1
|
Ismail AM, Saha A, Lee JS, Painter DF, Chen Y, Singh G, Condezo GN, Chodosh J, San Martín C, Rajaiya J. RANBP2 and USP9x regulate nuclear import of adenovirus minor coat protein IIIa. PLoS Pathog 2022; 18:e1010588. [PMID: 35709296 PMCID: PMC9242475 DOI: 10.1371/journal.ppat.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/29/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics. The compact genomes of viruses must code for proteins with multiple functions, including those that assist with cell entry, replication, and escape from the host immune defenses. Viruses succeed in every stage of this process by hijacking critical cellular proteins for their propagation. Hence, identifying virus-host protein interactions may permit identifying therapeutic applications that restrict viral processes. Human adenovirus structural proteins link together to produce infectious virions. Protein IIIa is required to assemble fully packaged virions, but its interactions with host factors are unknown. Here, we identify novel host protein interactions of pIIIa with cellular RANBP2 and USP9x. We demonstrate that by interacting with cellular RANBP2, viral pIIIa gains entry to the nucleus for subsequent virion assembly and replication. Reduced RANBP2 expression inhibited pIIIa entry into the nucleus, minimized viral replication and viral protein expression, and led to accumulation of defective assembly products in the infected cells. As a defense against viral infection, USP9x reduces the interaction between pIIIa and RANBP2, resulting in decreased viral propagation. We also show that the identified pIIIa-host interactions are crucial in two disparate HAdV types with diverse disease implications.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amrita Saha
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji S. Lee
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Painter
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gurdeep Singh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - James Chodosh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - Jaya Rajaiya
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
2
|
Choi EW, Seen DS, Song YB, Son HS, Jung NC, Huh WK, Hahn JS, Kim K, Jeong JY, Lee TG. AdHTS: a high-throughput system for generating recombinant adenoviruses. J Biotechnol 2012; 162:246-52. [PMID: 23063969 DOI: 10.1016/j.jbiotec.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/18/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
The need for efficient high-throughput gene delivery system for mammalian cells is rapidly increasing with the growing request for functional genomics studies and drug discoveries in various physiologically relevant systems. However, plasmid-based gene delivery has limitations in transfection efficiency and available cell types. Viral vectors have great advantages over plasmid-based vectors, but construction of recombinant viruses remains to be a big hurdle for high-throughput applications. Here we demonstrate a rapid and simple high-throughput system for constructing recombinant adenoviruses which have been used as efficient gene delivery tools in mammalian systems in vitro and in vivo. By combining Gateway-based site-specific recombination with Terminal protein-coupled adenovirus vector, the adenovirus high-throughput system (AdHTS) generates multiple recombinant adenoviruses in 96-well plates simultaneously without the need for additional cloning or recombination in bacteria or mammalian cells. The AdHTS allows rapid and robust cloning and expression of genes in mammalian cells by removing shuttle vector construction, bacterial transformation, or selection and by minimizing effort in plaque isolation. By shortening the time required to convert whole cDNA library into desired viral vector constructs, the AdHTS would greatly facilitate functional genomics and proteomics studies in various mammalian systems.
Collapse
Affiliation(s)
- Eun-Wook Choi
- R&D Center, BRN Science, Golden Helix, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kuchta RD, Stengel G. Mechanism and evolution of DNA primases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1180-9. [PMID: 19540940 DOI: 10.1016/j.bbapap.2009.06.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/11/2009] [Accepted: 06/02/2009] [Indexed: 01/31/2023]
Abstract
DNA primase synthesizes short RNA primers that replicative polymerases further elongate in order to initiate the synthesis of all new DNA strands. Thus, primase owes its existence to the inability of DNA polymerases to initiate DNA synthesis starting with 2 dNTPs. Here, we discuss the evolutionary relationships between the different families of primases (viral, eubacterial, archael, and eukaryotic) and the catalytic mechanisms of these enzymes. This includes how they choose an initiation site, elongate the growing primer, and then only synthesize primers of defined length via an inherent ability to count. Finally, the low fidelity of primases along with the development of primase inhibitors is described.
