1
|
Wojciechowski M, Czapinska H, Krwawicz J, Rafalski D, Bochtler M. Cytosine analogues as DNA methyltransferase substrates. Nucleic Acids Res 2024; 52:9267-9281. [PMID: 38966999 PMCID: PMC11347137 DOI: 10.1093/nar/gkae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
DNA methyltransferases are drug targets for myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), acute myelogenous leukemia (AML) and possibly β-hemoglobinopathies. We characterize the interaction of nucleoside analogues in DNA with a prokaryotic CpG-specific DNA methyltransferase (M.MpeI) as a model for mammalian DNMT1 methyltransferases. We tested DNA containing 5-hydroxymethylcytosine (5hmC), 5-hydroxycytosine (5OHC), 5-methyl-2-pyrimidinone (in the ribosylated form known as 5-methylzebularine, 5mZ), 5,6-dihydro-5-azacytosine (dhaC), 5-fluorocytosine (5FC), 5-chlorocytosine (5ClC), 5-bromocytosine (5BrC) and 5-iodocytosine (5IC). Covalent complex formation was by far most efficient for 5FC. Non-covalent complexes were most abundant for dhaC and 5mZ. Surprisingly, we observed methylation of 5IC and 5BrC, and to a lesser extent 5ClC and 5FC, in the presence, but not the absence of small molecule thiol nucleophiles. For 5IC and 5BrC, we demonstrated by mass spectrometry that the reactions were due to methyltransferase driven dehalogenation, followed by methylation. Crystal structures of M.MpeI-DNA complexes capture the 'in' conformation of the active site loop for analogues with small or rotatable (5mZ) 5-substituents and its 'out' form for bulky 5-substituents. Since very similar 'in' and 'out' loop conformations were also observed for DNMT1, it is likely that our conclusions generalize to other DNA methyltransferases.
Collapse
Affiliation(s)
- Marek Wojciechowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Radzikow, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Krwawicz
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dominik Rafalski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Furuta Y, Miura F, Ichise T, Nakayama SMM, Ikenaka Y, Zorigt T, Tsujinouchi M, Ishizuka M, Ito T, Higashi H. A GCDGC-specific DNA (cytosine-5) methyltransferase that methylates the GCWGC sequence on both strands and the GCSGC sequence on one strand. PLoS One 2022; 17:e0265225. [PMID: 35312710 PMCID: PMC8936443 DOI: 10.1371/journal.pone.0265225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
5-Methylcytosine is one of the major epigenetic marks of DNA in living organisms. Some bacterial species possess DNA methyltransferases that modify cytosines on both strands to produce fully-methylated sites or on either strand to produce hemi-methylated sites. In this study, we characterized a DNA methyltransferase that produces two sequences with different methylation patterns: one methylated on both strands and another on one strand. M.BatI is the orphan DNA methyltransferase of Bacillus anthracis coded in one of the prophages on the chromosome. Analysis of M.BatI modified DNA by bisulfite sequencing revealed that the enzyme methylates the first cytosine in sequences of 5ʹ-GCAGC-3ʹ, 5ʹ-GCTGC-3ʹ, and 5ʹ-GCGGC-3ʹ, but not of 5ʹ-GCCGC-3ʹ. This resulted in the production of fully-methylated 5ʹ-GCWGC-3ʹ and hemi-methylated 5ʹ-GCSGC-3ʹ. M.BatI also showed toxicity when expressed in E. coli, which was caused by a mechanism other than DNA modification activity. Homologs of M.BatI were found in other Bacillus species on different prophage like regions, suggesting the spread of the gene by several different phages. The discovery of the DNA methyltransferase with unique modification target specificity suggested unrevealed diversity of target sequences of bacterial cytosine DNA methyltransferase.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Tsujinouchi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase. PLoS One 2015; 10:e0128092. [PMID: 25993347 PMCID: PMC4437897 DOI: 10.1371/journal.pone.0128092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.
Collapse
|
4
|
Lukinavicius G, Lapinaite A, Urbanaviciute G, Gerasimaite R, Klimasauskas S. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Res 2012; 40:11594-602. [PMID: 23042683 PMCID: PMC3526304 DOI: 10.1093/nar/gks914] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.
Collapse
Affiliation(s)
- Grazvydas Lukinavicius
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, 02241 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
5
|
Kumar R, Sabareesh V, Mukhopadhyay AK, Rao DN. Mutations in hpyAVIBM, C⁵ cytosine DNA methyltransferase from Helicobacter pylori result in relaxed specificity. FEBS J 2012; 279:1080-92. [PMID: 22269034 DOI: 10.1111/j.1742-4658.2012.08502.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genome of Helicobacter pylori is rich in restriction-modification (RM) systems. Approximately 4% of the genome codes for components of RM systems. hpyAVIBM, which codes for a phase-variable C(5) cytosine methyltransferase (MTase) from H. pylori, lacks a cognate restriction enzyme. Over-expression of M.HpyAVIB in Escherichia coli enhances the rate of mutations. However, when the catalytically inactive F9N or C82W mutants of M.HpyAVIB were expressed in E. coli, mutations were not observed. The M.HpyAVIB gene itself was mutated to give rise to different variants of the MTase. M.HpyAVIB variants were purified and differences in kinetic properties and specificity were observed. Intriguingly, purified MTase variants showed relaxed substrate specificity. Homologues of hpyAVIBM homologues amplified and sequenced from different clinical isolates showed similar variations in sequence. Thus, hpyAVIBM presents an interesting example of allelic variations in H. pylori where changes in the nucleotide sequence result in proteins with new properties.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
6
|
Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 2011; 409:758-72. [PMID: 21549127 DOI: 10.1016/j.jmb.2011.04.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 12/24/2022]
Abstract
The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.
