1
|
Role of RIM101 for Sporulation at Alkaline pH in Ashbya gossypii. J Fungi (Basel) 2021; 7:jof7070527. [PMID: 34209071 PMCID: PMC8304098 DOI: 10.3390/jof7070527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Microorganisms need to sense and adapt to fluctuations in the environmental pH. In fungal species, this response is mediated by the conserved pacC/RIM101 pathway. In Aspergillus nidulans, PacC activates alkaline-expressed genes and represses acid-controlled genes in response to alkaline pH and has important functions in regulating growth and conidia formation. In Saccharomyces cerevisiae, the PacC homolog Rim101 is required for adaptation to extracellular pH and to regulate transcription of IME1, the Initiator of MEiosis. S. cerevisiae rim101 mutants are defective in sporulation. In Ashbya gossypii, a filamentous fungus belonging to the family of Saccharomycetaceae, little is known about the role of pH in regulating growth and sporulation. Here, we deleted the AgRIM101 homolog (AFR190C). Our analyses show that Rim101 is important for growth and essential for sporulation at alkaline pH in A. gossypii. Acidic liquid sporulation media were alkalinized by sporulating strains, while the high pH of alkaline media (starting pH = 8.6) was reduced to a pH ~ 7.5 by these strains. However, Agrim101 mutants were unable to sporulate in alkaline media and failed to reduce the initial high pH, while they were capable of sporulation in acidic liquid media in which they increased the pH like the wild type.
Collapse
|
2
|
Chen Y, Li B, Xu X, Zhang Z, Tian S. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol 2019; 20:4063-4078. [PMID: 30370586 DOI: 10.1111/1462-2920.14453] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023]
Abstract
The PacC (loss or reduction in phosphatase activity at acid but not at alkaline pH [Pac]) transcription factor regulates environmental adaptation, secondary metabolism and virulence in many fungal pathogens. Here, we report the functions of PacC in Penicillium expansum, a postharvest pathogenic fungus in horticultural crops, and ascertain that the gene expression and proteolytic processing of PePacC are strictly pH-dependent. Loss of PePacC resulted in an obvious decrease in growth and conidiation of P. expansum cultured in both acidic and alkaline conditions. The ΔPePacC mutant lost the ability of patulin production at pH values above 6.0 because expressions of all the genes in patulin cluster were significantly down-regulated. Additionally, virulence of the ΔPePacC mutant was obviously reduced in pear and apple fruits. Proteome analysis revealed that PePacC could function as an activator or repressor for different target proteins, including calreticulin (PeCRT) and sulfate adenylyltransferase (PeSAT), which were further proved to be involved in virulence of P. expansum. Our results demonstrate important roles for PePacC in patulin biosynthesis via limiting expressions of the genes in the cluster, and in pathogenesis via mediating a known virulence factor glucose oxidase (PeGOD) and new virulence factors, such as PeCRT and PeSAT.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China
| |
Collapse
|
3
|
Cervantes-Montelongo JA, Ruiz-Herrera J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. J Basic Microbiol 2018; 59:14-23. [PMID: 30357888 DOI: 10.1002/jobm.201800180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/05/2022]
Abstract
The most important signal transduction mechanism related to environmental pH responses in fungi is the Pal/Rim pathway. Our knowledge of this pathway came initially from studies on Ascomycota species where it is made by seven members divided into two complexes, one located at the plasma membrane, and other at the endosomal membrane. In Basidiomycota sepecies only the homologs of the endosomal membrane complex (genes PalA/Rim20, PalB/ Rim13, and PalC/ Rim23), plus the transcription factor PacC/Rim101 have been identified. In this study, we describe the identification in Ustilago maydis of a gene encoding a Rho-like protein (tentatively named RHO4) as a novel member of this pathway. The RHO4 gene possibly plays, among other functions, a role in the second proteolytic cleavage that leads to the activation of the transcription factor PacC/Rim101. Mutants in this gene showed a pleiotropic phenotype, displaying similar characteristics to the Pal/Rim mutants, such as a lower growth rate at alkaline pH, high sensitivity to ionic and osmotic stresses, and impairment in protease secretion, but no alteration of the yeast-to-mycelium dimorphic transition induced by acid pH whereas it has a function in the dimorphic transition induced by fatty acids.
Collapse
Affiliation(s)
- Juan A Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| |
Collapse
|
4
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
5
|
A Role for the Respiratory Chain in Regulating Meiosis Initiation in Saccharomyces cerevisiae. Genetics 2018; 208:1181-1194. [PMID: 29301906 DOI: 10.1534/genetics.118.300689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Meiosis is a specific type of cell division that is essential for sexual reproduction in most eukaryotes. Mitochondria are crucial cellular organelles that play important roles in reproduction, though the detailed mechanism by which the mitochondrial respiratory chain functions during meiosis remains elusive. Here, we show that components of the respiratory chain (Complexes I-V) play essential roles in meiosis initiation during the sporulation of budding yeast, Saccharomyces cerevisiae Any functional defects in the Complex I component Ndi1p resulted in the abolishment of sporulation. Further studies revealed that respiratory deficiency resulted in the failure of premeiotic DNA replication due to insufficient IME1 expression. In addition, respiration promoted the expression of RIM101, whose product inhibits Smp1p, a negative transcriptional regulator of IME1, to promote meiosis initiation. In summary, our studies unveiled the close relationship between mitochondria and sporulation, and uncover a novel meiosis initiation pathway that is regulated by the respiratory chain.
Collapse
|
6
|
Higuchi Y, Mori H, Kubota T, Takegawa K. Analysis of ambient pH stress response mediated by iron and copper intake in Schizosaccharomyces pombe. J Biosci Bioeng 2017; 125:92-96. [PMID: 28882432 DOI: 10.1016/j.jbiosc.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/06/2017] [Accepted: 08/17/2017] [Indexed: 11/15/2022]
Abstract
The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1+, fio1+ or fip1+ were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1+, caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4+, ctr5+, ccc2+ and cuf1+ genes, all of which are needed for regulating intracellular Cu+, displayed ambient pH sensitivity. Furthermore, supplementing Fe2+ and Cu2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Hikari Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Takeo Kubota
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
7
|
Bi F, Barad S, Ment D, Luria N, Dubey A, Casado V, Glam N, Mínguez JD, Espeso EA, Fluhr R, Prusky D. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2016; 17:1178-95. [PMID: 26666972 PMCID: PMC6638356 DOI: 10.1111/mpp.12355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.