Collapse
Affiliation(s)
- Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
4
|
Abstract
Human adenoviruses (HAdVs) can cause mild respiratory, gastrointestinal, urogenital and ocular disease. Knowledge about HAdVs has been expanding for more than five decades putting them amongst the most-studied viruses. This continued interest stems, to a great extent, from the fact that these double-stranded DNA viruses have proven to be a versatile tool to probe the basic phenomena of eukaryotic cells. HAdV research has led to the discovery of, for instance, RNA splicing and greatly contributed to our knowledge of processes as fundamental as replication, transcription and translation. Moreover, the transformation of rodent cells by HAdVs has provided a system to unravel the molecular pathways that control cell proliferation. As a result, the genetic organisation of these agents is known in great detail allowing the straightforward manipulation of their genomes. In addition, the virus itself became renowned for its ability to produce large amounts of progeny and to efficiently infect mammalian cells regardless of their cell cycle status. These features contributed to the broad use of recombinant HAdVs as gene carriers particularly in in vivo settings where the vast majority of target cells are post-mitotic. The most advanced type of HAdV vectors can accommodate up to 37 kb of foreign DNA and are devoid of viral genes. With the aid of these high-capacity HAdV vectors large physiologically responsive transcriptional elements and/or genes can be efficiently introduced into target cells while minimising adaptive immune responses against the transduced cells. This article provides information on HAdV especially on the aspects pertinent to the design, production and performance of its recombinant forms. The development and characteristics of the main HAdV-based vector types are also briefly reviewed.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
5
|
Carlisle RC, Briggs SS, Hale AB, Green NK, Fisher KD, Etrych T, Ulbrich K, Mautner V, Seymour LW. Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA. Gene Ther 2006; 13:1579-86. [PMID: 16810196 DOI: 10.1038/sj.gt.3302814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of synthetic vectors to deliver genomes of conditionally replicating lytic viruses combines the strengths of viral and non-viral approaches by enabling neutralising antibody resistant deployment of cancer virotherapy. Adenovirus is particularly suitable for this application since all proteins essential for replication can be expressed from the input DNA, although the presence of terminal protein (TP) covalently linked to the 5' termini of the input virus genomes both improves expression of transgenes encoded in the input DNA and also enhances replication. These roles of TP were distinguished in experiments where E1-deleted Ad(GFP)DNA bearing TP (Ad(GFP)DNA-TP), delivered with DOTAP, gave a two-fold greater frequency of transduction than Ad(GFP)DNA(without TP) in non-complementing A549 cells, while in 293 cells (which support replication of E1-deleted viruses) the presence of TP mediated a much greater differential transgene expression, commensurate with its ability to promote replication. Subsequent studies using AdDNA for virotherapy, therefore, included covalently linked TP. AdDNA-TP delivered to A549 cells using a synthetic polyplex vector was shown to be resistant to levels of neutralising antisera that completely ablated infection by wild-type adenovirus, enabling polyplex/Ad(wild type)DNA-TP to mediate a powerful cytopathic effect. Similarly in vivo, direct injection of a polyplex/Ad(wild type)DNA-TP into A549 tumours was neutralising antibody-resistant and enabled virus replication, whereas intact virus was neutralised by the antibody and failed to infect. The delivery of adenovirus genomes-TP using synthetic vectors should provide a strategy to bypass neutralising antibodies and facilitate clinical application of replicating adenovirus for cancer virotherapy.
Collapse
Affiliation(s)
- R C Carlisle
- Department of Clinical Pharmacology, Oxford University, Radcliffe Infirmary, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hatanaka K, Ohnami S, Yoshida K, Miura Y, Aoyagi K, Sasaki H, Asaka M, Terada M, Yoshida T, Aoki K. A simple and efficient method for constructing an adenoviral cDNA expression library. Mol Ther 2003; 8:158-66. [PMID: 12842439 DOI: 10.1016/s1525-0016(03)00138-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
cDNA expression cloning is a powerful method for the identification of genes that are able to confer a selectable phenotype on specific cell types. An adenovirus vector is characterized by several advantages over plasmid DNA and retroviral vector-mediated gene transfer, such as broad host range and high infectivity. However, an expression cloning protocol using the adenovirus vector has not been reported. We describe here a simple and efficient method for constructing adenovirus cDNA expression libraries based on Cre-lox-mediated in vitro recombination between adenoviral shuttle plasmid cDNA libraries and adenoviral genomic DNA tagged with terminal protein. In a model experiment, EGFP clones present at the frequency of 0.003% in the shuttle plasmid library could be efficiently converted to adenoviral vector in a 6-cm dish under optimized conditions, indicating that high-complexity libraries harboring low-abundance cDNAs can be produced. The efficiency of this system was demonstrated by the isolation of cDNA for CD2 (frequency less than 1 in 0.3 x 10(4) transcripts in T cells) from the human T cells. This effective and versatile method can facilitate the functional identification of genes for a variety of purposes.
