C(2)'-OH and/or the C(3)'-OH are above the furanose ring, causing steric interference with the bulky base and the C(5)'-OH group.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Animal Anatomy and Physiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Hannoush RN, Damha MJ. Preference for ribose over deoxyribose in loop-closing base pairs of extra stable nucleic acid hairpins. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1519-30. [PMID: 16438032 DOI: 10.1080/15257770500265794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have investigated the effect of switching ribose to deoxyribose at the closing base-pair of an extra-stable RNA hairpin. Specifically, we studied the sequence 5'-GGAC(UUCG)GUCC, a dodecanucleotide that folds into a well-characterized, "extra stable" RNA hairpin structure. Recently, we showed that hairpins containing a 2',5'-linked (UUCG) loop instead of the native 3',5'-linked loop also exhibit extra-stability (Hannoush and Damha, J. Am. Chem. Soc., 2001, 123, 12368-12374). In this article, we show that the ribose units located at the loop-closing positions (i.e., rC4 and rG9) contribute significantly to the stabilization of RNA hairpins, particularly those containing the 3',5'-UUCG loop. Interestingly, the requirement of rC4 and rG9 is more relaxed for DNA hairpins containing the 2',5'-UUCC loop and, in fact, they may be replaced altogether (ribose--> deoxyribose) without affecting stability. The results broaden our understanding of the behavior of highly stable (UUCG) hairpin loops and how they respond to structural perturbation of the loop-closing base pairs.
Collapse
Affiliation(s)
- Rami N Hannoush
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Obika S, Hiroto A, Nakagawa O, Imanishi T. Presence of 2',5'-linkages in a homopyrimidine DNA oligonucleotide promotes stable triplex formation under physiological conditions. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1055-8. [PMID: 16248091 DOI: 10.1081/ncn-200060058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We prepared 15-mer homopyrimidine oligonucleotides containing three or four 2',5'-linked DNA units, and their ability as a triplex-forming oligonucleotide (TFO) was analyzed in detail UV melting experiments showed that replacement of a 3',5'-linkage by a 2',5'-linkage at every third or fourth residue in TFO significantly promoted stable triplex formation under physiological conditions.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
18
|
Hrdlicka PJ, Kumar TS, Wengel J. Synthesis and Thermal Denaturation Studies of Conformationally Restricted 3′-C-Ethynyl-3′-O,4′-C-methyleneribonucleotides. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Wang KJ, Ferris JP. Catalysis and selectivity in prebiotic synthesis: initiation of the formation of oligo(U)s on montmorillonite clay by adenosine-5'-methylphosphate. ORIGINS LIFE EVOL B 2005; 35:187-212. [PMID: 16228638 DOI: 10.1007/s11084-005-0657-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Revised: 04/18/2004] [Accepted: 04/18/2004] [Indexed: 10/25/2022]
Abstract
Adenosine-5'-methylphosphate (MepA) initiates the oligomerization of the 5'-phosphorimidazolide of uridine (ImpU) in the presence of montmorillonite clay. Longer oligomers form because the 5'-phosphate is blocked with a methyl group that prevents the formation of cyclic- and pyrophosphate-containing compounds. The MepA initiates 69-84% of the 5-9 charge oligomers, respectively. The montmorillonite catalyst also provides selectivity in the oligomerization reactions so that the main reaction pathway is MepA --> MepA3'pU --> MepA3'pU2'pU --> MepA3'pU2'pU3'pU. MepA did not enhance the oligomerization of ImpA. The relative rates of the reactions were determined from an investigation of the products in competitive reactions. Selectivity was observed in the reaction of ImpU with equimolar amounts of MepA3'pU and MepA2'pU where the relative reaction rates are 10.3:1, respectively. In the reaction of ImpA with MepA3'pA and MepA2'pA the ImpA reacts 5.2 times faster with MepA3'pA. In the competitive reaction of ImpU and ImpA with MepA3'pA and MepA3'pU the elongation proceeds on MepA3'pA 5.6 times more rapidly than with MepA3'pU. There is no correlation between the extent of binding to the montmorillonite and reaction rates in the formation of longer oligomers. The formation of more than two sequential 2',5'-linkages in the oligomer chain proceeds more slowly than the addition to a single 2',5'-link or a 3',5'-link and either chain termination or elongation by a 3',5'-linage occurs. The central role that catalysis may have had in the prebiotic formation of biopolymers is discussed.