Collapse
Affiliation(s)
- Fangcheng Bi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, and Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Amit Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Virginia Casado
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Nofar Glam
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jose Diaz Mínguez
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, 28040, Spain
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
8
|
Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genet 2016; 12:e1006075. [PMID: 27272508 PMCID: PMC4894626 DOI: 10.1371/journal.pgen.1006075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.
Collapse
Affiliation(s)
- Hilla Weidberg
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gianpiero Spedale
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Folkert J. van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
9
|
Kozak BU, van Rossum HM, Niemeijer MS, van Dijk M, Benjamin K, Wu L, Daran JMG, Pronk JT, van Maris AJA. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res 2016; 16:fow006. [PMID: 26818854 PMCID: PMC5815134 DOI: 10.1093/femsyr/fow006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald− strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald− A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity—Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. This manuscript investigates a metabolic engineering strategy to improve the use of ethanol as a feedstock for production of bio-based fuels and chemicals with yeast.
Collapse
Affiliation(s)
- Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Matthijs S Niemeijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Marlous van Dijk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Kirsten Benjamin
- Amyris Inc, 5885 Hollis Street, Ste. 100, Emeryville, CA94608, USA
| | - Liang Wu
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| |
Collapse
|
10
|
Beltcheva O, Boueva A, Tzveova R, Roussinov D, Marinova S, Kaneva R, Mitev V. Steroid-resistant nephrotic syndrome caused by novel WT1 mutation inherited from a mosaic parent. Ren Fail 2015; 38:290-3. [PMID: 26627896 DOI: 10.3109/0886022x.2015.1117906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a severe childhood disorder frequently progressing toward renal failure. Among its genetic causes are mutations in the Wilms tumor gene, WT1, which codes for a transcription factor with key role for the embryonic development of the genitourinary tract as well as for maintaining podocyte differentiation and slit diaphragm structure in adults. Defects in WT1 are associated with sporadic cases of both syndromic and isolated SRNS. We report here a novel WT1 mutation associated with SRNS in a female patient, which leads to a Cys428Ser substitution on protein level, affecting one of the cysteine residues responsible for zinc binding in the second zinc finger domain. Surprisingly, the mutation identified in the patient was found to be inherited from the healthy mosaic mother. The presence of mosaicism was confirmed using quantitative polymerase chain reaction (PCR) high-resolution melting. The clinical implications of this finding for the family are discussed.
Collapse
Affiliation(s)
- Olga Beltcheva
- a Molecular Medicine Center , Department of Medical Chemistry and Biochemistry, Medical University of Sofia , Sofia , Bulgaria
| | - Anelia Boueva
- b SBAL Pediatric Diseases, Pediatric Nephrology and Hemodialysis Clinic, Medical University of Sofia , Sofia , Bulgaria
| | - Reni Tzveova
- a Molecular Medicine Center , Department of Medical Chemistry and Biochemistry, Medical University of Sofia , Sofia , Bulgaria
| | - Dimitar Roussinov
- b SBAL Pediatric Diseases, Pediatric Nephrology and Hemodialysis Clinic, Medical University of Sofia , Sofia , Bulgaria
| | - Svetlana Marinova
- b SBAL Pediatric Diseases, Pediatric Nephrology and Hemodialysis Clinic, Medical University of Sofia , Sofia , Bulgaria
| | - Radka Kaneva
- a Molecular Medicine Center , Department of Medical Chemistry and Biochemistry, Medical University of Sofia , Sofia , Bulgaria
| | - Vanio Mitev
- a Molecular Medicine Center , Department of Medical Chemistry and Biochemistry, Medical University of Sofia , Sofia , Bulgaria
| |
Collapse
|
11
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Lorenz K, Cohen BA. Causal variation in yeast sporulation tends to reside in a pathway bottleneck. PLoS Genet 2014; 10:e1004634. [PMID: 25211152 PMCID: PMC4161353 DOI: 10.1371/journal.pgen.1004634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
There has been extensive debate over whether certain classes of genes are more likely than others to contain the causal variants responsible for phenotypic differences in complex traits between individuals. One hypothesis states that input/output genes positioned in signal transduction bottlenecks are more likely than other genes to contain causal natural variation. The IME1 gene resides at such a signaling bottleneck in the yeast sporulation pathway, suggesting that it may be more likely to contain causal variation than other genes in the sporulation pathway. Through crosses between natural isolates of yeast, we demonstrate that the specific causal nucleotides responsible for differences in sporulation efficiencies reside not only in IME1 but also in the genes that surround IME1 in the signaling pathway, including RME1, RSF1, RIM15, and RIM101. Our results support the hypothesis that genes at the critical decision making points in signaling cascades will be enriched for causal variants responsible for phenotypic differences. Distinguishing the small number of genetic variants that impact phenotypes from the huge number of innocuous variants within an individual's genome is a difficult problem. Several hypotheses concerning the location of causal variants have been put forward based on the fact that genes are often organized into signaling cascades where the activation of a gene at the top of a pathway in turn activates large numbers of downstream genes. One hypothesis states that causal variations are more likely to reside in the genes at the top of these pathways because their effects are amplified by the signaling cascade. Here we provide support for this hypothesis by showing that causal genetic variants in yeast sporulation cluster around a gene at the top of the sporulation signaling cascade. Our result suggests a way to focus the search for causal genetic variants, including those that cause disease, on a smaller number of genes that are more likely to harbor important variations.
Collapse
Affiliation(s)
- Kim Lorenz
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
13
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
14
|
The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol Cell Biol 2013; 34:673-84. [PMID: 24324006 DOI: 10.1128/mcb.01359-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Rim101 protein is a conserved pH-responsive transcription factor that mediates important interactions between several fungal pathogens and the infected host. In the human fungal pathogen Cryptococcus neoformans, the Rim101 protein retains conserved functions to allow the microorganism to respond to changes in pH and other host stresses. This coordinated cellular response enables this fungus to effectively evade the host immune response. Preliminary studies suggest that this conserved transcription factor is uniquely regulated in C. neoformans both by the canonical pH-sensing pathway and by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Here we present comparative transcriptional data that demonstrate a strong concordance between the downstream effectors of PKA and Rim101. To define Rim101-dependent gene expression during a murine lung infection, we used nanoString profiling of lung tissue infected with a wild-type or rim101Δ mutant strain. In this setting, we demonstrated that Rim101 controls the expression of multiple cell wall-biosynthetic genes, likely explaining the enhanced immunogenicity of the rim101Δ mutant. Despite its divergent upstream regulation, the C. neoformans Rim101 protein recognizes a conserved DNA binding motif. Using these data, we identified direct targets of this transcription factor, including genes involved in cell wall regulation. Therefore, the Rim101 protein directly controls cell wall changes required for the adaptation of C. neoformans to its host environment. Moreover, we propose that integration of the cAMP/PKA and pH-sensing pathways allows C. neoformans to respond to a broad range of host-specific signals.