Collapse
Affiliation(s)
- Amir H Moarefi
- Department of Molecular and Cellular Biology, One Shields Avenue, Briggs Hall, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
7
|
Gerasimaitė R, Merkienė E, Klimašauskas S. Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase. Nucleic Acids Res 2011; 39:3771-80. [PMID: 21245034 PMCID: PMC3089467 DOI: 10.1093/nar/gkq1329] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylation of the five position of cytosine in DNA plays important roles in epigenetic regulation in diverse organisms including humans. The transfer of methyl groups from the cofactor S-adenosyl-l-methionine is carried out by methyltransferase enzymes. Using the paradigm bacterial methyltransferase M.HhaI we demonstrate, in a chemically unperturbed system, the first direct real-time analysis of the key mechanistic events—the flipping of the target cytosine base and its covalent activation; these changes were followed by monitoring the hyperchromicity in the DNA and the loss of the cytosine chromophore in the target nucleotide, respectively. Combined with studies of M.HhaI variants containing redesigned tryptophan fluorophores, we find that the target base flipping and the closure of the mobile catalytic loop occur simultaneously, and the rate of this concerted motion inversely correlates with the stability of the target base pair. Subsequently, the covalent activation of the target cytosine is closely followed by but is not coincident with the methyl group transfer from the bound cofactor. These findings provide new insights into the temporal mechanism of this physiologically important reaction and pave the way to in-depth studies of other base-flipping systems.
Collapse
Affiliation(s)
- Rūta Gerasimaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
8
|
Champion C, Guianvarc'h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, Arimondo PB, Guieysse-Peugeot AL. Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One 2010; 5:e12388. [PMID: 20808780 PMCID: PMC2927531 DOI: 10.1371/journal.pone.0012388] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/03/2010] [Indexed: 12/22/2022] Open
Abstract
In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.
Collapse
Affiliation(s)
| | - Dominique Guianvarc'h
- Laboratoire des Biomolécules, UPMC Université Paris 06, CNRS, ENS, FR, Paris, France
| | | | - Renata Z. Jurkowska
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Albert Jeltsch
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Loïc Ponger
- MNHN CNRS UMR7196, Paris, France
- INSERM U565, Paris, France
| | - Paola B. Arimondo
- MNHN CNRS UMR7196, Paris, France
- INSERM U565, Paris, France
- * E-mail: (PBA); (ALGP)
| | | |
Collapse
|
9
|
Darii MV, Cherepanova NA, Subach OM, Kirsanova OV, Raskó T, Ślaska-Kiss K, Kiss A, Deville-Bonne D, Reboud-Ravaux M, Gromova ES. Mutational analysis of the CG recognizing DNA methyltransferase SssI: Insight into enzyme–DNA interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1654-62. [DOI: 10.1016/j.bbapap.2009.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/09/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
10
|
Orchestration of Haemophilus influenzae RecJ Exonuclease by Interaction with Single-Stranded DNA-Binding Protein. J Mol Biol 2009; 385:1375-96. [DOI: 10.1016/j.jmb.2008.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
|
11
|
Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Biochem J 2008; 410:543-53. [PMID: 17995451 DOI: 10.1042/bj20070900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.
Collapse
|
12
|
Damelin M, Bestor TH. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol Cell Biol 2007; 27:3891-9. [PMID: 17371843 PMCID: PMC1900033 DOI: 10.1128/mcb.00036-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1) has been reported to interact with a wide variety of factors and to contain intrinsic transcriptional repressor activity. When a conservative point mutation was introduced at the key catalytic residue, mutant DNMT1 failed to rescue any of the phenotypes of Dnmt1-null embryonic stem (ES) cells, which indicated that the biological functions of DNMT1 are exerted through the methylation of DNA. ES cells that expressed the mutant protein did not survive differentiation. Intracisternal A-particle family retrotransposons were no longer methylated and were transcribed at high levels. The proper localization of DNMT1 depended on normal genomic methylation, and we discuss the implications of this finding for epigenetic dysregulation in cancer.
Collapse
Affiliation(s)
- Marc Damelin
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
13
|
Chuluunbaatar T, Ivanenko-Johnston T, Fuxreiter M, Meleshko R, Raskó T, Simon I, Heitman J, Kiss A. An EcoRI-RsrI chimeric restriction endonuclease retains parental sequence specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:583-94. [PMID: 17442645 DOI: 10.1016/j.bbapap.2007.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/16/2022]
Abstract
To test their structural and functional similarity, hybrids were constructed between EcoRI and RsrI, two restriction endonucleases recognizing the same DNA sequence and sharing 50% amino acid sequence identity. One of the chimeric proteins (EERE), in which the EcoRI segment His147-Ala206 was replaced with the corresponding RsrI segment, showed EcoRI/RsrI-specific endonuclease activity. EERE purified from inclusion bodies was found to have approximately 100-fold weaker activity but higher specific DNA binding affinity, than EcoRI. Increased binding is consistent with results of molecular dynamics simulations, which indicate that the number of hydrogen bonds formed with the recognition sequence increased in the chimera as compared to EcoRI. The success of obtaining an EcoRI-RsrI hybrid endonuclease, which differs from EcoRI by 22 RsrI-specific amino acid substitutions and still preserves canonical cleavage specificity, is a sign of structural and functional similarity shared by the parental enzymes. This conclusion is also supported by computational studies, which indicate that construction of the EERE chimera did not induce substantial changes in the structure of EcoRI. Surprisingly, the chimeric endonuclease was more toxic to cells not protected by EcoRI methyltransferase, than the parental EcoRI mutant. Molecular modelling revealed structural alterations, which are likely to impede coupling between substrate recognition and cleavage and suggest a possible explanation for the toxic phenotype.