Collapse
Affiliation(s)
- Kong-Jiang Wang
- Department of Chemistry and NY Center for Studies on the Origins of Life, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | |
Collapse
|
20
|
Obika S, Hiroto A, Nakagawa O, Imanishi T. Promotion of stable triplex formation by partial incorporation of 2',5'-phosphodiester linkages into triplex-forming oligonucleotides. Chem Commun (Camb) 2005:2793-5. [PMID: 15928760 DOI: 10.1039/b417688j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pentadecamer homopyrimidine oligonucleotides containing three or more 2',5'-phosphodiester linkages in different modes were prepared and used to evaluate the ability as a triplex-forming oligonucleotide (TFO), and it was found that discontinuous replacement of the 3',5'-phosphodiester linkages in TFO by 2',5'-linkages significantly stabilizes parallel-motif triplexes.
Collapse
Affiliation(s)
- Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
21
|
Plevnik M, Gdaniec Z, Plavec J. Solution structure of a modified 2',5'-linked RNA hairpin involved in an equilibrium with duplex. Nucleic Acids Res 2005; 33:1749-59. [PMID: 15788747 PMCID: PMC1069515 DOI: 10.1093/nar/gki318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The isomerization of phosphodiester functionality of nucleic acids from 3′,5′- to a less common 2′,5′-linkage influences the complex interplay of stereoelectronic effects that drive pseudorotational equilibrium of sugar rings and thus affect the conformational propensities for compact or more extended structures. The present study highlights the subtle balance of non-covalent forces at play in structural equilibrium of 2′,5′-linked RNA analogue, 3′-O-(2-methoxyethyl) substituted dodecamer *CG*CGAA*U*U*CG*CG, 3′-MOE-2′,5′-RNA, where all cytosines and uracils are methylated at C5. The NMR and UV spectroscopic studies have shown that 3′-MOE-2′,5′-RNA adopts both hairpin and duplex secondary structures, which are involved in a dynamic exchange that is slow on the NMR timescale and exhibits strand and salt concentration as well as pH dependence. Unusual effect of pH over a narrow physiological range is observed for imino proton resonances with exchange broadening observed at lower pH and relatively sharp lines observed at higher pH. The solution structure of 3′-MOE-2′,5′-RNA hairpin displays a unique and well-defined loop, which is stabilized by Watson–Crick A5·*U8 base pair and by n → π* stacking interactions of O4′ lone-pair electrons of A6 and *U8 with aromatic rings of A5 and *U7, respectively. In contrast, the stem region of 3′-MOE-2′,5′-RNA hairpin is more flexible. Our data highlight the important feature of backbone modifications that can have pronounced effects on interstrand association of nucleic acids.
Collapse
Affiliation(s)
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of SciencesNoskowskiego 12/14, 61-704 Poznan, Poland
| | - Janez Plavec
- To whom correspondence should be addressed. Tel: +386 1 47 60 353; Fax: +386 1 47 60 300;
| |
Collapse
|
22
|
Premraj BJ, Raja S, Bhavesh NS, Shi K, Hosur RV, Sundaralingam M, Yathindra N. Solution structure of 2',5' d(G4C4). Relevance to topological restrictions and nature's choice of phosphodiester links. ACTA ACUST UNITED AC 2004; 271:2956-66. [PMID: 15233791 DOI: 10.1111/j.1432-1033.2004.04225.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation. Base pairs in the duplex exhibit slide (-1.96 A) and intermediate values for X-displacement (-3.23 A), as in ADNA, while their inclination to the helical axis is not prominent. Major and minor grooves display features intermediate to A and BDNA. The duplex structure of iso d(GGGGCCCC) may therefore be best characterized as a hybrid of A and BDNA. Importantly, the results confirm that even 3' deoxy 2',5' DNA supports duplex formation only in the presence of distinct slide (>or=-1.6 A) and X-displacement (>or=-2.5 A) for base pairs, and hence does not favor an ideal BDNA topology characterized by their near-zero values. Such restrictions on base pair movements in 2',5' DNA, which are clearly absent in 3',5' DNA, are expected to impose constraints on its ability for deformability of the kind observed in DNA during its compaction and interaction with proteins. It is therefore conceivable that selection pressure relating to the optimization of topological features might have been a factor in the rejection of 2',5' links in preference to 3',5' links.