Collapse
|
15
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
16
|
González A, Casado C, Petrezsélyová S, Ruiz A, Ariño J. Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet Biol 2013; 53:1-9. [PMID: 23454581 DOI: 10.1016/j.fgb.2013.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/25/2022]
Abstract
Yeast flocculation and invasive growth are processes of great interest in fundamental biology and also relevant in biotechnology and medicine. Hal3 and Vhs3 are moonlighting proteins acting in Saccharomyces cerevisiae both as inhibitors of the Ppz protein phosphatases and as components of a catalytic step in CoA biosynthesis. The double hal3 vhs3 mutant is not viable but, under semi-permissive conditions, the tetO:HAL3 vhs3 strain shows a flocculent phenotype, invasive growth and increased expression of the flocculin-encoding FLO11 gene. We show here that all these effects are caused by hyperactivation of Ppz1 as a result of depletion of its natural inhibitors. The evidence indicates that hyperactivation of Ppz1 would impair potassium transport through the Trk1/Trk2 transporters, thus resulting in a decrease in the intracellular pH and a subsequent increase in the levels of cAMP. Mutation of the TPK2 isoform of protein kinase A blocks the increase in FLO11 expression, and eliminates the flocculent and invasive phenotypes produced by depletion of Hal3 and Vhs3. Interestingly, mutation of RIM101 also significantly decreases FLO11 expression under these conditions. Cells lacking Trk1,2 display an invasive phenotype that is abolished by deletion of FLO8 or by increasing the potassium concentration in the medium. Therefore, our results support a model in which hyperactivation of Ppz phosphatases would result in alteration of potassium transport, activation of Tpk2 and signaling to the FLO11 promoter by means of the Flo8 transcription factor, thus modulating flocculation and invasive growth. This model highlights an unsuspected link between potassium homeostasis and these important morphogenetic events.
Collapse
Affiliation(s)
- Asier González
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Prusky D, Alkan N, Mengiste T, Fluhr R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:155-76. [PMID: 23682917 DOI: 10.1146/annurev-phyto-082712-102349] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insidious fungal infections by postharvest pathogens remain quiescent during fruit growth until, at a particular phase during fruit ripening and senescence, the pathogens switch to the necrotrophic lifestyle and cause decay. During ripening, fruits undergo physiological processes, such as activation of ethylene biosynthesis, cuticular changes, and cell-wall loosening-changes that are accompanied by a decline of antifungal compounds, both those that are preformed and those that are inducible secondary metabolites. Pathogen infection of the unripe host fruit initiates defensive signal-transduction cascades, culminating in accumulation of antifungal proteins that limit fungal growth and development. In contrast, development of the same pathogens during fruit ripening and storage activates a substantially different signaling network, one that facilitates aggressive fungal colonization. This review focuses on responses induced by the quiescent pathogens of postharvest diseases in unripe host fruits. New genome-scale experimental approaches have begun to delineate the complex and multiple networks of host and pathogen responses activated to maintain or to facilitate the transition from the quiescent to the necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, Volcani Center, Bet Dagan, 50250 Israel.
| | | | | | | |
Collapse
|
18
|
Fonseca-García C, León-Ramírez CG, Ruiz-Herrera J. The regulation of different metabolic pathways through the Pal/Rim pathway in Ustilago maydis. FEMS Yeast Res 2012; 12:547-56. [DOI: 10.1111/j.1567-1364.2012.00805.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - Claudia G. León-Ramírez
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| |
Collapse
|
19
|
van Werven FJ, Amon A. Regulation of entry into gametogenesis. Philos Trans R Soc Lond B Biol Sci 2012; 366:3521-31. [PMID: 22084379 DOI: 10.1098/rstb.2011.0081] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gametogenesis is a fundamental aspect of sexual reproduction in eukaryotes. In the unicellular fungi Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast), where this developmental programme has been extensively studied, entry into gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. Starvation signals and cellular mating-type information promote the transcription of cell fate inducers, which in turn initiate a transcriptional cascade that propels a unique type of cell division, meiosis, and gamete morphogenesis. Here, we will provide an overview of how entry into gametogenesis is initiated in budding and fission yeast and discuss potential conserved features in the germ cell development of higher eukaryotes.
Collapse
Affiliation(s)
- Folkert J van Werven
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:224-36. [PMID: 21864727 DOI: 10.1016/j.bbapap.2011.08.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/26/2023]
Abstract
Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of medical Science, Tokyo, Japan.
| | | |
Collapse
|
21
|
Abstract
pH homeostasis is critical for all organisms; in the fungal pathogen Candida albicans, pH adaptation is critical for virulence in distinct host niches. We demonstrate that beyond adaptation, C. albicans actively neutralizes the environment from either acidic or alkaline pHs. Under acidic conditions, this species can raise the pH from 4 to >7 in less than 12 h, resulting in autoinduction of the yeast-hyphal transition, a critical virulence trait. Extracellular alkalinization has been reported to occur in several fungal species, but under the specific conditions that we describe, the phenomenon is more rapid than previously observed. Alkalinization is linked to carbon deprivation, as it occurs in glucose-poor media and requires exogenous amino acids. These conditions are similar to those predicted to exist inside phagocytic cells, and we find a strong correlation between the use of amino acids as a cellular carbon source and the degree of alkalinization. Genetic and genomic approaches indicate an emphasis on amino acid uptake and catabolism in alkalinizing cells. Mutations in four genes, STP2, a transcription factor regulating amino acid permeases, ACH1 (acetyl-coenzyme A [acetyl-CoA] hydrolase), DUR1,2 (urea amidolyase), and ATO5, a putative ammonia transporter, abolish or delay neutralization. The pH changes are the result of the extrusion of ammonia, as observed in other fungi. We propose that nutrient-deprived C. albicans cells catabolize amino acids as a carbon source, excreting the amino nitrogen as ammonia to raise environmental pH and stimulate morphogenesis, thus directly contributing to pathogenesis. Candida albicans is the most important fungal pathogen of humans, causing disease at multiple body sites. The ability to switch between multiple morphologies, including a rounded yeast cell and an elongated hyphal cell, is a key virulence trait in this species, as this reversible switch is thought to promote dissemination and tissue invasion in the host. We report here that C. albicans can actively alter the pH of its environment and induce its switch to the hyphal form. The change in pH is caused by the release of ammonia from the cells produced during the breakdown of amino acids. This phenomenon is unprecedented in a human pathogen and may substantially impact host physiology by linking morphogenesis, pH adaptation, carbon metabolism, and interactions with host cells, all of which are critical for the ability of C. albicans to cause disease.