Collapse
Affiliation(s)
- Tungalag Chuluunbaatar
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shieh FK, Youngblood B, Reich NO. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI. J Mol Biol 2006; 362:516-27. [PMID: 16926025 DOI: 10.1016/j.jmb.2006.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Arg165 forms part of a previously identified base flipping motif in the bacterial DNA cytosine methyltransferase, M.HhaI. Replacement of Arg165 with Ala has no detectable effect on either DNA or AdoMet affinity, yet causes the base flipping and restacking transitions to be decreased approximately 16 and 190-fold respectively, thus confirming the importance of this motif. However, these kinetic changes cannot account for the mutant's observed 10(5)-fold decreased catalytic rate. The mutant enzyme/cognate DNA cocrystal structure (2.79 A resolution) shows the target cytosine to be positioned approximately 30 degrees into the major groove, which is consistent with a major groove pathway for nucleotide flipping. The pyrimidine-sugar chi angle is rotated to approximately +171 degrees, from a range of -95 degrees to -120 degrees in B DNA, and -77 degrees in the WT M.HhaI complex. Thus, Arg165 is important for maintaining the cytosine positioned for nucleophilic attack by Cys81. The cytosine sugar pucker is in the C2'-endo-C3'-exo (South conformation), in contrast to the previously reported C3'-endo (North conformation) described for the original 2.70 A resolution cocrystal structure of the WT M.HhaI/DNA complex. We determined a high resolution structure of the WT M.HhaI/DNA complex (1.96 A) to better determine the sugar pucker. This new structure is similar to the original, lower resolution WT M.HhaI complex, but shows that the sugar pucker is O4'-endo (East conformation), intermediate between the South and North conformers. In summary, Arg165 plays significant roles in base flipping, cytosine positioning, and catalysis. Furthermore, the previously proposed M.HhaI-mediated changes in sugar pucker may not be an important contributor to the base flipping mechanism. These results provide insights into the base flipping and catalytic mechanisms for bacterial and eukaryotic DNA methyltransferases.
Collapse
Affiliation(s)
- Fa-Kuen Shieh
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
15
|
Gowher H, Loutchanwoot P, Vorobjeva O, Handa V, Jurkowska RZ, Jurkowski TP, Jeltsch A. Mutational Analysis of the Catalytic Domain of the Murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 2006; 357:928-41. [PMID: 16472822 DOI: 10.1016/j.jmb.2006.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/22/2005] [Accepted: 01/08/2006] [Indexed: 11/15/2022]
Abstract
On the basis of amino acid sequence alignments and structural data of related enzymes, we have performed a mutational analysis of 14 amino acid residues in the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. The target residues are located within the ten conserved amino acid sequence motifs characteristic for cytosine-C5 methyltransferases and in the putative DNA recognition domain of the enzyme (TRD). Mutant proteins were purified and tested for their catalytic properties and their abilities to bind DNA and AdoMet. We prepared a structural model of Dnmt3a to interpret our results. We demonstrate that Phe50 (motif I) and Glu74 (motif II) are important for AdoMet binding and catalysis. D96A (motif III) showed reduced AdoMet binding but increased activity under conditions of saturation with S-adenosyl-L-methionine (AdoMet), indicating that the contact of Asp96 to AdoMet is not required for catalysis. R130A (following motif IV), R241A and R246A (in the TRD), R292A, and R297A (both located in front of motif X) showed reduced DNA binding. R130A displayed a strong reduction in catalytic activity and a complete change in flanking sequence preferences, indicating that Arg130 has an important role in the DNA interaction of Dnmt3a. R292A also displayed reduced activity and changes in the flanking sequence preferences, indicating a potential role in DNA contacts farther away from the CG target site. N167A (motif VI) and R202A (motif VIII) have normal AdoMet and DNA binding but reduced catalytic activity. While Asn167 might contribute to the positioning of residues from motif VI, according to structural data Arg202 has a role in catalysis of cytosine-C5 methyltransferases. The R295A variant was catalytically inactive most likely because of destabilization of the hinge sub-domain of the protein.
Collapse
Affiliation(s)
- Humaira Gowher
- International University Bremen, Biochemistry, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Dalhoff C, Lukinavicius G, Klimasăuskas S, Weinhold E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2005; 2:31-2. [PMID: 16408089 DOI: 10.1038/nchembio754] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/07/2005] [Indexed: 11/09/2022]
Abstract
S-Adenosyl-L-methionine (AdoMet) is the major methyl donor for biological methylation reactions catalyzed by methyltransferases. We report the first chemical synthesis of AdoMet analogs with extended carbon chains replacing the methyl group and their evaluation as cofactors for all three classes of DNA methyltransferases. Extended groups containing a double or triple bond in the beta position to the sulfonium center were transferred onto DNA in a catalytic and sequence-specific manner, demonstrating a high utility of such synthetic cofactors for targeted functionalization of biopolymers.
Collapse
Affiliation(s)
- Christian Dalhoff
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
17
|
Estabrook RA, Lipson R, Hopkins B, Reich N. The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes. J Biol Chem 2004; 279:31419-28. [PMID: 15143064 DOI: 10.1074/jbc.m402950200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.