Collapse
Affiliation(s)
- Bernard J Premraj
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Obika S, Morio KI, Nanbu D, Hari Y, Itoh H, Imanishi T. Synthesis and conformation of 3′,4′-BNA monomers, 3′-O,4′-C-methyleneribonucleosides. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00227-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Premraj BJ, Raja S, Yathindra N. Structural basis for the unusual properties of 2',5' nucleic acids and their complexes with RNA and DNA. Biophys Chem 2002; 95:253-72. [PMID: 12062384 DOI: 10.1016/s0301-4622(02)00040-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To provide insights into the unusual properties of 2',5' nucleic acids (iso nucleic acids), that includes their rejection by Nature as information molecules, modeling studies have been carried out to examine if they indeed possess the stereochemical ability to form helical duplexes and triplexes, just as their 3',5' linked constitutional isomers. The results show that the formation of helical duplexes with 2',5' linkages demands a mandatory displacement of the Watson and Crick base pairs from the helical axis, as a direct consequence of the lateral shift of the sugar-phosphate backbone from the periphery towards the interior of the helix. Thus, both duplexes and triplexes formed with a 2',5'-sugar-phosphate backbone possess this intrinsic trait, manifested normally only in A type duplexes of DNA and RNA. It was found that only a 10-fold symmetric parallel triplex with isomorphous T.AT triplets is stereochemically favorable for isoDNA with 'extended' nucleotide repeats, unlike the 12-fold symmetric triplex favored by DNA. The wider nature of a 12-fold triplex, concomitant with mandatory slide requirement for helix formation in isoDNA, demands even larger displacement, especially with 'extended' nucleotide structural repeats, thereby violating symmetry. However, a symmetric triplex possessing higher twist, can be naturally formed for isoDNA with a 'compact' nucleotide repeat. Two nanosecond molecular dynamics simulation of a 2',5'-B DNA duplex, formed with an intrinsic base pair displacement of -3.3 A, does not seem to favor a total transition to a typical A type duplex, although enhanced slide, X-displacement, decrease in helical rise and narrowing of the major groove during simulation seem to indicate a trend. Modeling of the interaction between the chimeric isoDNA.RNA duplex and E. coli RNase H has provided a structural basis for the inhibitory action of the enzyme. Interaction of residues Gln 80, Trp 81, Asn 16 and Lys 99, of E. coli RNase H with DNA of the DNA.RNA hybrid, are lost when the DNA backbone is replaced by isoDNA. Based on modeling and experimental observations, it is argued that 2',5' nucleic acids possess restricted conformational flexibility for helical polymorphism. The inability of isoDNA to favor the biologically relevant B form duplex and the associated topological inadequacies related to nucleic acid compaction and interactions with regulatory proteins may be some of the factors that might have led to the rejection of 2',5' links.
Collapse
Affiliation(s)
- B J Premraj
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | |
Collapse
|
25
|
Kumar A, Dass D, Atreyi M, Rao MV, Katti SB. Conformational rigidity introduced by 2',5'-phosphodiester links in DNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:1783-96. [PMID: 11719992 DOI: 10.1081/ncn-100107190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Conformational properties of 2',5'-linked 3'-deoxyribonucleotides have been compared with their natural isomer using CD spectroscopy. It is inferred from the salt induced titration curves that the 2',5'-linked-3'deoxyribonucleotides have rigid phosphodiester backbone.