Collapse
|
22
|
Sorimachi H, Hata S, Ono Y. Calpain chronicle--an enzyme family under multidisciplinary characterization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:287-327. [PMID: 21670566 PMCID: PMC3153876 DOI: 10.2183/pjab.87.287] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/04/2011] [Indexed: 05/29/2023]
Abstract
Calpain is an intracellular Ca2+-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) discovered in 1964. It was also called CANP (Ca2+-activated neutral protease) as well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to transform or modulate their substrates' structures and activities; they are therefore called, "modulator proteases." In the human genome, 15 genes--CAPN1, CAPN2, etc.--encode a calpain-like protease domain. Their products are calpain homologs with divergent structures and various combinations of functional domains, including Ca2+-binding and microtubule-interaction domains. Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms, including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of calpains focuses especially on recent findings about their structure-function relationships. These discoveries have been greatly aided by the development of 3D structural studies and genetic models.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Pérez J, Gómez A, Roncero C. Upregulation of the PRB1 gene in the Saccharomyces cerevisiae rim101Delta mutant produces proteolytic artefacts that differentially affect some proteins. Yeast 2010; 27:575-81. [PMID: 20641016 DOI: 10.1002/yea.1776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic degradation during protein processing in yeast is usually prevented by the addition of protease inhibitors or strict cooling of the samples. In this report we show that, while these precautions are sufficient for some strains, they are clearly insufficient for others. Specifically, we show that the stability of some proteins, such as Slt2p or Chs4p, but not others, is severely compromised in the rim101Delta mutant due to the upregulation of the PRB1 gene, which leads to higher levels of proteinase B activity. This degradation can be almost completely prevented by an overdose of subtilisin-like protease inhibitors, such as PMSF, or by avoiding cell freezing. Growth under other conditions that increase proteinase B activity also leads to the differential degradation of some proteins. Here, analysis of several commercial protease inhibitor cocktails indicated that all of them lacked enough subtilisin-like protease inhibitors to prevent any excess of proteinase B activity. Therefore, much stricter experimental protocols than those routinely used are necessary to prevent the artefactual interpretation of protein levels in strains or conditions that increase proteinase B activity.
Collapse
Affiliation(s)
- Jacqueline Pérez
- Instituto de Microbiología Bioquímica and Departamento de Microbiología y Genética, CSIC/University of Salamanca, Spain
| | | | | |
Collapse
|
24
|
Han YC, Li GQ, Yang L, Jiang DH. Molecular cloning, characterization and expression analysis of a pacC homolog in the mycoparasite Coniothyrium minitans. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0469-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Mattiazzi M, Jambhekar A, Kaferle P, DeRisi JL, Križaj I, Petrovič U. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape. Mol Genet Genomics 2010; 283:519-30. [PMID: 20379744 PMCID: PMC2872012 DOI: 10.1007/s00438-010-0533-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/11/2010] [Indexed: 02/06/2023]
Abstract
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A(2) (PLA(2)s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA(2) in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA(2) activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA(2) activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them.
Collapse
Affiliation(s)
- M. Mattiazzi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - A. Jambhekar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Present Address: Departments of Genetics and Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - P. Kaferle
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - J. L. DeRisi
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA USA
| | - I. Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - U. Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Guseva MA, Epova EY, Kovalev LI, Shevelev AB. The study of adaptation mechanisms of Yarrowia lipolytica yeast to alkaline conditions by means of proteomics. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Pho85 kinase, a cyclin-dependent kinase, regulates nuclear accumulation of the Rim101 transcription factor in the stress response of Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:943-51. [PMID: 20382759 DOI: 10.1128/ec.00247-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to changing environmental conditions. The Pho85 kinase, one of the yeast cyclin-dependent kinases (CDK), is known to play an important role in the cellular response to alterations in parameters such as nutrient levels and salinity. Several genes whose expression is regulated, either directly or indirectly, by the Rim101 transcription factor become constitutively activated when Pho85 function is absent. Because Rim101 is responsible for adaptation to alkaline conditions, this observation suggests an interaction between Pho85 and Rim101 in the response to alkaline stress. We have found that Pho85 affects neither RIM101 transcription, the proteolytic processing that is required for Rim101 activation, nor Rim101 stability. Rather, Pho85 regulates the nuclear accumulation of active Rim101, possibly via phosphorylation. Additionally, we report that Pho85 and the transcription factor Pho4 are necessary for adaptation to alkaline conditions and that PTK2 activation by Pho4 is involved in this process. These findings illustrate novel roles for the regulators of the PHO system when yeast cells cope with various environmental stresses potentially threatening their survival.
Collapse
|
28
|
Yuan X, Mitchell BM, Hua X, Davis DA, Wilhelmus KR. The RIM101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis. Invest Ophthalmol Vis Sci 2010; 51:4668-76. [PMID: 20375342 DOI: 10.1167/iovs.09-4726] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To examine the role of the fungal RIM101 signal transduction pathway in the pathogenesis of Candida albicans keratitis. METHODS C. albicans wild-type strain SC5314, prototrophic mutant control DAY185, and homozygous fungal mutants for the rim8, rim13, rim20, rim101, and phr1 genes were evaluated in vitro using proliferation and filamentation assays. Scarified corneas of BALB/c and C57BL/6J mice were topically inoculated and observed daily for keratitis severity. Corneal adaptation and pathogenicity were assessed ex vivo by maintaining infected porcine corneas for 3 days in an explantation culture system for histologic evaluation of hyphal penetration. RESULTS All C. albicans strains had similar growth kinetics, and SC5314 and DAY185 demonstrated pH-induced filamentation. Fungal mutants had reduced hyphal formation at alkaline and neutral pH, but normal acidic assays ascertained that mutant strains did not have a generalized filamentation defect. SC5314 and DAY185 caused moderate to severe keratitis in mice, whereas fungal strains lacking constituents of the RIM101 pathway had significantly (P<0.05) attenuated severity in vivo. Three days after inoculation of porcine corneas, SC5314 and DAY185 produced hyphae that penetrated 28% and 25%, respectively, of the corneal thickness, and all five mutant strains showed significantly (P<0.05) less stromal penetration. CONCLUSIONS The RIM101 signal transduction pathway plays an important role in the development of C. albicans keratitis. The fungal pathway intermediates Rim8p, Rim13p, Rim20p, and Rim101p and the downstream cell-wall protein Phr1p are pivotal in the process of corneal invasion by C. albicans.