Collapse
Affiliation(s)
- R August Estabrook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
18
|
Bujnicki JM, Feder M, Ayres CL, Redman KL. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res 2004; 32:2453-63. [PMID: 15121902 PMCID: PMC419452 DOI: 10.1093/nar/gkh564] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three types of methyltransferases (MTases) generate 5-methylpyrimidine in nucleic acids, forming m5U in RNA, m5C in RNA and m5C in DNA. The DNA:m5C MTases have been extensively studied by crystallographic, biophysical, biochemical and computational methods. On the other hand, the sequence-structure-function relationships of RNA:m5C MTases remain obscure, as do the potential evolutionary relationships between the three types of 5-methylpyrimidine-generating enzymes. Sequence analyses and homology modeling of the yeast tRNA:m5C MTase Trm4p (also called Ncl1p) provided a structural and evolutionary platform for identification of catalytic residues and modeling of the architecture of the RNA:m5C MTase active site. The analysis led to the identification of two invariant residues that are important for Trm4p activity in addition to the conserved Cys residues in motif IV and motif VI that were previously found to be critical. The newly identified residues include a Lys residue in motif I and an Asp in motif IV. A conserved Gln found in motif X was found to be dispensable for MTase activity. Locations of essential residues in the model of Trm4p are in very good agreement with the X-ray structure of an RNA:m5C MTase homolog PH1374. Theoretical and experimental analyses revealed that RNA:m5C MTases share a number of features with either RNA:m5U MTases or DNA:m5C MTases, which suggested a tentative phylogenetic model of relationships between these three classes of 5-methylpyrimidine MTases. We infer that RNA:m5C MTases evolved from RNA:m5U MTases by acquiring an additional Cys residue in motif IV, which was adapted to function as the nucleophilic catalyst only later in DNA:m5C MTases, accompanied by loss of the original Cys from motif VI, transfer of a conserved carboxylate from motif IV to motif VI and sequence permutation.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
19
|
Reither S, Li F, Gowher H, Jeltsch A. Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. J Mol Biol 2003; 329:675-84. [PMID: 12787669 DOI: 10.1016/s0022-2836(03)00509-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Co-transfections of reporter plasmids and plasmids encoding the catalytic domain of the murine Dnmt3a DNA methyltransferase lead to inhibition of reporter gene expression. As Dnmt3a mutants with C-->A and E-->A exchanges in the conserved PCQ and ENV motifs in the catalytic center of the enzyme also cause repression, we checked for their catalytic activity in vitro. Surprisingly, the activity of the cysteine variant and of the corresponding full-length Dnmt3a variant is only two to sixfold reduced with respect to wild-type Dnmt3a. In contrast, enzyme variants carrying E-->A, E-->D or E-->Q exchanges of the ENV glutamate are catalytically almost inactive, demonstrating that this residue has a central function in catalysis. Since the glutamic acid residue contacts the flipped base, its main function could be to hold the target base at a position that supports methyl group transfer. Whereas wild-type Dnmt3a and the ENV variants form covalent complexes with 5-fluorocytidine modified DNA, the PCN variant does not. Therefore, covalent complex formation is not essential in the reaction mechanism of Dnmt3a. We propose that correct positioning of the flipped base and the cofactor and binding to the transition state of methyl group transfer are the most important roles of the Dnmt3a enzyme in the catalytic cycle of methyl group transfer.
Collapse
Affiliation(s)
- Sabine Reither
- Institut für Biochemie, FB 8, Justus-Liebig Universität, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | | | | | | |
Collapse
|
20
|
McNamara AR, Hurd PJ, Smith AEF, Ford KG. Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships. Nucleic Acids Res 2002; 30:3818-30. [PMID: 12202767 PMCID: PMC137423 DOI: 10.1093/nar/gkf501] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA methylation is now seen as a primary signal in the cell for mediating transcriptional repression through chromatin formation. The construction and evaluation of enzymes capable of influencing this process in vivo is therefore of significant interest. We have fused the C5-cytosine DNA methyltransferases, M.HhaI and M.HpaII, which both methylate 4 bp sequences containing a CpG dinucleotide, to a three zinc finger protein recognising a 9 bp DNA sequence. DNA methylation analyses demonstrate specific DNA methylation by both enzymes at target sites comprising adjacent methyltransferase and zinc finger subsites, targeted M.HpaII being the most specific. Binding analysis of the targeted M.HpaII enzyme reveals an 8-fold preference for binding to its target site, compared to binding to a zinc finger site alone, and an 18-fold preference over binding to a methyltransferase site alone, thereby demonstrating enhanced binding by the fusion protein, compared to its component proteins. Both DNA binding and methylation are specific for the target site up to separations of approximately 40 bp between the zinc finger and methyltransferase subsites. Ex vivo plasmid methylation experiments are also described that demonstrate targeted methylation. These targeted enzymes, however, are shown to be not fully mono-functional, retaining a significant non-targeted activity most evident at elevated protein concentrations.
Collapse
Affiliation(s)
- Andrew R McNamara
- Department of Molecular Medicine, Guy's, King's and St Thomas' School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
21
|
Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21:5483-95. [PMID: 12154409 DOI: 10.1038/sj.onc.1205699] [Citation(s) in RCA: 1024] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However, because of 5-azacytidine's general toxicity, other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that, when present in DNA, it inhibited DNA methylation, led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here, the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
Collapse
Affiliation(s)
- Judith K Christman
- Department of Biochemistry and Molecular Biology and UNMC/Eppley Cancer Center, University of Nebraska Medical Center, 984525 University Medical Center, Omaha, Nebraska, NE 68198-4525, USA.
| |
Collapse
|
22
|
Sankpal UT, Rao DN. Mutational analysis of conserved residues in HhaI DNA methyltransferase. Nucleic Acids Res 2002; 30:2628-38. [PMID: 12060679 PMCID: PMC117292 DOI: 10.1093/nar/gkf380] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.
Collapse
Affiliation(s)
- Umesh T Sankpal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
23
|
Franchina M, Hooper J, Kay PH. Five novel alternatively spliced transcripts of DNA (cytosine-5) methyltransferase 2 in human peripheral blood leukocytes. Int J Biochem Cell Biol 2001; 33:1104-15. [PMID: 11551826 DOI: 10.1016/s1357-2725(01)00074-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alternative splicing of RNA molecules transcribed from DNA (cytosine-5) methyltransferases has been proposed as a mechanism by which methylation is able to effect diverse biological processes in higher eukaryotes. This study has investigated transcriptional versatility of DNA (cytosine-5) methyltransferase 2, which may methylate cytosine residues within 5'-CCTGG-3' pentanucleotides in regions of the human genome devoid of 5'-CG-3' methylation. Five novel splice variants of DNA (cytosine-5) methyltransferase 2 were identified in the peripheral blood leukocytes of healthy subjects following cloning and sequencing of RT-PCR products amplified using gene specific oligodeoxyribonucleotide primers. The generation of some of these splice variants may be influenced by the formation of secondary structures within pre-mRNA due to the repetition of sequences flanking alternatively spliced exons in a reverse and complementary orientation on the same strand. These findings enable novel approaches to investigate the role of RNA secondary structures in alternative splicing. The DNA (cytosine-5) methyltransferase 2 splice variants are generated in all the major cell types of peripheral blood, as well as in neoplastic lymphoid cells indicating that they are unlikely to generate proteins involved in control of the cell cycle or cellular differentiation. Interestingly, the gene products generated by some splice variants completely or partially lack highly conserved amino acid motifs shown to be important for the catalysis of cytosine methylation. The possibility cannot be excluded, therefore, that alternative splicing of DNA (cytosine-5) methyltransferase 2 pre-mRNA may generate protein isoforms which have different methylating capabilities or which are involved in biological processes other than the catalysis of cytosine methylation.