Collapse
Affiliation(s)
- A Kumar
- Division of Biopolymers, Central Drug Research Institute, Lucknow, India
| | | | | | | | | |
Collapse
|
26
|
Premraj BJ, Patel PK, Kandimalla ER, Agrawal S, Hosur RV, Yathindra N. NMR structure of a 2',5' RNA favors A type duplex with compact C2'endo nucleotide repeat. Biochem Biophys Res Commun 2001; 283:537-43. [PMID: 11341757 DOI: 10.1006/bbrc.2001.4828] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to provide a structural basis for the unusual properties of 2',5' nucleic acids, especially their unsuitability as information molecules, we report here a high resolution NMR structure of a 2',5' RNA fragment r(GCCGCGGC). It forms an A type duplex with C2'endo compact nucleotide repeat, instead of the familiar C3'endo compact nucleotide (seen in RNA) supporting the deductions made earlier from stereochemical considerations. This data together with the observation that 2',5' nucleic acids require mandatory slide and displacement for duplex and triplex structure formation suggest their reluctance to form the biologically relevant B type duplex. It is argued that this lack of flexibility for helical polymorphism and other inadequacies as a consequence of this may be a contributing factor for the rejection of 2',5' links by nature. The structure exhibits interesting features such as the syn glycosyl conformation for the terminal guanine and a hydrogen bond between O3' hydroxyl and anionic oxygen of the phosphate.
Collapse
Affiliation(s)
- B J Premraj
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | | | | | | | | | |
Collapse
|
27
|
Switzer C, Chaput JC. Probing structure and function with alternative nucleic acids bearing 2',5'-linked, zwitterionic, and isocytosine-isoguanine components. Methods 2001; 23:141-8. [PMID: 11181033 DOI: 10.1006/meth.2000.1115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incorporation of alternative functional components into nucleic acids can provide insight into what molecular features are necessary for an informational macromolecule to be successful. It can also provide a means to improve particular physical characteristics of nucleic acids for diagnostic and therapeutic purposes, or probe mechanisms. By testing the fitness of nucleic acid-like molecules derived by structural permutations of RNA, it may also prove possible to trace a path from simple prebiotic precursors to biotic molecules. This article describes the applications of 2',5'-phosphodiester linked, zwitterionic, and base-permuted nucleic acid derivatives.
Collapse
Affiliation(s)
- C Switzer
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
28
|
Cahours X, Morin P, Dreux M. Capillary electrophoretic resolution of the 2′-, 3′- and 5′-isomers of nucleotide monophosphates via the zinc complexes. Chromatographia 2000. [DOI: 10.1007/bf02490816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Krishnan R, Seshadri T. A parallel stranded 2′-5′ double helical model for poly A: crystal structure of adenylyl-2′,5′-adenosine trihydrate and comparison with the tetrahydrate structure. J Mol Struct 2000. [DOI: 10.1016/s0022-2860(99)00357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Reck F, Wippo H, Kudick R, Bolli M, Ceulemans G, Krishnamurthy R, Eschenmoser A. L-alpha-lyxopyranosyl (4'-->3') oligonucleotides: a base-pairing system containing a shortened backbone. Org Lett 1999; 1:1531-4. [PMID: 10836020 DOI: 10.1021/ol990184q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[formula: see text] The L-alpha-lyxopyranosyl (4'-->3') oligonucleotide system shows cooperative base-pairing in spite of containing only five instead of the usual six covalent bonds per repetitive backbone unit. In contrast, corresponding D-beta-ribofuranosyl (4'-->3') oligonucleotides do not show adenine-thymine pairing under comparable conditions. The difference in pairing behavior relates to the conformation of the two systems' vicinal 3',4'-phosphodiester substituents, which is diaxial in the lyxopyranosyl system and 3'-axial-4'-equatorial in the ribopyranosyl system.
Collapse
Affiliation(s)
- F Reck
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kumar P, Takaku H. Properties of mixed backbone oligonucleotides containing 3'-O-methyl ribonucleosides. Bioorg Med Chem Lett 1999; 9:2515-20. [PMID: 10498199 DOI: 10.1016/s0960-894x(99)00414-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oligonucleotides containing 3'-O-methyl ribonucleosides were synthesized, and their thermal stabilities and global conformations with RNA and DNA have been studied. The duplexes displayed lower T(m) values as compared to the unmodified ones, and adopted A-conformations. Furthermore, they are not a substrate for RNase H, are slightly resistant to snake venom phosphodiesterase, and are not cleaved by nuclease S 1.