Collapse
Affiliation(s)
- Kazuteru Hatanaka
- Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Replication of the adenovirus genome is catalysed by adenovirus DNA polymerase in which the adenovirus preterminal protein acts as a protein primer. DNA polymerase and preterminal protein form a heterodimer which, in the presence of the cellular transcription factors NFI/CTFI and NFIII/Oct-1, binds to the origin of DNA replication. DNA replication is initiated by DNA polymerase mediated transfer of dCMP onto preterminal protein. Further DNA synthesis is catalysed by DNA polymerase in a strand displacement mechanism which also requires adenovirus DNA binding protein. Here, we discuss the role of individual proteins in this process as revealed by biochemical analysis, mutagenesis and molecular modelling.
Collapse
Affiliation(s)
- H Liu
- Centre for Biomolecular Science, Biomolecular Science Building, The University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | | | | |
Collapse
|
8
|
de Jong RN, van der Vliet PC, Brenkman AB. Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr Top Microbiol Immunol 2003; 272:187-211. [PMID: 12747551 DOI: 10.1007/978-3-662-05597-7_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The adenovirus (Ad) genome is a linear double-stranded (ds) molecule containing about 36 kilobase pairs. At each end of the genome an approximately 100 base pair (bp) inverted terminal repeat (ITR) is found, the exact length depending on the serotype. To the 5'-end of each ITR, a 55-kDa terminal protein (TP) is covalently coupled. The Ad DNA replication system was one of the first replication systems that could be reconstituted in vitro (Challberg and Kelly 1979). The system requires three virally encoded proteins: precursor TP (pTP), DNA polymerase (Pol) and the DNA binding protein (DBP). In addition, three stimulating human cellular proteins have been identified. These are the transcription factors NFI (Nagata et al. 1982) and Oct-1 (Pruijn et al. 1986) and the type I topoisomerase NFII (Nagata et al. 1983). Ad DNA replication uses a protein primer for replication initiation. The transition from initiation to elongation is marked by a jumping back mechanism (King and van der Vliet 1994), followed by elongation. In order to elongate DBP is required. In this review we discuss the roles of DBP during initiation and elongation and we relate biochemical data on the jumping back mechanism used by Ad Pol to the recently solved crystal structure of a Pol alpha-like replication complex (Franklin et al. 2001). We comment on the conditions and possible functions of jumping back and propose a model to describe the jumping back mechanism.
Collapse
Affiliation(s)
- R N de Jong
- University Medical Center, Department of Physiological Chemistry and Center for Biomedical Genetics, Utrecht, The Netherlands.
| | | | | |
Collapse
|
9
|
de Jong RN, Meijer LAT, van der Vliet PC. DNA binding properties of the adenovirus DNA replication priming protein pTP. Nucleic Acids Res 2003; 31:3274-86. [PMID: 12799455 PMCID: PMC162239 DOI: 10.1093/nar/gkg405] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin or stabilizes an unwound state. We analyzed the contribution of pTP to pTP/pol origin binding using various DNA oligonucleotides. We show that two pTP molecules bind cooperatively to short DNA duplexes, while longer DNA fragments are bound by single pTP molecules as well. Cooperative binding to short duplexes is DNA sequence independent and most likely mediated by protein/protein contacts. Furthermore, we observed that pTP binds single-stranded (ss)DNA with a minimal length of approximately 35 nt and that random ssDNA competed 25-fold more efficiently than random duplex DNA for origin binding by pTP. Remarkably, short DNA fragments with two opposing single strands supported monomeric pTP binding. pTP did not stimulate, but inhibited strand displacement by the Ad DNA binding and unwinding protein DBP. These observations suggest a mechanism in which the ssDNA affinity of pTP stabilizes Ad pol on partially unwound origin DNA.