Collapse
Affiliation(s)
- M Franchina
- Molecular Pathology Laboratory, Department of Pathology, The University of Western Australia, WA 6907, Nedlands, Australia
| | | | | |
Collapse
|
24
|
Lindstrom WM, Flynn J, Reich NO. Reconciling structure and function in HhaI DNA cytosine-C-5 methyltransferase. J Biol Chem 2000; 275:4912-9. [PMID: 10671528 DOI: 10.1074/jbc.275.7.4912] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-steady state partitioning analysis of the HhaI DNA methyltransferase directly demonstrates the catalytic competence of the enzyme.DNA complex and the lack of catalytic competence of the enzyme.S-adenosyl-L-methionine (AdoMet) complex. The enzyme.AdoMet complex does form, albeit with a 50-fold decrease in affinity compared with the ternary enzyme.AdoMet.DNA complex. These findings reconcile the distinct binding orientations previously observed within the binary enzyme.AdoMet and ternary enzyme. S-adenosyl-L-homocysteine.DNA crystal structures. The affinity of the enzyme for DNA is increased 900-fold in the presence of its cofactor, and the preference for hemimethylated DNA is increased to 12-fold over unmethylated DNA. We suggest that this preference is partially due to the energetic cost of retaining a cavity in place of the 5-methyl moiety in the ternary complex with the unmethylated DNA, as revealed by the corresponding crystal structures. The hemi- and unmethylated substrates alter the fates and lifetimes of discrete enzyme.substrate intermediates during the catalytic cycle. Hemimethylated substrates partition toward product formation versus dissociation significantly more than unmethylated substrates. The mammalian DNA cytosine-C-5 methyltransferase Dnmt1 shows an even more pronounced partitioning toward product formation.
Collapse
Affiliation(s)
- W M Lindstrom
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
25
|
Hsieh CL. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 1999; 19:8211-8. [PMID: 10567546 PMCID: PMC84905 DOI: 10.1128/mcb.19.12.8211] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 09/08/1999] [Indexed: 11/20/2022] Open
Abstract
The putative de novo methyltransferases, Dnmt3a and Dnmt3b, were reported to have weak methyltransferase activity in methylating the 3' long terminal repeat of Moloney murine leukemia virus in vitro. The activity of these enzymes was evaluated in vivo, using a stable episomal system that employs plasmids as targets for DNA methylation in human cells. De novo methylation of a subset of the CpG sites on the stable episomes is detected in human cells overexpressing the murine Dnmt3a or Dnmt3b1 protein. This de novo methylation activity is abolished when the cysteine in the P-C motif, which is the catalytic site of cytosine methyltransferases, is replaced by a serine. The pattern of methylation on the episome is nonrandom, and different regions of the episome are methylated to different extents. Furthermore, Dnmt3a also methylates the sequence methylated by Dnmt3a on the stable episome in the corresponding chromosomal target. Overexpression of human DNMT1 or murine Dnmt3b does not lead to the same pattern or degree of de novo methylation on the episome as overexpression of murine Dnmt3a. This finding suggests that these three enzymes may have different targets or requirements, despite the fact that weak de novo methyltransferase activity has been demonstrated in vitro for all three enzymes. It is also noteworthy that both Dnmt3a and Dnmt3b proteins coat the metaphase chromosomes while displaying a more uniform pattern in the nucleus. This is the first evidence that Dnmt3a and Dnmt3b have de novo methyltransferase function in vivo and the first indication that the Dnmt3a and Dnmt3b proteins may have preferred target sites.
Collapse
Affiliation(s)
- C L Hsieh
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Norris Cancer Center, Los Angeles, California 90033, USA
| |
Collapse
|
26
|
Hurd PJ, Whitmarsh AJ, Baldwin GS, Kelly SM, Waltho JP, Price NC, Connolly BA, Hornby DP. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 1999; 286:389-401. [PMID: 9973559 DOI: 10.1006/jmbi.1998.2491] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine.
Collapse
Affiliation(s)
- P J Hurd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, Western Bank, S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Marquez VE, Marasco CJ, Sufrin JR, O'gara M, Cheng X. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol 1999; 285:2021-34. [PMID: 9925782 DOI: 10.1006/jmbi.1998.2426] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A key step in the predicted mechanism of enzymatic transfer of methyl groups from S-adenosyl-l-methionine (AdoMet) to cytosine residues in DNA is the transient formation of a dihydrocytosine intermediate covalently linked to cysteine in the active site of a DNA (cytosine C5)-methyltransferase (DNA C5-MTase). Crystallographic analysis of complexes formed by HhaI methyltransferase (M.HhaI), AdoMet and a target oligodeoxyribonucleotide containing 5-fluorocytosine confirmed the existence of this dihydrocytosine intermediate. Based on the premise that 5,6-dihydro-5-azacytosine (DZCyt), a cytosine analog with an sp3-hybridized carbon (CH2) at position 6 and an NH group at position 5, could mimic the non-aromatic character of the cytosine ring in this transition state, we synthesized a series of synthetic substrates for DNA C5-MTase containing DZCyt. Substitution of DZCyt for target cytosines in C-G dinucleotides of single-stranded or double-stranded oligodeoxyribonucleotide substrates led to complete inhibition of methylation by murine DNA C5-MTase. Substitution of DZCyt for the target cytosine in G-C-G-C sites in double-stranded oligodeoxyribonucleotides had a similar effect on methylation by M. HhaI. Oligodeoxyribonucleotides containing DZCyt formed a tight but reversible complex with M.HhaI, and were consistently more potent as inhibitors of DNA methylation than oligodeoxyribonucleotides identical in sequence containing 5-fluorocytosine. Crystallographic analysis of a ternary complex involving M.HhaI, S-adenosyl-l-homocysteine and a double-stranded 13-mer oligodeoxyribonucleotide containing DZCyt at the target position showed that the analog is flipped out of the DNA helix in the same manner as cytosine, 5-methylcytosine, and 5-fluorocytosine. However, no formation of a covalent bond was detected between the sulfur atom of the catalytic site nucleophile, cysteine 81, and the pyrimidine C6 carbon. These results indicate that DZCyt can occupy the active site of M.HhaI as a transition state mimic and, because of the high degree of affinity of its interaction with the enzyme, it can act as a potent inhibitor of methylation.