Collapse
Affiliation(s)
- P Kumar
- High Technology Research Center, Chiba Institute of Technology, Narashino, Japan
| | | |
Collapse
|
32
|
Ramasamy KS, Stoisavljevic V. Synthesis and biophysical studies of modified oligonucleotides containing acyclic amino alcohol nucleoside analogs. NUCLEOSIDES & NUCLEOTIDES 1999; 18:1845-61. [PMID: 10478486 DOI: 10.1080/07328319908044847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Novel serine derivative of thymine was prepared and incorporated into oligonucleotides. These modified oligonucleotides were studied for their binding affinity with complementary DNA/RNA.
Collapse
Affiliation(s)
- K S Ramasamy
- Research Division, ICN Pharmaceuticals, Inc., Costa Mesa, CA 92626, USA
| | | |
Collapse
|
33
|
Abstract
Systematic chemical studies indicate that the capability of Watson-Crick base-pairing is widespread among potentially natural nucleic acid alternatives taken from RNA's close structural neighborhood. A comparison of RNA and such alternatives with regard to chemical properties that are fundamental to the biological function of RNA provides chemical facts that may contain clues to RNA's origin.
Collapse
Affiliation(s)
- A Eschenmoser
- The Skaggs Institute for Chemical Biology at The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Obika S, Morio K, Hari Y, Imanishi T. Preparation and properties of 2',5'-linked oligonucleotide analogues containing 3'-O,4'-C-methyleneribonucleosides. Bioorg Med Chem Lett 1999; 9:515-8. [PMID: 10098653 DOI: 10.1016/s0960-894x(99)00028-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bicyclic nucleoside analogues, 3'-O,4'-C-methyleneuridine and -5-methyluridine, were successfully incorporated into oligonucleotides via connection with 2',5'-phosphodiester linkage, and hybridization behavior and nuclease stability of the modified oligonucleotides were investigated.
Collapse
Affiliation(s)
- S Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Japan
| | | | | | | |
Collapse
|
35
|
Beier M, Reck F, Wagner T, Krishnamurthy R, Eschenmoser A. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2'-->4') oligonucleotides with RNA. Science 1999; 283:699-703. [PMID: 9924032 DOI: 10.1126/science.283.5402.699] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
All four members of the family of pentopyranosyl-(2'-->4') oligonucleotide systems that contain beta-ribo-, beta-xylo-, alpha-lyxo-, or alpha-arabinopyranosyl units as repeating sugar building blocks are found to be much stronger Watson-Crick base-pairing systems than RNA. The alpha-arabinopyranosyl system is the strongest of all and in fact belongs to the strongest oligonucleotide base-pairing systems known. Whatever the chemical determinants by which nature selected RNA as a genetic system, maximization of base-pairing strengths within the domain of pentose-derived oligonucleotide systems was not the critical selection criterion.
Collapse
Affiliation(s)
- M Beier
- The Skaggs Institute for Chemical Biology at The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Damha MJ, Noronha A. Recognition of nucleic acid double helices by homopyrimidine 2', 5'-linked RNA. Nucleic Acids Res 1998; 26:5152-6. [PMID: 9813104 PMCID: PMC147972 DOI: 10.1093/nar/26.22.5152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.
Collapse
Affiliation(s)
- M J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 2K6, Canada.