Collapse
Affiliation(s)
- R N de Jong
- Department of Physiological Chemistry, University Medical Center Utrecht and Center for Biomedical Genetics, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
10
|
Brenkman AB, Breure EC, van der Vliet PC. Molecular architecture of adenovirus DNA polymerase and location of the protein primer. J Virol 2002; 76:8200-7. [PMID: 12134025 PMCID: PMC155156 DOI: 10.1128/jvi.76.16.8200-8207.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 05/13/2002] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) DNA polymerase (pol) belongs to the distinct subclass of the polalpha family of DNA pols that employs the precursor terminal protein (pTP) as primer. Ad pol forms a stable heterodimer with this primer, and together, they bind specifically to the core origin in order to start replication. After initiation of Ad replication, the resulting pTP-trinucleotide intermediate jumps back and pTP starts to dissociate. Compared to free Ad pol, the pTP-pol complex shows reduced polymerase and exonuclease activities, but the reason for this is not understood. Furthermore, the interaction domains between these proteins have not been defined and the contribution of each protein to origin binding is unclear. To address these questions, we used oligonucleotides with a translocation block and show here that pTP binds at the entrance of the primer binding groove of Ad pol, thereby explaining the decreased synthetic activities of the pTP-pol complex and providing insight into how pTP primes Ad replication. Employing an exonuclease-deficient mutant polymerase, we further show that the polymerase and exonuclease active sites of Ad pol are spatially distinct and that the exonuclease activity of Ad pol is located at the N-terminal part of the protein. In addition, by probing the distances between both active sites and the surface of Ad pol, we show that Ad pol binds a DNA region of 14 to 15 nucleotides. Based on these results, a model for binding of the pTP-pol complex at the origin of replication is proposed.
Collapse
Affiliation(s)
- Arjan B Brenkman
- University Medical Centre, Department of Physiological Chemistry and Centre for Biomedical Genetics, Utrecht, The Netherlands
| | | | | |
Collapse
|
11
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
12
|
Hartigan-O'Connor D, Barjot C, Crawford R, Chamberlain JS. Efficient rescue of gutted adenovirus genomes allows rapid production of concentrated stocks without negative selection. Hum Gene Ther 2002; 13:519-31. [PMID: 11874630 DOI: 10.1089/10430340252809810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gutted adenoviral (Ad) vectors have a greater cloning capacity and elicit less immune response than conventional Ad vectors. Unfortunately, clinical use of gutted vectors has been slowed by production difficulties, including low yield and a tendency for recombinant virus to emerge. These two problems are related, because expansion of dilute vector stocks requires selective pressure against helper virus. The ability to rescue gutted virus at high titer would lessen the requirement for selective pressure, thereby limiting the advantage afforded to undesirable recombinants. We tested gutted virus rescue from plasmids and from synthetic terminal protein (TP)-DNA complexes by transfection/infection or cotransfection with various forms of helper viral DNA. Optimal rescue required cotransfection of gutted and helper genomes with identical origins of replication. Transfection/infection, which introduces unequal origins, was 30 times less efficient than cotransfection of genomes that had been released from plasmid DNA and bore identical origins. Cotransfection of TP-linked genomes was several times more efficient than that of unlinked genomes, yielding average gutted viral titers above 10(7) transducing units (TU)/ml. In addition, we found that limited expression of Cre recombinase doubled the yield of gutted virus. Using these techniques, gutted viruses can be rescued at titers greater than 3 x 10(7) TU/ml, about 100 times higher than is usually achieved. Finally, we found that high-titer lysates could be serially passaged on Cre-negative cells without loss of titer, further reducing selective pressure. These methods allow large-scale production of gutted virus in three or four serial passages, while minimizing exposure to Cre recombinase.
Collapse
|
13
|
Botting CH, Hay RT. Role of conserved residues in the activity of adenovirus preterminal protein. J Gen Virol 2001; 82:1917-1927. [PMID: 11457998 DOI: 10.1099/0022-1317-82-8-1917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preterminal protein (pTP) is a component of the preinitiation complex which forms at the adenovirus origin of DNA replication and acts as the protein primer during DNA synthesis. In order to determine the role of various regions of the molecule a series of 18 mutations was introduced into conserved motifs of pTP which were predicted to be surface exposed, and the mutants expressed in insect cells using a baculovirus expression system. Their ability to initiate DNA replication was assessed and the effect the mutations have on the individual interactions which contribute to the formation of the pre-initiation complex was determined. Classes of mutants could be identified which were unable to bind DNA or interact with the adenovirus DNA polymerase, but one class of mutants retained these activities and yet failed to initiate DNA replication. These mutants therefore identify regions of pTP required for different aspects of adenovirus DNA replication.