Collapse
Affiliation(s)
- G Sheikhnejad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-4525, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reddy YV, Rao DN. Probing the role of cysteine residues in the EcoP15I DNA methyltransferase. J Biol Chem 1998; 273:23866-76. [PMID: 9726999 DOI: 10.1074/jbc.273.37.23866] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemical modification using thiol-directed agents and site-directed mutagenesis has been used to investigate the role of cysteine residues of EcoP15I DNA methyltransferase. Irreversible inhibition of enzymatic activity was provoked by chemical modification of the enzyme by N-ethylmaleimide and iodoacetamide. 5, 5'-Dithiobis(2-nitrobenzoic acid) titration of the enzyme under nondenaturing and denaturing conditions confirmed the presence of six cysteine residues without any disulfides in the protein. Aware that relatively bulky reagents inactivate the methyltransferase by directly occluding the substrate-binding site or by locking the methyltransferase in an inactive conformation, we used site-directed mutagenesis to sequentially replace each of the six cysteines in the protein at positions 30, 213, 344, 434, 553, and 577. All the resultant mutant methylases except for the C344S and C344A enzymes retained significant activity as assessed by in vivo and in vitro assays. The effects of the substitutions on the function of EcoP15I DNA methyltransferase were investigated by substrate binding assays, activity measurements, and steady-state kinetic analysis of catalysis. Our results clearly indicate that the cysteines at positions other than 344 are not essential for activity. In contrast, the C344A enzyme showed a marked loss of enzymatic activity. More importantly, whereas the inactive C344A mutant enzyme bound S-adenosyl-L-methionine, it failed to bind to DNA. Furthermore, in double and triple mutants where two or three cysteine residues were replaced by serine, all such mutants in which the cysteine at position 344 was changed, were inactive. Taken together, these results convincingly demonstrate that the Cys-344 is necessary for enzyme activity and indicate an essential role for it in DNA binding.
Collapse
Affiliation(s)
- Y V Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
29
|
Tollefsbol TO, Hutchison CA. Analysis in Escherichia coli of the effects of in vivo CpG methylation catalyzed by the cloned murine maintenance methyltransferase. Biochem Biophys Res Commun 1998; 245:670-8. [PMID: 9588173 DOI: 10.1006/bbrc.1998.8422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due in part to the complexity of mammalian systems, some of the proposed biological influences of mammalian DNA methylation have not been fully established. Escherichia coli cells, which normally contain negligible CpG methylation, exhibited progressive slowing of replication and lengthened generation times when expressing the murine DNA maintenance methyltransferase. Genomic analysis indicated significant amounts of CpG methylation in expressing cells which was absent from control cells. Expressing cells exposed to the cytosine demethylating agent, 5-azacytidine, rapidly reverted to propagation levels of controls. Substitution of cysteine with alanine in the carboxyl-terminal region proline-cysteine dipeptide of the methyltransferase completely inactivated methylating activity and cells expressing the inactive enzyme replicated as well as controls. These findings strongly implicate a role of epigenetic de novo CpG methylation in modulating cellular propagation, demonstrate that the maintenance methyltransferase can de novo methylate in vivo, and show that the methyltransferase requires an active site cysteine for activity.
Collapse
Affiliation(s)
- T O Tollefsbol
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599, USA.
| | | |
Collapse
|
30
|
O'Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X. Expression, purification, mass spectrometry, crystallization and multiwavelength anomalous diffraction of selenomethionyl PvuII DNA methyltransferase (cytosine-N4-specific). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1009-18. [PMID: 9288926 DOI: 10.1111/j.1432-1033.1997.01009.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The type II DNA-methyltransferase (cytosine N4-specific) M.PvuII was overexpressed in Escherichia coli, starting from the internal translation initiator at Met14. Selenomethionine was efficiently incorporated into this short form of M.PvuII by a strain prototrophic for methionine. Both native and selenomethionyl M.PvuII were purified to apparent homogeneity by a two-column chromatography procedure. The yield of purified protein was approximately 1.8 mg/g bacterial paste. Mass spectrometry analysis of selenomethionyl M.PvuII revealed three major forms that probably differ in the degree of selenomethionine incorporation and the extent of selenomethionine oxidation. Amino acid sequencing and mass spectrometry analysis of selenomethionine-containing peptides suggests that Met30, Met51, and Met261 were only partially replaced by selenomethionine. Furthermore, amino acid 261 may be preferentially oxidized in both native and selenomethionyl form. Selenomethionyl and native M.PvuII were crystallized separately as binary complexes of the methyl donor S-adenosyl-L-methionine in the monoclinic space group P2(1). Two complexes were present per asymmetric unit. Six out of nine selenium positions (per molecule), including the three that were found to be partially substituted, were identified crystallographically.
Collapse
Affiliation(s)
- M O'Gara
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kumar S, Horton JR, Jones GD, Walker RT, Roberts RJ, Cheng X. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res 1997; 25:2773-83. [PMID: 9207024 PMCID: PMC146812 DOI: 10.1093/nar/25.14.2773] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.