| | | |
Collapse
|
37
|
Abstract
Shape and dimension of the preferred nucleotide repeats in nucleic acids are found to depend on whether the sugar-phosphate linkage is of 2',5' or 3',5' type. It is shown that a nucleotide which is "compact" in 3',5' nucleic acids is rendered "extended" and vice versa for a given sugar pucker. It is interesting that this feature is accompanied by a switch in the preferred sugar ring conformation in 3',5' and 2',5' nucleic acids. 3' ribose and 3' deoxyribose rings (in 2',5' linkages) tend to favour C2' endo and C3' endo puckers respectively in contrast to C3' endo and C2' endo puckers favored by 2' ribose and 2' deoxyribose sugars (in 3',5' linkages). The distinguishable features between the nucleotide repeats of 3',5' and 2',5' nucleic acids need to be recognised while discussing their structural properties, as well as those of a variety of complexes that could be formed involving 2',5' and 3',5' strands of DNA and RNA. Ability and stability, or lack of them, for formation of a specific combination of these complexes may be directly related to the stereochemical constraints imposed as a consequence of conformationally homogeneous or heterogeneous nature of the repeating nucleotides of the complexing chains. As a first step towards delineating stereochemical features that distinguish 2',5' nucleic acids from their naturally occurring isomer A and B type helices have been modelled using the new concept of "compact" and "extended" nucleotide repeat that seemingly unifies helix generation of both types of linkages. Helical models for 2',5' RNA with "dinucleotide" repeat based on the crystal structure of 2',5' ApU have also been obtained.
Collapse
Affiliation(s)
- B J Premraj
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
38
|
Hartmann RK, Krupp G, Hardt WD. Towards a new concept of gene inactivation: specific RNA cleavage by endogenous ribonuclease P. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:215-65. [PMID: 9704090 DOI: 10.1016/s1387-2656(08)70053-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the first part of this chapter, general concepts for gene inactivation, antisense techniques and catalytic RNAs (ribozymes) are presented. The requirements for modified oligonucleotides are discussed with their effects on the stability of base-paired hybrids and on resistance against nuclease attack. This also includes the problems in the choice of an optimal target sequence within the inactivated RNA and the options of cellular delivery systems. The second part describes the recently introduced antisense concept based on the ubiquitous cellular enzyme ribonuclease P. This system is unique, since the substrate recognition requires the proper tertiary structure of the cleaved RNA. General properties and possible advantages of this approach are discussed.
Collapse
Affiliation(s)
- R K Hartmann
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
39
|
Sawai H, Totsuka S, Yamamoto K, Ozaki H. Non-enzymatic, template-directed ligation of 2'-5' oligoribonucleotides. Joining of a template and a ligator strand. Nucleic Acids Res 1998; 26:2995-3000. [PMID: 9611246 PMCID: PMC147642 DOI: 10.1093/nar/26.12.2995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Decauridylate containing exclusively a 2'-5' phospho-diester bond ([2'-5']U10) served as a template for the synthesis of oligoadenylates [oligo(A)s] from the 5'-phosphorimidazolide of 2'-5' diadenylate (ImpA-2'p5'A). Joining of [2'-5']U10and ImpA2'p5'A also took place in substantial amounts to yield long-chain oligoribonucleotides in the template-directed reaction. An unusual CD spectrum ascribed to helix formation between [2'-5']U10and [2'-5'](pA)2was observed under the same conditions as that of the template-directed reaction. The 3'-5' linked decauridylate ([3'-5']U10) also promoted the template-directed synthesis of oligo(A)s from ImpA2'p5'A, but more slowly compared with [2'-5']U10. The results indicate that short-chain RNA oligomers with a 2'-5' phosphodiester bond could lead to longer oligoribonucleotides by template-directed chain elongation.
Collapse
Affiliation(s)
- H Sawai
- Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | | | | | | |
Collapse
|
40
|
Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 1998; 78:55-113. [PMID: 9623881 PMCID: PMC7157933 DOI: 10.1016/s0163-7258(97)00167-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The 2-5A system is an RNA degradation pathway that can be induced by the interferons (IFNs). Treatment of cells with IFN activates genes encoding several double-stranded RNA (dsRNA)-dependent synthetases. These enzymes generate 5'-triphosphorylated, 2',5'-phosphodiester-linked oligoadenylates (2-5A) from ATP. The effects of 2-5A in cells are transient since 2-5A is unstable in cells due to the activities of phosphodiesterase and phosphatase. 2-5A activates the endoribonuclease 2-5A-dependent RNase L, causing degradation of single-stranded RNA with moderate specificity. The human 2-5A-dependent RNase is an 83.5 kDa polypeptide that has little, if any, RNase activity, unless 2-5A is present. 2-5A binding to RNase L switches the enzyme from its off-state to its on-state. At least three 2',5'-linked oligoadenylates and a single 5'-phosphoryl group are required for maximal activation of the RNase. Even though the constitutive presence of 2-5A-dependent RNase is observed in nearly all mammalian cell types, cellular amounts of 2-5A-dependent mRNA and activity can increase after IFN treatment. One well-established role of the 2-5A system is as a host defense against some types of viruses. Since virus infection of cells results in the production and secretion of IFNs, and since dsRNA is both a frequent product of virus infection and an activator of 2-5A synthesis, the replication of encephalomyocarditis virus, which produces dsRNA during its life cycle, is greatly suppressed in IFN-treated cells as a direct result of RNA decay by the activated 2-5A-dependent RNase. This review covers the organic chemistry, enzymology, and molecular biology of 2-5A and its associated enzymes. Additional possible biological roles of the 2-5A system, such as in cell growth and differentiation, human immunodeficiency virus replication, heat shock, atherosclerotic plaque, pathogenesis of Type I diabetes, and apoptosis, are presented.