Collapse
Affiliation(s)
- Catherine H Botting
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews, Fife KY16 9ST, UK1
| | - Ronald T Hay
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews, Fife KY16 9ST, UK1
| |
Collapse
|
14
|
Liu H, Naismith JH, Hay RT. Identification of conserved residues contributing to the activities of adenovirus DNA polymerase. J Virol 2000; 74:11681-9. [PMID: 11090167 PMCID: PMC112450 DOI: 10.1128/jvi.74.24.11681-11689.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus codes for a DNA polymerase that is a member of the DNA polymerase alpha family and uses a protein primer for initiation of DNA synthesis. It contains motifs characteristic of a proofreading 3'-5'-exonuclease domain located in the N-terminal region and several polymerase motifs located in the C-terminal region. To determine the role of adenovirus DNA polymerase in DNA replication, 22 site-directed mutations were introduced into the conserved DNA polymerase motifs in the C-terminal region of adenovirus DNA polymerase and the mutant forms were expressed in insect cells using a baculovirus expression system. Each mutant enzyme was tested for DNA binding activity, the ability to interact with pTP, DNA polymerase catalytic activity, and the ability to participate in the initiation of adenovirus DNA replication. The mutant phenotypes identify functional domains within the adenovirus DNA polymerase and allow discrimination between the roles of conserved residues in the various activities carried out by the protein. Using the functional data in this study and the previously published structure of the bacteriophage RB69 DNA polymerase (J. Wang et al., Cell 89:1087-1099, 1997), it is possible to envisage how the conserved domains in the adenovirus DNA polymerase function.
Collapse
Affiliation(s)
- H Liu
- Centre for Biomolecular Science, The University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | | | | |
Collapse
|
15
|
Hartigan-O'Connor D, Amalfitano A, Chamberlain JS. Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J Virol 1999; 73:7835-41. [PMID: 10438876 PMCID: PMC104313 DOI: 10.1128/jvi.73.9.7835-7841.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of gutted, or helper-dependent, adenovirus vectors by current methods is inefficient. Typically, a plasmid form of the gutted genome is transfected with helper viral DNA into 293 cells; the resulting lysate is serially passaged to increase the titer of gutted virions. Inefficient production of gutted virus particles after cotransfection is likely due to suboptimal association of replication factors with the abnormal origins found in these plasmid substrates. To test this hypothesis, we explored whether gutted virus production would be facilitated by transfection into cells expressing various viral replication factors. We observed that C7 cells, coexpressing adenoviral DNA polymerase and preterminal protein, converted plasmid DNA into replicating virus approximately 50 times more efficiently than did 293 cells. This property of C7 cells can be used to greatly increase the efficiency of gutted virus production after cotransfection of gutted and helper viral DNA. These cells should also be useful for generation of recombinant adenovirus from any plasmid-based precursor.
Collapse
Affiliation(s)
- D Hartigan-O'Connor
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | |
Collapse
|
16
|
Botting CH, Hay RT. Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Res 1999; 27:2799-805. [PMID: 10373599 PMCID: PMC148491 DOI: 10.1093/nar/27.13.2799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Formation of the preinitiation complex for adenovirus DNA replication involves the incoming preterminal protein-adenovirus DNA polymerase heterodimer being positioned at the origin of replication by protein-DNA and protein-protein interactions. Preterminal protein directly binds to the cellular transcription factor nuclear factor III (Oct-1), via the POU homeodomain. Co-precipitation of POU with individual domains of preterminal protein expressed by in vitro translation indicated that POU contacts multiple sites on preterminal protein. Partial proteolysis of preterminal protein in the presence or absence of POU homeodomain demonstrated that many sites accessible to proteases in free preterminal protein were resistant to cleavage in the presence of POU homeodomain. The accessibility of sites in free preterminal protein to cleavage by trypsin was strongly dependent on the ionic strength, suggesting that preterminal protein may undergo a sodium chloride-induced conformational change. It is therefore likely that the POU homeodomain contacts a number of sites on preterminal protein to induce a conformational change which may influence the initiation of adenovirus DNA replication.