Collapse
Affiliation(s)
- S Kumar
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.
Collapse
Affiliation(s)
- I Ahmad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
33
|
Kossykh VG, Schlagman SL, Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase. FEBS Lett 1995; 370:75-7. [PMID: 7649307 DOI: 10.1016/0014-5793(95)00795-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ProCys in the conserved sequence motif IV of [cytosine-C5]-DNA methyltransferases is known to be part of the catalytic site. The Cys residue is directly involved in forming a covalent bond with the C6 of the target cytosine. We have found that substitution of Pro-185 with either Ala or Ser resulted in a reduced rate of methyl group transfer by the EcoRII DNA methyltransferase. In addition, we observed an increase in the Km for substrate S-adenosyl-L-methionine (AdoMet), but a decrease in the Km for substrate DNA. This is reflected in minor changes in kcat/Km for DNA, but in 10- to 100-fold reductions in kcat/Km for AdoMet. This suggests that Pro-185 is important to properly orient the activated cytosine and AdoMet for methyl group transfer by direct interaction with AdoMet and indirectly via the Cys interaction with cytosine.
Collapse
Affiliation(s)
- V G Kossykh
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | |
Collapse
|
34
|
Yang AS, Shen JC, Zingg JM, Mi S, Jones PA. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res 1995; 23:1380-7. [PMID: 7753629 PMCID: PMC306865 DOI: 10.1093/nar/23.8.1380] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hydrolytic deamination of 5-methylcytosine (5-mC) to thymine (T) is believed to be responsible for the high mutability of the CpG dinucleotide in DNA. We have shown a possible alternate mechanism for mutagenesis at CpG in which HpaII DNA-(cytosine-5) methyltransferase (M.HpaII) can enzymatically deaminate cytosine (C) to uracil (U) in DNA [Shen, J.-C., Rideout, W.M., III and Jones, P.A., Cell, 71, 1073-1080, (1992)]. Both the hydrolytic deamination of 5-mC and enzymatic deamination of C create premutagenic DNA mismatches (G:U and G:T) with the guanine (G) originally paired to the normal C. Surprisingly, we found that DNA-(cytosine-5) methyltransferases have higher affinities for these DNA mismatches than for their normal G:C targets and are capable of transferring a methyl group to the 5-position of U, creating T at low efficiencies. This binding by methyltransferase to mismatches at the recognition site prevented repair of G:U mismatches by uracil DNA glycosylase in vitro.
Collapse
Affiliation(s)
- A S Yang
- Department of Biochemistry and Molecular Biology, Kenneth Norris Jr Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
35
|
Klimasauskas S, Roberts RJ. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res 1995; 23:1388-95. [PMID: 7753630 PMCID: PMC306866 DOI: 10.1093/nar/23.8.1388] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The (cytosine-5) DNA methyltransferase M.HhaI causes its target cytosine base to be flipped completely out of the DNA helix upon binding. We have investigated the effects of replacing the target cytosine by other, mismatched bases, including adenine, guanine, thymine and uracil. We find that M.HhaI binds more tightly to such mismatched substrates and can even transfer a methyl group to uracil if a G:U mismatch is present. Other mismatched substrates in which the orphan guanine is changed exhibit similar behavior. Overall, the affinity of DNA binding correlates inversely with the stability of the target base pair, while the nature of the target base appears irrelevant for complex formation. The presence of a cofactor analog. S-adenosyl-L-homocysteine, greatly enhances the selectivity of the methyltransferase for cytosine at the target site. We propose that the DNA methyltransferases have evolved from mismatch binding proteins and that base flipping was, and still is, a key element in many DNA-enzyme interactions.
Collapse
Affiliation(s)
- S Klimasauskas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
36
|
Mi S, Alonso D, Roberts RJ. Functional analysis of Gln-237 mutants of HhaI methyltransferase. Nucleic Acids Res 1995; 23:620-7. [PMID: 7899082 PMCID: PMC306729 DOI: 10.1093/nar/23.4.620] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
When the HhaI (cytosine-5) methyltransferase (M.HhaI) binds DNA it causes the target cytosine to be flipped 180 degrees out of the helix. The space becomes occupied by two amino acids, Ser-87 and Gln-237, which enter the helix from opposite sides and form a hydrogen bond to each other. Gln-237 may be involved in specific sequence recognition since it forms three hydrogen bonds to the orphan guanosine, which is the partner of the target cytosine. We have prepared all 19 mutants of Gln-237 and tested their biochemical properties. We find that mutations of this residue greatly affect the stability of the M.HhaI-DNA complex without affecting the enzyme's specificity for the target sequence. Surprisingly, all mutants retain detectable levels of enzymatic activity.
Collapse
Affiliation(s)
- S Mi
- Cold Spring Harbor Laboratory, New York, NY 11724
| | | | | |
Collapse
|
37
|
Abstract
Enzymatic methylation of DNA plays important roles in both prokaryotes and eukaryotes. Structural study of the HhaI DNA methyltransferase has provided considerable insight into the chemistry of C5-cytosine methylation. The DNA-protein complex reveals a substrate cytosine flipped out of the double helix during the reaction, and a novel two-loop DNA-binding motif used for both sequence recognition and flipping the base. Structural comparison of HhaI C5-cytosine methyltransferase, TaqI N6-adenine methyltransferase, and catechol O-methyltransferase reveals a common catalytic domain structure, which might be universal among S-adenosyl-L-methionine (SAM)-dependent methyltransferases.