Collapse
Affiliation(s)
- M R Player
- Section on Biomedical Chemistry, Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0805, USA
| | | |
Collapse
|
41
|
Groebke K, Hunziker J, Fraser W, Peng L, Diederichsen U, Zimmermann K, Holzner A, Leumann C, Eschenmoser A. Warum Pentose- und nicht Hexose-Nucleins�uren?? Teil V. (Purin-Purin)-Basenpaarung in der homo-DNS-Reihe: Guanin, Isoguanin, 2,6-Diaminopurin und Xanthin. Helv Chim Acta 1998. [DOI: 10.1002/hlca.19980810302] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Robidoux S, Damha MJ. D-2-deoxyribose and D-arabinose, but not D-ribose, stabilize the cytosine tetrad (i-DNA) structure. J Biomol Struct Dyn 1997; 15:529-35. [PMID: 9439999 DOI: 10.1080/07391102.1997.10508963] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Described here are studies exploring the effect of the sugar-phosphate backbone on the stability of i-tetrads in solution [K. Gehring et al. Nature 363, 561-565 (1993)]. In the accompanying paper, branched oligonucleotides are shown to be effective probes for organizing oligodeoxycytidine strands into I-motif structures (C-tetrads). Specifically, the joining of a pair of parallel deoxycytidylate strands with a riboadenosine "linker" leads to marked enhancement in stability of the tetrad structure. To further characterize the nature of the sugar-sugar interactions in this novel structure, branched oligonucleotides containing D-arabinocytidine and D-ribocytidine were synthesized and their association properties examined. The ribo oligomers were prepared in two regioisomeric forms differing only in the connectivities of the deoxycytidine strands, i.e., 3'-to-5' versus 2'-to-5' linked dC5 strands. The branched D-deoxycytidine analogue, rA(2',5'-dC5)3',5'-dC5, which previously has been shown to fold into a bimolecular I-motif, served as model system. It is found that the arabinose substitution leads to hypochromic structures that are characteristic of four-stranded intercalated DNA and has little, if any, effect on the stability of the complex formed. Parallel experiments with the branched ribocytidine analogs gave very weak or no discernible UV transitions, consistent with no strand association in this case [Lacroix et al., Biochemistry 35, 8715-8722 (1996)]. These results are discussed in relation to expected steric interactions of oligocytidine strands within the I-structure. The findings increase our understanding of the impact of the sugar and internucleotide connectivity on the stability of this higher-order nucleic acid structure.