Collapse
Affiliation(s)
- C H Botting
- School of Biomedical Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
17
|
Parker EJ, Botting CH, Webster A, Hay RT. Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Res 1998; 26:1240-7. [PMID: 9469832 PMCID: PMC147410 DOI: 10.1093/nar/26.5.1240] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.
Collapse
Affiliation(s)
- E J Parker
- School of Biomedical Science, Irvine Building, University of St Andrews, North Street, St Andrews, Fife KY16 9AL, UK
| | | | | | | |
Collapse
|
18
|
Webster A, Leith IR, Nicholson J, Hounsell J, Hay RT. Role of preterminal protein processing in adenovirus replication. J Virol 1997; 71:6381-9. [PMID: 9261355 PMCID: PMC191911 DOI: 10.1128/jvi.71.9.6381-6389.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preterminal protein (pTP), the protein primer for adenovirus DNA replication, is processed at two sites by the virus-encoded protease to yield mature terminal protein (TP). Here we demonstrate that processing to TP, via an intermediate (iTP), is conserved in all serotypes sequenced to date; and in determining the sites cleaved in Ad4 pTP, we extend the previously published substrate specificity of human adenovirus proteases to include a glutamine residue at P4. Furthermore, using monoclonal antibodies raised against pTP, we show that processing to iTP and TP are temporally separated in the infectious cycle, with processing to iTP taking place outside the virus particles. In vitro and in vivo studies of viral DNA replication reveal that iTP can act as a template for initiation and elongation and argue against a role for virus-encoded protease in switching off DNA replication. Virus DNA with TP attached to its 5' end (TP-DNA) has been studied extensively in in vitro DNA replication assays. Given that in vivo pTP-DNA, not TP-DNA, is the template for all but the first round of replication, the two templates were compared in vitro and shown to have different properties. Immunofluorescence studies suggest that a region spanning the TP cleavage site is involved in defining the subnuclear localization of pTP. Therefore, a likely role for the processing of pTP-DNA is to create a distinct template for early transcription (TP-DNA), while the terminal protein moiety, be it TP or pTP, serves to guide the template to the appropriate subcellular location through the course of infection.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Science, University of St. Andrews, Fife, Scotland
| | | | | | | | | |
Collapse
|
19
|
van Leeuwen HC, Rensen M, van der Vliet PC. The Oct-1 POU homeodomain stabilizes the adenovirus preinitiation complex via a direct interaction with the priming protein and is displaced when the replication fork passes. J Biol Chem 1997; 272:3398-405. [PMID: 9013582 DOI: 10.1074/jbc.272.6.3398] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Initiation of adenovirus DNA replication is strongly enhanced by two cellular transcription factors, NFI and Oct-1, which bind to the auxiliary origin and tether the viral precursor terminal protein-DNA polymerase (pTP.pol) complex to the core origin. NFI acts through a direct contact with the DNA polymerase, but the mode of action of Oct 1 is unknown. Employing glutathione S-transferase-POU pull-down assays and protein affinity chromatography, we have established that the POU domain contacts pTP rather than pol. The POU homeodomain is responsible for this interaction. The protein-protein contacts lead to increased binding of pTP-pol to the core origin, which is caused by a reduced off-rate. The enhanced formation of a pTP.pol.POU complex on the origin correlates with stimulation of replication. Using an immobilized replication system, we have studied the kinetics of dissociation of the Oct-1 POU domain during replication. In contrast to NFI, which dissociates very early in initiation, Oct-1 dissociates only when the binding site is rendered single-stranded upon translocation of the replication fork. Our data indicate that NFI and Oct-1 enhance initiation synergistically by touching different targets in the preinitiation complex and dissociate independently after initiation.