Collapse
Affiliation(s)
- Xiaoyong Yuan
- Sid W. Richardson Ocular Microbiology Laboratory, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 2010; 6:e1000776. [PMID: 20174553 PMCID: PMC2824755 DOI: 10.1371/journal.ppat.1000776] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/18/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions. Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Survival of this fungus within a human host depends on its ability to sense the host environment and respond with protective cellular changes. It is known that the cAMP/PKA signal transduction cascade is important for sensing host-specific environments and regulating the cellular adaptations, such as capsule and increased iron uptake, that are necessary for growth inside the infected host. Here we document that, unlike what has been described in other fungal species, a C. neoformans Rim101 homologue is directly regulated by PKA. The Rim101 signaling pathway is also involved in capsule regulation and virulence. Our study demonstrates that Rim101 integrates two conserved signal transduction cascades, and it is important in regulating microbial pathogenesis.
Collapse
|
30
|
Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 2009; 12:365-70. [PMID: 19632143 DOI: 10.1016/j.mib.2009.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/04/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The ability of fungal pathogens to cause disease is dependent on the ability to grow within the human host environment. In general, the human host environment can be considered a slightly alkaline environment, and the ability of fungi to grow at this pH is essential for pathogenesis. The Rim101 signal transduction pathway is the primary pH sensing pathway described in the pathogenic fungi, and in Candida albicans, it is required for a variety of diseases. As more detailed analyses have been conducted studying pathogenesis at the molecular level, it has become clear that the Rim101 pathway, and pH responses in general, play an intimate role in pathogenesis beyond simply allowing the organism to grow. Here, several recent advances into Rim101-dependent functions implicated in disease progression are discussed.
Collapse
Affiliation(s)
- Dana A Davis
- 1360 Mayo Building MMC196, Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Schmidt P, Walker J, Selway L, Stead D, Yin Z, Enjalbert B, Weig M, Brown AJP. Proteomic analysis of the pH response in the fungal pathogenCandida glabrata. Proteomics 2008; 8:534-44. [DOI: 10.1002/pmic.200700845] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007; 71:348-76. [PMID: 17554048 PMCID: PMC1899878 DOI: 10.1128/mmbr.00009-06] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.
Collapse
Affiliation(s)
- Subhrajit Biswas
- National Centre for Plant Genome Research, New Delhi 110 067, India
| | | | | |
Collapse
|
33
|
Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 2005; 25:9478-90. [PMID: 16227598 PMCID: PMC1265799 DOI: 10.1128/mcb.25.21.9478-9490.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many fungi, transcriptional responses to alkaline pH are mediated by conserved signal transduction machinery. In the homologous system in Saccharomyces cerevisiae, the zinc-finger transcription factor Rim101 is activated under alkaline conditions to regulate transcription of target genes. The activation of Rim101 is exerted through proteolytic processing of its C-terminal inhibitory domain. Regulated processing of Rim101 requires several proteins, including the calpain-like protease Rim13/Cpl1, a putative protease scaffold Rim20, putative transmembrane proteins Rim9, and Rim21/Pal2, and Rim8/Pal3 of unknown biochemical function. To identify new regulatory components and thereby determine the order of action among the components in the pathway, we screened for suppressors of rim9Delta and rim21Delta mutations. Three identified suppressors-did4/vps2, vps24, and vps4-all belonged to "class E" vps mutants, which are commonly defective in multivesicular body sorting. These mutations suppress rim8, rim9, and rim21 but not rim13 or rim20, indicating that Rim8, Rim9, and Rim21 act upstream of Rim13 and Rim20 in the pathway. Disruption of DID4, VPS24, or VPS4, by itself, uncouples pH sensing from Rim101 processing, leading to constitutive Rim101 activation. Based on extensive epistasis analysis between pathway-activating and -inactivating mutations, a model for architecture and regulation of the Rim101 pathway is proposed.
Collapse
Affiliation(s)
- Michio Hayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
34
|
Lotz H, Sohn K, Brunner H, Muhlschlegel FA, Rupp S. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. EUKARYOTIC CELL 2005; 3:776-84. [PMID: 15189998 PMCID: PMC420143 DOI: 10.1128/ec.3.3.776-784.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor Rim101p of Candida albicans has been shown to play a major role in pH-dependent gene regulation. Rim101p is involved in cell wall biosynthesis, since it regulates PHR1 and PHR2, two almost functionally redundant cell wall glycosidases important for adaptation to either neutral or acidic habitats within the human host. To identify additional cell wall components regulated by Rim101p, we performed transcriptional profiling with a cell wall-specific DNA microarray. We showed that Rim101p contributes to the activation of known hypha-specific genes such as HWP1 and RBT1 but is also required for repression of the previously uncharacterized potential cell wall genes RBR1, RBR2, and RBR3. Further characterization of RBR1 revealed that it encodes a small glycosylphosphatidyl inositol protein that is expressed under acidic conditions predominantly at low temperature. Deletion of the gene resulted in a filamentation defect at low pH. Most interestingly, NRG1, a transcriptional repressor of hyphal growth in C. albicans, was required for RBR1 expression. The apparently activating effect of NRG1 observed in this study has not been described before. In addition, we showed that expression of NRG1 is not only temperature but also pH dependent.