Collapse
Affiliation(s)
- S Robidoux
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
43
|
Bolli M, Micura R, Pitsch S, Eschenmoser A. Pyranosyl-RNA: Further Observations on Replication. Helv Chim Acta 1997. [DOI: 10.1002/hlca.19970800613] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Prakash TP, Roberts C, Switzer C. Über die Aktivität 2′,5′-verknüpfter RNA in der templatgesteuerten Oligomerisierung von Mononucleotiden. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Kumar A, Katti SB, Madhusudanan KP. Synthesis and FAB Mass Spectroscopical Studies on 2′,5′-Dinucleoside-Monophosphates+. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Sawai H, Kuroda K, Seki J, Ozaki H. Conformational and stacking properties of 3'-5' and 2'-5' linked oligoribonucleotides studied by CD. Biopolymers 1996; 39:173-82. [PMID: 8679947 DOI: 10.1002/(sici)1097-0282(199608)39:2<173::aid-bip5>3.0.co;2-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Comparative CD studies have been carried out to characterize the properties of 2'-5' and 3'-5' oligoriboadenylates and oligoribouridylates from dimer to decamer. The CD band of the 3'-5' oligoribonucleotides was larger than that of the 2'-5' oligoribonucleotides and increased with the increase in chain length, while the CD band of the 2'-5' oligoribonucleotides increased little beyond the dimer level. The CD analysis of the chain length dependency revealed that the 3'-5' oligoribonucleotides adopt mainly the base-base stacking interaction, while the base-sugar interaction is predominant in the 2'-5' oligoribonucleotides. The CD intensity of 3'-5' oligoribonucleotides decreased to a larger extent at elevated temperatures or in the presence of ethanol compared to that of the 2'-5' counterparts. Mg2+ or Mn2+ ion enhanced the magnitude of the CD of 3'-5' octariboadenylate, while a small decrease in the CD was observed by the presence of Mg2+ or Mn2+ ion to the 2'-5' octariboadenylate. The 3'-5' oligoribonucleotide is likely conformationally flexible and can form helical ordered structure with strong base-base stacking depending on changes in the environment such as temperature the presence of Mg2+ ion, or hydrophobicity of the solution.
Collapse
Affiliation(s)
- H Sawai
- Department of Chemistry, Gunma University, Japan
| | | | | | | |
Collapse
|
47
|
Sawai H, Seki J, Ozaki H. Comparative studies of duplex and triplex formation of 2'-5' and 3'-5' linked oligoribonucleotides. J Biomol Struct Dyn 1996; 13:1043-51. [PMID: 8832387 DOI: 10.1080/07391102.1996.10508919] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have studied double and triple helix formation between 2'-5' or 3'-5' linked oligoriboadenylates and oligoribouridylates with chain length 7 or 10 by CD spectrometry. The complex formation depends on the type of linkage of oligoribonucleotides, chain length, concentration and molar ratio of the strands, temperature and the cationic concentration. Mixture of any linkage isomers of oligo(rA) and oligo(rU) in 1:1 molar ratio form duplex at 0.1 M NaCl. The duplex stability largely depends on the type of the linkages and is in the following order, [3'-5'] oligo(rA)-[3'-5'] oligo(rU) > [2'-5'] oligo(rA)-[3'-5'] oligo(rU) > [3'-5'] oligo(rA)-[2'-5'] oligo(rU) > [2'-5'] oligo(rA)-[2'-5'] oligo(rU). The higher cationic concentrations, 0.5 M MgCl2, stabilize the complex and either duplex or triplex is formed depending on the input strand ratio and the type of linkage. Thermodynamic parameters, DH and DS, for the complex formation between linkage isomers of oligo(rA) and oligo(rU) showed a linear relationship indicating an enthalpy-entropy compensation phenomena. The duplex and triplex composed of [2'-5'] oligo(rA) and [2'-5'] oligo(rU) exhibit different CD spectra compared to those of any others containing 3'-5' linkage, suggesting that the fully 2'-5' duplex and triplex may possess a unique conformation. We describe prebiological significance of the linkage isomers of RNA and selection of the 3'-5' linkage against 2'-5 linkage.
Collapse
Affiliation(s)
- H Sawai
- Department of Chemistry, Gunma University, Japan
| | | | | |
Collapse
|
48
|
Abstract
The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.
Collapse
Affiliation(s)
- G Ertem
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
49
|
Prakash TP, Jung KE, Switzer C. RNA recognition by the 2′-structural isomer of DNA. Chem Commun (Camb) 1996. [DOI: 10.1039/cc9960001793] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Cheng X, Gao Q, Smith RD, Jung KE, Switzer C. Comparison of 3′,5′- and 2′,5′-linked DNA duplex stabilities by electrospray ionization mass spectrometry. Chem Commun (Camb) 1996. [DOI: 10.1039/cc9960000747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|