Collapse
Affiliation(s)
- H C van Leeuwen
- Laboratory for Physiological Chemistry, Utrecht University, Stratenum, P. O. Box 80042, 3508 TA Utrecht, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
In adenovirus-infected cells, the virus-encoded preterminal protein and DNA polymerase form a heterodimer that is directly involved in initiation of DNA replication. Monoclonal antibodies were raised against preterminal protein, and epitopes recognized by the antibodies were identified by using synthetic peptides. Partial proteolysis of preterminal protein reveals that it has a tripartite structure, with the three domains being separated by two protease-sensitive areas, located at sites processed by adenovirus protease. These areas of protease sensitivity are probably surface-exposed loops, as they are the sites, along with the C-terminal region of preterminal protein, recognized by the monoclonal antibodies. Preterminal protein is protected from proteolytic cleavage when bound to adenovirus DNA polymerase, suggesting either multiple contact points between the proteins or a DNA polymerase-induced conformational change in preterminal protein. Two of the preterminal protein-specific antibodies induced dissociation of the preterminal protein-adenovirus DNA polymerase heterodimer and inhibited initiation of adenovirus DNA replication in vitro. Antibodies binding close to the primary processing sites of adenovirus protease inhibited DNA binding, consistent with UV cross-linking results which reveal that an N-terminal, protease-resistant domain of preterminal protein contacts DNA. Monoclonal antibodies recognizing epitopes within the C-terminal 60 amino acids of preterminal protein stimulate DNA binding, an effect mediated through a decrease in the dissociation rate constant. These results suggest that preterminal protein contains a large, noncontiguous surface required for interaction with DNA polymerase, an N-terminal DNA binding domain, and a C-terminal regulatory domain.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Science, University of St. Andrews, Fife, Scotland
| | | | | |
Collapse
|
21
|
Imler JL, Bout A, Dreyer D, Dieterlé A, Schultz H, Valerio D, Mehtali M, Pavirani A. Trans-complementation of E1-deleted adenovirus: a new vector to reduce the possibility of codissemination of wild-type and recombinant adenoviruses. Hum Gene Ther 1995; 6:711-21. [PMID: 7548271 DOI: 10.1089/hum.1995.6.6-711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Treatment of cystic fibrosis by gene therapy will require the development of vectors capable of efficient and safe transfer of a functional cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to airway epithelia. To achieve this goal, replication-deficient (E1-) adenoviruses (Ad) are promising vectors. We have previously demonstrated efficient CFTR gene delivery to the airways of cotton rats and rhesus monkeys using a replication-deficient adenovirus, Ad-CFTR. Here, we have investigated an important safety issue, the interaction between the vector and wild-type virus which can provide the missing E1 function in trans. We show that Ad5 can mobilize the defective Ad-CFTR genome in vitro and in cotton rats. However, the extent of the complementation in vivo by wild-type virus is limited because no additional spreading or shedding of Ad-CFTR to trachea, lungs, and stools is elicited. To attenuate Ad-CFTR further, a mutation was introduced in the cis-acting regulatory sequences that control the encapsidation of the viral genome. We demonstrate that when cells are coinfected with wild-type virus and the new attenuated vector, the viral DNA containing the natural encapsidation sequences is preferentially packaged, leading to a rapid dilution of the recombinant virus.
Collapse
|
22
|
Affiliation(s)
- P C Van der Vliet
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| |
Collapse
|
23
|
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Base Sequence
- Centrifugation, Zonal/methods
- Chromatography, Ion Exchange/methods
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/isolation & purification
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- DNA-Directed DNA Polymerase/isolation & purification
- DNA-Directed DNA Polymerase/metabolism
- HeLa Cells
- Humans
- Kinetics
- Models, Structural
- Molecular Sequence Data
- Phosphoproteins/isolation & purification
- Phosphoproteins/metabolism
- Plasmids
- Protein Precursors/isolation & purification
- Protein Precursors/metabolism
- Repetitive Sequences, Nucleic Acid
- Replication Origin
- Templates, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Viral Proteins/analysis
- Viral Proteins/isolation & purification
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- F E Coenjaerts
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
24
|
Hay RT, Freeman A, Leith I, Monaghan A, Webster A. Molecular interactions during adenovirus DNA replication. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):31-48. [PMID: 7555069 DOI: 10.1007/978-3-642-79499-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R T Hay
- School of Biological and Medical Sciences, University of St. Andrews, Scotland, UK
| | | | | | | | | |
Collapse
|
25
|
Coenjaerts FE, van der Vliet PC. Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. Nucleic Acids Res 1994; 22:5235-40. [PMID: 7816611 PMCID: PMC332066 DOI: 10.1093/nar/22.24.5235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The DNA-binding domain of Nuclear Factor I (NFIBD) enhances initiation of adenovirus DNA replication up to 50-fold by binding to the auxiliary region of the origin and positioning the viral DNA polymerase. To study if and when NFIBD dissociates from the template, we immobilized origin DNA to glutathione-agarose beads by means of a GST-NFIBD fusion protein. This immobilized template is active in replication. By analyzing the release of prelabeled templates from the beads under different conditions, we show that NFIBD dissociates already early during initiation. During preinitiation NFIBD remains bound, but as soon as dCTP, dATP or dTTP are added, efficient dissociation occurs. A much lower dissociation level was induced by addition of dGTP. Since dCTP, dATP and dTTP are required for formation of a pTP-CAT initiation intermediate, we explain our results by conformational changes occurring in the polymerase during initiation leading to disruption of both the interaction between the polymerase and NFI as well as the interaction between NFI and the DNA.