Collapse
|
35
|
Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. EUKARYOTIC CELL 2005; 3:741-51. [PMID: 15189995 PMCID: PMC420141 DOI: 10.1128/ec.3.3.741-751.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C. albicans Rim13p, a homolog of the Rim13p/PalB calpain-like protease member of the RIM101/pacC pathway from Saccharomyces cerevisiae and Aspergillus nidulans, respectively. RIM13, like other members of the RIM101 pathway, is required for alkaline pH-induced filamentation and growth under extreme alkaline conditions. Further, our studies suggest that the RIM101 pathway promotes pH-independent responses, including resistance to high concentrations of lithium and to the drug hygromycin B. RIM13 encodes a calpain-like protease, and we found that Rim101p undergoes a Rim13p-dependent C-terminal proteolytic processing event at neutral-to-alkaline pHs, similar to that reported for S. cerevisiae Rim101p and A. nidulans PacC. However, we present evidence that suggests that C. albicans Rim101p undergoes a novel processing event at acidic pHs that has not been reported in either S. cerevisiae or A. nidulans. Thus, our results provide a framework to understand how the C. albicans Rim101p processing pathway promotes alkaline pH-independent processes.
Collapse
Affiliation(s)
- Mingchun Li
- Department of Microbiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | | | | |
Collapse
|
36
|
Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:6772-88. [PMID: 16024810 PMCID: PMC1190364 DOI: 10.1128/mcb.25.15.6772-6788.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.
Collapse
Affiliation(s)
- Karen Rothfels
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. EUKARYOTIC CELL 2005; 4:890-9. [PMID: 15879523 PMCID: PMC1140096 DOI: 10.1128/ec.4.5.890-899.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerevisiae dfg16Delta mutant expresses Rim101p-repressed genes at elevated levels. In addition, Candida albicans dfg16Delta/dfg16Delta mutants are defective in alkaline pH-induced filamentation, and their defect is suppressed by expression of truncated Rim101-405p. Thus, Dfg16p is a functionally conserved Rim101p pathway member. Many proteins required for processed Rim101p accumulation are members of the ESCRT complex, which functions in the formation of multivesicular bodies (MVBs). Staining with the dye FM4-64 indicates that the S. cerevisiae dfg16Delta mutant does not have an MVB defect. We find that two transcripts, PRY1 and ASN1, respond to mutations that affect both the Rim101p and MVB pathways but not to mutations that affect only one pathway. The S. cerevisiae dfg16Delta mutation does not affect PRY1 and ASN1 expression, thus confirming that Dfg16p function is restricted to the Rim101p pathway. Dfg16p is homologous to Aspergillus nidulans PalH, a component of the well-characterized PacC processing pathway. We verify that the previously recognized PalH homolog, Rim21p, also functions in the S. cerevisiae Rim101p pathway. Dfg16p is predicted to have seven membrane-spanning segments and a long hydrophilic C-terminal region, as expected if Dfg16p were a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Karen J Barwell
- Department of Microbiology, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
38
|
Mouyna I, Morelle W, Vai M, Monod M, Léchenne B, Fontaine T, Beauvais A, Sarfati J, Prévost MC, Henry C, Latgé JP. Deletion of GEL2 encoding for a beta(1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol 2005; 56:1675-88. [PMID: 15916615 DOI: 10.1111/j.1365-2958.2005.04654.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first fungal glycosylphosphatidylinositol anchored beta(1-3)glucanosyltranferase (Gel1p) has been described in Aspergillus fumigatus and its encoding gene GEL1 identified. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. We characterize here GEL2, a homologue of GEL1. Both homologues share common characteristics: (i) GEL1 and GEL2 are constitutively expressed during over a range of growth conditions; (ii) Gel2p is also a putative GPI-anchored protein and shares the same beta(1-3)glucanosyltransferase activity as Gel1p and (iii) GEL2, like GEL1, is able to complement the Deltagas1 deletion in Saccharomyces cerevisiae confirming that Gelp and Gasp have the same enzymatic activity. However, disruption of GEL1 did not result in a phenotype whereas a Deltagel2 mutant and the double mutant Deltagel1Deltagel2 exhibit slower growth, abnormal conidiogenesis, and an altered cell wall composition. In addition, the Deltagel2 and the Deltagel1Deltagel2 mutant have reduced virulence in a murine model of invasive aspergillosis. These data suggest for the first time that beta(1-3)glucanosyltransferase activity is required for both morphogenesis and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Isabelle Mouyna
- Institut Pasteur, Unité des Aspergillus, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Aréchiga-Carvajal ET, Ruiz-Herrera J. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. EUKARYOTIC CELL 2005; 4:999-1008. [PMID: 15947192 PMCID: PMC1151993 DOI: 10.1128/ec.4.6.999-1008.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
A homologue of the gene encoding the transcription factor Rim101 (PacC), involved in pH signal transduction in fungi, was identified in the pathogenic basidiomycete Ustilago maydis. The gene (RIM101) encodes a protein of 827 amino acid residues, which shows highest similarity to PacC proteins from Fusarium oxysporum and Aspergillus niger. The gene had the capacity to restore protease activity to rim101 mutants from Yarrowia lipolytica, confirming its homologous function, and was expressed at both acid and neutral pH. Null Deltarim101 mutants were not affected in the in vitro pH-induced dimorphic transition, their growth rate, resistance to hypertonic sorbitol or KCl stress, and pathogenicity. However, similar to pacC (rim101) mutants in other fungi, they displayed a pleiotropic phenotype with alterations in morphogenesis, impairment in protease secretion, and increased sensitivity to Na+ and Li+ ions. Other phenotypic characteristics not previously reported in fungal pacC (rim101) mutants (morphological changes, increased sensitivity to lytic enzymes, and augmented polysaccharide secretion) were also observed in U. maydis mutants. All these modifications were alleviated by transformation with the wild-type gene, confirming that all were the result of mutation in RIM101. These data indicate that the Pal/Rim pathway is functional in U. maydis (and probably in other basidiomycetes) and plays complex roles in pH-sensing phenomena, as occurs in ascomycetes and deuteromycetes.