Collapse
Affiliation(s)
- X Cheng
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, New York 11724, USA
| |
Collapse
|
38
|
Wilkinson CR, Bartlett R, Nurse P, Bird AP. The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Nucleic Acids Res 1995; 23:203-10. [PMID: 7862522 PMCID: PMC306655 DOI: 10.1093/nar/23.2.203] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA methylation of cytosine residues is a widespread phenomenon and has been implicated in a number of biological processes in both prokaryotes and eukaryotes. This methylation occurs at the 5-position of cytosine and is catalyzed by a distinct family of conserved enzymes, the cytosine-5 methyltransferases (m5C-MTases). We have cloned a fission yeast gene pmt1+ (pombe methyltransferase) which encodes a protein that shares significant homology with both prokaryotic and eukaryotic m5C-MTases. All 10 conserved domains found in these enzymes are present in the pmt1 protein. This is the first m5C-MTase homologue cloned from a fungal species. Its presence is surprising, given the inability to detect DNA methylation in yeasts. Haploid cells lacking the pmt1+ gene are viable, indicating that pmt1+ is not an essential gene. Purified, bacterially produced pmt1 protein does not possess obvious methyltransferase activity in vitro. Thus the biological significance of the m5C-MTase homologue in fission yeast is currently unclear.
Collapse
Affiliation(s)
- C R Wilkinson
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
39
|
Szilák L, Finta C, Patthy A, Venetianer P, Kiss A. Self-methylation of BspRI DNA-methyltransferase. Nucleic Acids Res 1994; 22:2876-81. [PMID: 8065896 PMCID: PMC310249 DOI: 10.1093/nar/22.15.2876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA (cytosine-5)-methyltransferase (m5C-MTase) M.BspRI is able to accept the methyl group from the methyl donor S-adenosyl-L-methionine (AdoMet) in the absence of DNA. Transfer of the methyl group to the enzyme is a slow reaction relative to DNA methylation. Self-methylation is dependent on the native conformation of the enzyme and is inhibited by S-adenosyl-L-homocysteine, DNA and sulfhydryl reagents. Amino acid sequencing of proteolytic peptides obtained from M.BspRI, which had been methylated with [methyl-3H]AdoMet, and thin layer chromatography of the modified amino acid identified two cysteines, Cys156 and Cys181 that bind the methyl group in form of S-methylcysteine. One of the acceptor residues, Cys156 is the highly conserved cysteine which plays the role of the catalytic nucleophile of m5C-MTases.
Collapse
Affiliation(s)
- L Szilák
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
40
|
Roberts RJ. Eine verblüffende Verzerrung von DNA, hervorgerufen durch eine Methyltransferase (Nobel-Vortrag). Angew Chem Int Ed Engl 1994. [DOI: 10.1002/ange.19941061206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Roberts RJ. An Amazing Distortion in DNA Induced by a Methyltransferase (Nobel Lecture). ACTA ACUST UNITED AC 1994. [DOI: 10.1002/anie.199412221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Affiliation(s)
- R J Roberts
- New England Biolabs, Beverly, Massachusetts 01915
| |
Collapse
|
43
|
Abstract
Mammals have long been known to tag their DNA by the addition of methyl groups to cytosine residues. Only quite recently, however, has the functional significance of DNA methylation established a firm footing. Evidence now indicates that DNA methylation is essential for development, and is involved in both programmed and ectopic gene inactivation. Recent structural and mechanistic work on bacterial cytosine-5-methyltransferases has provided much insight into the function of the carboxy-terminal catalytic domain of eukaryotic cytosine-5-methyltransferases; evidence is emerging that the amino-terminal domain targets the enzyme to the replication machinery and may be involved in sensing the pre-existing methylation state of the DNA.
Collapse
Affiliation(s)
- T H Bestor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
44
|
Abstract
The crystal structure has been determined at 2.8 A resolution for a chemically-trapped covalent reaction intermediate between the HhaI DNA cytosine-5-methyltransferase, S-adenosyl-L-homocysteine, and a duplex 13-mer DNA oligonucleotide containing methylated 5-fluorocytosine at its target. The DNA is located in a cleft between the two domains of the protein and has the characteristic conformation of B-form DNA, except for a disrupted G-C base pair that contains the target cytosine. The cytosine residue has swung completely out of the DNA helix and is positioned in the active site, which itself has undergone a large conformational change. The DNA is contacted from both the major and the minor grooves, but almost all base-specific interactions between the enzyme and the recognition bases occur in the major groove, through two glycine-rich loops from the small domain. The structure suggests how the active nucleophile reaches its target, directly supports the proposed mechanism for cytosine-5 DNA methylation, and illustrates a novel mode of sequence-specific DNA recognition.
Collapse
Affiliation(s)
- S Klimasauskas
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York 11724
| | | | | | | |
Collapse
|
45
|
Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 1994; 22:1-10. [PMID: 8127644 PMCID: PMC307737 DOI: 10.1093/nar/22.1.1] [Citation(s) in RCA: 336] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The m5C-MTases form a closely-knit family of enzymes in which common amino acid sequence motifs almost certainly translate into common structural and functional elements. These common elements are located predominantly in a single structural domain that performs the chemistry of the reaction. Sequence-specific DNA recognition is accomplished by a separate domain that contains recognition elements not seen in other structures. This, combined with the novel and unexpected mechanistic feature of trapping a base out of the DNA helix, makes the m5C-MTases an intriguing class of enzymes for further study. The reaction pathway has suddenly become more complicated because of the base-flipping and much remains to be learned about the DNA recognition elements in the family members for which structural information is not yet available.
Collapse
Affiliation(s)
- S Kumar
- New England Biolabs, Beverly, MA 01915
| | | | | | | | | | | | | |
Collapse
|
46
|
Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 1993; 74:299-307. [PMID: 8343957 DOI: 10.1016/0092-8674(93)90421-l] [Citation(s) in RCA: 308] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first three-dimensional structure of a DNA methyltransferase is presented. The crystal structure of the DNA (cytosine-5)-methyltransferase, M.HhaI (recognition sequence: GCGC), complexed with S-adenosyl-L-methionine has been determined and refined at 2.5 A resolution. The core of the structure is dominated by sequence motifs conserved among all DNA (cytosine-5)-methyltransferases, and these are responsible for cofactor binding and methyltransferase function.
Collapse
Affiliation(s)
- X Cheng
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, New York 11724
| | | | | | | | | |
Collapse
|