Collapse
Affiliation(s)
- F E Coenjaerts
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
26
|
Armentero MT, Horwitz M, Mermod N. Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. Proc Natl Acad Sci U S A 1994; 91:11537-41. [PMID: 7972097 PMCID: PMC45266 DOI: 10.1073/pnas.91.24.11537] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Efficient initiation by the DNA polymerase of adenovirus type 2 requires nuclear factor I (NFI), a cellular sequence-specific transcription factor. Three functions of NFI--dimerization, DNA binding, and activation of DNA replication--are colocalized within the N-terminal portion of the protein. To define more precisely the role of NFI in viral DNA replication, a series of site-directed mutations within the N-terminal domain have been generated, thus allowing the separation of all three functions contained within this region. Impairment of the dimerization function prevents sequence-specific DNA binding and in turn abolishes the NFI-mediated activation of DNA replication. NFI DNA-binding activity, although necessary, is not sufficient to activate the initiation of adenovirus replication. A distinct class of NFI mutations that abolish the recruitment of the viral DNA polymerase to the origin also prevent the activation of replication. Thus, a direct interaction of NFI with the viral DNA polymerase complex is required to form a stable and active preinitiation complex on the origin and is responsible for the activation of replication by NFI.
Collapse
Affiliation(s)
- M T Armentero
- Institut de Biologie Animale, Université de Lausanne, Switzerland
| | | | | |
Collapse
|
27
|
Webster A, Leith IR, Hay RT. Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 1994; 68:7292-300. [PMID: 7933113 PMCID: PMC237170 DOI: 10.1128/jvi.68.11.7292-7300.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adenoviruses code for a protease that is essential for infectivity and is activated by a disulfide-linked peptide, derived from the C terminus of the virus structural protein pVI (pVI-CT). The protease was synthesized at relatively high levels late in infection and was detected in both cytoplasmic and nuclear fractions of adenovirus-infected cells. DNA was not found to be a cofactor of the protease, as previously proposed (W. F. Mangel, W. J. McGrath, D. Toledo, and C. W. Anderson, Nature [London] 361:274-275, 1993), but a role for DNA in facilitating the activation of the protease by pVI-CT in vivo cannot be ruled out. Adenovirus preterminal protein is a substrate for the virus-coded protease, with digestion to the mature terminal protein proceeding via the formation of two intermediates. Each of the three cleavage sites in the preterminal protein was identified by N-terminal sequencing and shown to conform to the substrate specificity of adenovirus protease, (M,L,I)XGX-X. Functional studies revealed that preterminal protein and intermediates but not mature terminal protein associated with adenovirus polymerase, while only the intact preterminal protein and none of its digestion products bound to DNA. These results suggest that the virus-coded protease may influence viral DNA replication by cleavage of both genome-bound and freely soluble preterminal protein, with consequent alterations to their functional properties.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Sciences, University of St. Andrews, Fife, United Kingdom
| | | | | |
Collapse
|
28
|
Abstract
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.
Collapse
Affiliation(s)
- D C Zijderveld
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Abstract
Using a reconstituted system for adenovirus DNA replication we tested the requirements for ATP and divalent cations. At the standard Mg2+ concentration ATP stimulated initiation 5 to 10-fold. However, this effect was caused by complexing Mg2+. At the optimal Mg2+ concentration ATP was not required for initiation or elongation. Besides Mg2+ also Mn2+, Ca2+ and Ba2+ were shown to support initiation whereas for elongation only Mg2+ was accepted. Since Mn2+ could efficiently be used for DNA chain elongation on synthetic templates we hypothesize that Mg2+ is essential for the transition of initiation to elongation.
Collapse
Affiliation(s)
- R Pronk
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
30
|
Kusukawa J, Ramachandra M, Nakano R, Padmanabhan R. Phosphorylation-dependent interaction of adenovirus preterminal protein with the viral origin of DNA replication. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|