Collapse
Affiliation(s)
- Elva T Aréchiga-Carvajal
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500 Irapuato, Gto., México
| | | |
Collapse
|
40
|
Bensen ES, Martin SJ, Li M, Berman J, Davis DA. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 2005; 54:1335-51. [PMID: 15554973 DOI: 10.1111/j.1365-2958.2004.04350.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogen Candida albicans grows and colonizes sites that can vary markedly in pH. The pH response in C. albicans is governed in part by the Rim101p pathway. In Saccharomyces cerevisiae, Rim101p promotes alkaline responses by repressing expression of NRG1, itself a transcriptional repressor. Our studies reveal that in C. albicans, Rim101p-mediated alkaline adaptation is not through repression of CaNRG1. Furthermore, our studies suggest that Rim101p and Nrg1p act in parallel pathways to regulate hyphal morphogenesis, an important contributor to virulence. To determine the wild-type C. albicans transcriptional response to acidic and alkaline pH, we utilized microarrays and identified 514 pH-responsive genes. Of these, several genes involved in iron acquisition were upregulated at pH 8, suggesting that alkaline pH induces iron starvation. Microarray analysis of rim101-/- cells indicated that Rim101p does not govern transcriptional responses at acidic pH, but does regulate a subset of transcriptional responses at alkaline pH, including the iron acquisition genes. We found that rim101-/- cells are sensitive to iron starvation, which suggests that one important aspect of the Rim101p-dependent alkaline pH response is to adapt to iron starvation conditions.
Collapse
Affiliation(s)
- Eric S Bensen
- Department of Genetics and Cell Development, University of Minnesota, MN 55455, USA
| | | | | | | | | |
Collapse
|
41
|
Prusky D, McEvoy JL, Saftner R, Conway WS, Jones R. Relationship Between Host Acidification and Virulence of Penicillium spp. on Apple and Citrus Fruit. PHYTOPATHOLOGY 2004; 94:44-51. [PMID: 18943818 DOI: 10.1094/phyto.2004.94.1.44] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACT Penicillium expansum, P. digitatum, and P. italicum acidify the ambient environments of apple and citrus fruit during decay development. They use two mechanisms for this: the production of organic acids, mainly citric and gluconic, and NH(4)(+) utilization associated with H(+) efflux. Exposure of P. expansum and P. digitatum hyphae to pH 5.0 increased their citric acid production, compared with the production of organic acids at acidic ambient pH. In decayed fruit, both pathogens produced significant amounts of citric and gluconic acids in the decayed tissue and reduced the host pH by 0.5 to 1.0 units. Ammonium depletion from the growth medium or from the fruit tissue was directly related to ambient pH reduction. Analysis of transcripts encoding the endopolygalacturonase gene, pepg1, from P. expansum accumulated under acidic culture conditions from pH 3.5 to 5.0, suggesting that the acidification process is a pathogenicity enhancing factor of Penicillium spp. This hypothesis was supported by the finding that cultivars with lower pH and citric acid treatments to reduce tissue pH increased P. expansum development, presumably by increasing local pH. However, organic acid treatment could not enhance decay development in naturally acidic apples. Conversely, local alkalinization with NaHCO(3) reduced decay development. The present results further suggest that ambient pH is a regulatory cue for processes linked to pathogenicity of postharvest pathogens, and that specific genes are expressed as a result of the modified host pH created by the pathogens.
Collapse
|
42
|
Affiliation(s)
- Herbert N Arst
- Department of Infectious Diseases and Microbiology, Faculty of Medicine, Imperial College London, Ducane Road, London W12 ONN, UK.
| | | |
Collapse
|
43
|
Davis D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 2003; 44:1-7. [PMID: 12819929 DOI: 10.1007/s00294-003-0415-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 05/20/2003] [Accepted: 05/31/2003] [Indexed: 10/26/2022]
Abstract
For microorganisms that grow over a wide range of extracellular pH, systems must have evolved to sense and respond appropriately. The human opportunistic pathogen Candida albicans colonizes and infects anatomical sites of diverse pH, including the oral and gastro-intestinal tracts and the vaginal cavity. The ability to sense and respond to neutral-alkaline environments is governed by signal transduction pathways, one of which culminates in the activation of the transcription factor, Rim101p. The RIM101/pacC pathway, which governs pH responses and differentiation, has been the focus of study in both Saccharomyces cerevisiae and Aspergillus nidulans. This pathway has been identified in C. albicans and governs pH responses, dimorphism, and pathogenesis. Although C. albicans and S. cerevisiae are related fungi, it is becoming apparent that there are unique aspects of the pH response and the role the RIM101 pathway plays in this response in C. albicans.
Collapse
Affiliation(s)
- Dana Davis
- Department of Microbiology, University of Minnesota, 1360 Mayo Building MMC196, MN 55455, Minneapolis, USA.
| |
Collapse
|
44
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Rollins JA. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:785-95. [PMID: 12971602 DOI: 10.1094/mpmi.2003.16.9.785] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The synergistic activities of oxalic acid and endopolygalacturonases are thought to be essential for full virulence of Sclerotinia sclerotiorum and other oxalate-producing plant pathogens. Both oxalic acid production and endopolygalacturonase activity are regulated by ambient pH. Since many gene products with pH-sensitive activities are regulated by the PacC transcription factor in Aspergillus nidulans, we functionally characterized a pacC gene homolog, pac1, from S. sclerotiorum. Mutants with loss-of-function alleles of the pac1 locus were created by targeted gene replacement. In vitro mycelial growth of these pac1 mutants was normal at acidic pH, but growth was inhibited as culture medium pH was increased. Development and maturation of sclerotia in culture was also aberrant in these pac1 replacement mutants. Although oxalic acid production remained alkaline pH-responsive, the kinetics and magnitude of oxalate accumulation were dramatically altered. Additionally, maximal accumulation of endopolygalacturonase gene transcripts (pg1) was shifted to higher ambient pH. Virulence in loss-of-function pac1 mutants was dramatically reduced in infection assays with tomato and Arabidopsis. Based on these results, pac1 appears to be necessary for the appropriate regulation of physiological processes important for pathogenesis and development of S. sclerotiorum.
Collapse
Affiliation(s)
- Jeffrey A Rollins
- Department of Plant Pathology, 1453 Fifield Hall, University of Florida, Gainesville, FL 32611-0680, USA.
| |
Collapse
|
46
|
Ramón AM, Fonzi WA. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. EUKARYOTIC CELL 2003; 2:718-28. [PMID: 12912891 PMCID: PMC178344 DOI: 10.1128/ec.2.4.718-728.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biology of Candida albicans, including dimorphism and virulence, is significantly influenced by environmental pH. The response to ambient pH includes the pH-conditional expression of several genes, which is directly or indirectly regulated by Rim101p. Rim101p is homologous to PacC, a transcription factor that regulates pH-conditional gene expression in Aspergillus nidulans. PacC binds 5'-GCCARG-3' sequences upstream of pH-responsive genes and either activates or represses transcription. The absence of pacC consensus binding sites upstream of PHR1, a RIM101-dependent, alkaline pH-induced gene of C. albicans, suggested either that PHR1 is indirectly regulated by Rim101p or that the binding specificity of Rim101p is different. In vitro binding studies demonstrated that Rim101p strongly bound two regions upstream of PHR1 that were only weakly bound by PacC. Deletion analysis and site-specific mutagenesis demonstrated that both sites were functionally significant, mutation of either site reduced RIM101-dependent induction, and expression was abolished in the double mutant. Furthermore, oligonucleotides containing these sites conferred pH-conditional expression when inserted upstream of a reporter gene. The consensus sequence of these sites, 5'-CCAAGAAA-3', was identical to the binding recognition sequence identified by in vitro selection of Rim101p binding oligonucleotides from a random pool. The functional significance of this binding sequence was reinforced by its observed presence upstream of a number of newly identified pH-conditional genes. We conclude that Rim101p acts as a transcription factor and directly regulates pH-conditional gene expression but has a binding specificity different from that of PacC.
Collapse
Affiliation(s)
- Ana M Ramón
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057-2197, USA
| | | |
Collapse
|
47
|
Drori N, Kramer-Haimovich H, Rollins J, Dinoor A, Okon Y, Pines O, Prusky D. External pH and nitrogen source affect secretion of pectate lyase by Colletotrichum gloeosporioides. Appl Environ Microbiol 2003; 69:3258-62. [PMID: 12788724 PMCID: PMC161482 DOI: 10.1128/aem.69.6.3258-3262.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of ammonia and associated tissue alkalinization predispose fruit to attack by Colletotrichum gloeosporioides: As the external pH increases from 4.0 to 6.0, pectate lyase (PL) and other extracellular proteins are secreted and accumulate. At pH 4.0 neither pelB (encoding PL) transcription nor PL secretion were detected; however, they were detected as the pH increased. Nitrogen assimilation also was required for PL secretion at pH 6.0. Both inorganic and organic nitrogen sources enhanced PL secretion at pH 6.0, but neither was sufficient for PL secretion at pH 4.0. Sequence analysis of the 5' upstream region of the pelB promoter revealed nine putative consensus binding sites for the Aspergillus transcription factor PacC. Consistent with this result, the transcript levels of pac1 (the C. gloeosporioides pacC homologue) and pelB increased in parallel as a function of pH. Our results suggest that the ambient pH and the nitrogen source are independent regulatory factors for processes linked to PL secretion and virulence of C. gloeosporioides.
Collapse
Affiliation(s)
- N Drori
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 2002; 30:4509-18. [PMID: 12384598 PMCID: PMC137137 DOI: 10.1093/nar/gkf573] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N6-methyladenosine (m6A) is present at internal sites in mRNA isolated from all higher eukaryotes, but has not previously been detected in the mRNA of the yeast Saccharomyces cerevisiae. This nucleoside modification occurs only in a sequence- specific context that appears to be conserved across diverse species. The function of this modification is not fully established, but there is some indirect evidence that m6A may play a role in the efficiency of mRNA splicing, transport or translation. The S.cerevisiae gene IME4, which is important for induction of sporulation, is very similar to the human gene MT-A70, which has been shown to be a critical subunit of the human mRNA [N6-adenosine]-methyltransferase. This observation led to the hypothesis that yeast sporulation may be dependent upon methylation of yeast mRNA, mediated by Ime4p. In this study we show that induction of sporulation leads to the appearance of low levels of m6A in yeast mRNA and that this modification requires IME4. Moreover, single amino acid substitutions in the putative catalytic residues of Ime4p lead to severe sporulation defects in a strain whose sporulation ability is completely dependent on this protein. Collectively, these data suggest very strongly that the activation of sporulation by Ime4p is the result of its proposed methyltransferase activity and provide the most direct evidence to date of a physiologic role of m6A in a gene regulatory pathway.
Collapse
Affiliation(s)
- Mary J Clancy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
49
|
Peñalva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 2002; 66:426-46, table of contents. [PMID: 12208998 PMCID: PMC120796 DOI: 10.1128/mmbr.66.3.426-446.2002] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Life, as we know it, is water based. Exposure to hydroxonium and hydroxide ions is constant and ubiquitous, and the evolutionary pressure to respond appropriately to these ions is likely to be intense. Fungi respond to their environments by tailoring their output of activities destined for the cell surface or beyond to the ambient pH. We are beginning to glimpse how they sense ambient pH and transmit this information to the transcription factor, whose roles ensure that a suitable collection of gene products will be made. Although relatively little is known about pH signal transduction itself, its consequences for the cognate transcription factor are much clearer. Intriguingly, homologues of components of this system mediating the regulation of fungal gene expression by ambient pH are to be found in the animal kingdom. The potential applied importance of this regulatory system lies in its key role in fungal pathogenicity of animals and plants and in its control of fungal production of toxins, antibiotics, and secreted enzymes.
Collapse
|
50
|
Phillips SA, Barr VA, Haft DH, Taylor SI, Haft CR. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J Biol Chem 2001; 276:5074-84. [PMID: 11085978 DOI: 10.1074/jbc.m004671200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexins are a family of phox homology domain containing proteins that are homologous to yeast proteins involved in protein trafficking. We have identified a novel 342-amino acid residue sorting nexin, SNX15, and a 252-amino acid splice variant, SNX15A. Unlike many sorting nexins, a SNX15 ortholog has not been identified in yeast or Caenorhabditis elegans. By Northern blot analysis, SNX15 mRNA is widely expressed. Although predicted to be a soluble protein, both endogenous and overexpressed SNX15 are found on membranes and in the cytosol. The phox homology domain of SNX15 is required for its membrane association and for association with the platelet-derived growth factor receptor. We did not detect association of SNX15 with receptors for epidermal growth factor or insulin. However, overexpression of SNX15 led to a decrease in the processing of insulin and hepatocyte growth factor receptors to their mature subunits. Immunofluorescence studies showed that SNX15 overexpression resulted in mislocalization of furin, the endoprotease responsible for cleavage of insulin and hepatocyte growth factor receptors. Based on our data and the existing findings with yeast orthologs of other sorting nexins, we propose that overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the trans-Golgi network.
Collapse
Affiliation(s)
- S A Phillips
- Diabetes Branch, NIDDK/National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|